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Lactate has emerged as a key regulator in the tumor microenvironment (TME),

influencing both tumor progression and immune dynamics. As a byproduct of

aerobic glycolysis, lactate satisfies the metabolic needs of proliferating tumor

cells while reshaping the TME to facilitate immune evasion. Elevated lactate levels

inhibit effector immune cells such as CD8+ T and natural killer cells, while

supporting immunosuppressive cells, such as regulatory T cells and myeloid-

derived suppressor cells, thus fostering an immunosuppressive environment.

Lactate promotes epigenetic reprogramming, stabilizes hypoxia-inducible

factor-1a, and activates nuclear factor kappa B, leading to further

immunological dysfunction. In this review, we examined the role of lactate in

metabolic reprogramming, immune suppression, and treatment resistance. We

also discuss promising therapeutic strategies targeting lactate metabolism,

including lactate dehydrogenase inhibitors, monocarboxylate transporter

inhibitors, and TME neutralization methods, all of which can restore immune

function and enhance immunotherapy outcomes. By highlighting recent

advances, this review provides a theoretical foundation for integrating lactate-

targeted therapies into clinical practice. We also highlight the potential synergy

between these therapies and current immunotherapeutic strategies, providing

new avenues for addressing TME-related challenges and improving outcomes

for patients with cancer.
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1 Introduction

Lactate, a byproduct of glycolysis, plays a critical role in shaping

the tumor microenvironment (TME). Under normal conditions,

pyruvate from glycolysis enters the mitochondria to undergo

oxidative phosphorylation (OXPHOS), generating 36 adenosine

triphosphates (ATP) per glucose molecule. However, in the

context of tumorigenesis, tumor cells shift to aerobic glycolysis,

known as the Warburg effect, in which pyruvate is converted to

lactate by lactate dehydrogenase A (LDHA) even in the presence of

oxygen (1). This metabolic adaptation allows tumors to sustain

rapid proliferation by maintaining glycolytic flux despite a lower

ATP yield (2 ATP per glucose molecule). In addition to glucose

metabolism, glutamine metabolism provides an alternative source

of lactate, which further fuels tumor growth.

Lactate accumulation in tumors is regulated by hypoxia-

inducible factor-1a (HIF-1a) and c-Myc. These factors enhance

the expression of glycolytic enzymes such as hexokinase 2 (HK2)

and glucose transporter 1 (GLUT1) while inhibiting pyruvate

dehydrogenase (PDH), which normally channels pyruvate into

the mitochondrial tricarboxylic acid (TCA) cycle (2). As a result,

lactate accumulates within tumor cells, indicating the need for

efficient export mechanisms to prevent intracellular acidification

and maintain metabolic homeostasis.

Monocarboxylate transporters (MCTs) mediate lactate

transport in the TME. MCT4, which is highly expressed in

glycolytic tumor cells, facilitates lactate and proton (H+) export,

leading to extracellular acidification. The acidic environment

promotes tumor invasion, angiogenesis, and immune suppression

(3). In contrast, MCT1 supports bidirectional lactate transport,

enabling oxidative tumor cells and cancer-associated fibroblasts

(CAFs) to absorb lactate as energy sources (4). This metabolic

cooperation sustains tumor progression by allowing different cell

populations to adapt to changing nutrient and oxygen conditions.

The acidification of the TME has profound effects on immune

function. A low extracellular pH directly impairs cytotoxic T-cell

and natural killer (NK) cell activity, reducing their ability to kill

tumor cells (5). At the same time, lactate stabilizes HIF-1a and

activates NF-kB, promoting an immunosuppressive phenotype (6).

This change in the acidic environment enhances the function of

regulatory T cells (Tregs) and myeloid-derived suppressor cells

(MDSCs) while inducing tumor-associated macrophages (TAMs)

to adopt an M2-like phenotype, further dampening antitumor

immunity (7). These metabolic and immune adaptations not only

drive tumor progression but also contribute to resistance to

immune checkpoint inhibitors (ICIs).

Lactylation is a recently discovered post-translational

modification (PTM) that was originally described by Zhao et al.

in 2019 (8). Increased lactate concentrations enhance lactylation via

multiple pathways, subsequently affecting cellular functions and

disease progression (9). In this process, lactate coenzyme A (L-

lactyl-CoA) covalently modifies lysine residues (10). “Writer”

enzymes such as p300/CBP mediate lactylation, whereas “eraser”

enzymes such as HDAC1-3 and SIRT1-3 regulate its reversibility

(11). Lactylation occurs in both histone and non-histone proteins
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and is closely linked to cellular metabolic activity. Lactylation

significantly affects chromatin remodeling, gene expression, and

cellular function in the TME (12).

Given its central role in tumor metabolism and immune

suppression, lactate metabolism and transport, as well as

lactylation, are promising targets for cancer therapy. Strategies such

as blockingMCTs, inhibiting lactate production, or modulating TME

acidity could enhance immune cell function and improve the efficacy

of existing cancer therapies. Understanding the interplay between

lactate metabolism, lactylation, and immune evasion is essential for

developing new interventions that restore antitumor immunity and

improve patient outcomes. In this review, we explore the complex

role of lactate in tumor progression, its impact on immune regulation,

and potential therapeutic strategies to counteract lactate-

driven immunosuppression.
2 Role of lactate in the TME and
immunotherapeutic strategies

2.1 Immunoregulatory role of lactate in the
TME: intersection of immunosuppression
and metabolic reprogramming

As outlined in the previous section, lactate metabolism and

transport lead to its accumulation in the TME, where its

concentration can reach 20–40 mM, compared to 1.5–3 mM in

normal tissues (13). This accumulation significantly lowers the

extracellular pH to 6.0–6.5, well below the normal range of 7.3–

7.4. Such an acidic environment impairs immune cell function and

metabolism, promoting tumor immune evasion—a hallmark of

cancer development (14, 15).The acidic pH reduces the metabolic

flexibility of CD8+ T cells and NK cells while enhancing the

immunosuppressive properties of Tregs and MDSCs. The role of

lactate in the TME is illustrated in Figure 1.

Different cancer types exhibit varying degrees of lactate

accumulation (Table 1). For example, lactate concentrations are

significantly higher in tumors with metastatic spread (12.3 ± 3.3

mmol/g) than in those without metastasis (4.7 ± 1.5 mmol/g) (16). In

contrast, cervical cancer samples show a more modest increase in

lactate, with concentrations of 10.0 ± 2.9 mmol/g in tumors with

metastasis and 6.3 ± 2.8 mmol/g in those without (13). In breast cancer,

lactate concentrations vary widely, with values of 0.6–8.0 mmol/g in

late-stage tumors (17). The variations in lactate concentration indicate

that distinct tumor types exhibit differences in lactate accumulation,

potentially influencing their vulnerability to metabolically targeted

therapies. Lactate promotes immunosuppression and tumor

progression, but its role in the TME of different tumor types is

unclear. Therefore, an in-depth study of the function of lactate in the

TME will help to understand its role in tumor metabolism and provide

ideas for future targeted therapies.

Metabolic reprogramming is the adjustment of cellular

metabolic pathways and product distribution in response to

physiological or pathological conditions, enabling cells to adapt to

growth, differentiation, and environmental changes. In the tumor
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microenvironment, this process alters immune cell function by

modifying metabolic substrates and signaling pathways (18). These

connections between lactate metabolism and immune suppression

highlight the pivotal role of metabolic reprogramming in shaping

tumor immune environments. In the subsequent sections, we

explore the varied effects of lactate accumulation on different

immune cell types and the implications of lactate accumulation

for therapeutic strategies aimed at countering immune evasion.
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2.1.1 Inhibitory effects of lactate on effector
immune cells
2.1.1.1 T lymphocytes

Lactate is a key regulator that inhibits T-cell antitumor activity

at multiple levels, including by suppressing T-cell receptor signaling

by decreasing p38 and JNK phosphorylation, which lowers the

production of interferon-g (IFN-g) and tumor necrosis factor-a
(19–21), thereby inhibiting T-cell proliferation and cytotoxicity.

Lactate also affects the NAD+/NADH redox balance, inhibiting

glycolysis, decreasing ATP production, and contributing to T-cell

exhaustion (19, 22). In high-lactate environments, such as those

found in melanoma and other tumor models, NAD+ depletion leads

to T-cell apoptosis and a significant reduction in antitumor

responses (23, 24).

Interestingly, recent studies have identified lactate as a TCA fuel

for certain tumor cells and untransformed tissues in vivo (25–27). It

is an important carbon source for CD8+ T cells, and at its

physiological concentration, lactate promotes mitochondrial

oxidation and supports OXPHOS, thereby enhancing energy

production and cellular biosynthesis, especially during functional

T cell responses in vivo (28). Similarly, lactate produced by innate

immune cells or tumor cells may provide energy for effector T cells

in inflammatory tissues (29, 30). Lactate serves a dual function in T-

cell immunity, seemingly contingent upon varying lactate

concentrations. Lactate enhances T-cell metabolism and activity
TABLE 1 Lactate concentration and metastatic spread in cancer types.

Cancer
Type

Lactate Concentration References

Head and Neck
Cancer

12.3 ± 3.3 mmol/g (with spread)
4.7 ± 1.5 mmol/g (without spread)

(16)

Colorectal
Cancer

13.4 ± 3.8 mmol/g (with spread)
6.9 mmol/g (without spread)

(154)

Breast Cancer 0.6–8.0 mmol/g (median
concentration range)

(17)

Cervical Cancer 10.0 ± 2.9 mmol/g (with spread)
6.3 ± 2.8 mmol/g (without spread)

(13)

Lung Cancer
(Metastatic)

1.8 ± 2.2 mmol/L (maximal levels) (155)

Astrocytomas 12.35 mmol/L (with spread)
8.28 mmol/L (without spread)

(156)
FIGURE 1

Dual role of lactate in the tumor microenvironment: Metabolic regulation and immunosuppression.
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at lower doses (0.5–3 mmol). However, at concentrations exceeding

5 mmol, lactate impedes T cell functionality and results in T

cell dysfunction.

Furthermore, lactate plays a direct role in driving T-cell

exhaustion through its influence on immune checkpoint

pathways. Lactic acid enhances the expression of programmed

death ligand 1 (PD-L1) on tumor cells through its receptor

GPR81, which inhibits CD8+ T cell-mediated cytotoxicity and

fosters immune tolerance in the TME (31, 32). Additionally,

lactate-driven SIRT1 activation results in deacetylation and

degradation of T-bet, a transcription factor essential for

maintaining CD8+ T cell effector function, thereby shifting T cells

toward a more exhausted phenotype with higher PD-1 expression

and diminished cytokine production (33).

Lactate also modulates CTLA-4 signaling, further reinforcing

T cell dysfunction. Increased extracellular lactate enhances

FOXP3 expression in Tregs, promoting an immunosuppressive

microenvironment that inhibits the activation of effector T cells

via CTLA-4–mediated suppression (34). Moreover, lactate

influences T cell dysfunction by modulating chemokine

production and receptor signaling, thereby restricting T cell

infiltration into tumor tissues (35, 36). This phenomenon not

only prevents effective immune surveillance but also intensifies

the PD-1/CTLA-4-driven dysfunction state by further inhibiting

T cell function in proinflammatory circuits that could otherwise

restore function.

These inhibitory effects significantly impair immune cell

function in the TME, facilitating tumor immune evasion. Given

the profound role of lactate in sustaining T-cell exhaustion via the

PD-1/CTLA-4 axis, therapeutic strategies targeting lactate

metabolism, such as MCT inhibitors, LDHA blockade, or

buffering agents, may enhance the efficacy of ICIs by

reprogramming dysfunctional T cells and restoring their

antitumor activity. Future studies should further investigate how

lactate-targeting approaches could synergize with ICIs to reverse

exhaustion and reinvigorate T-cell function within the TME.

2.1.1.2 NK cells

Lactate diminishes the antitumor efficacy of NK cells in the

TME via various pathways, including direct metabolic effects,

immune modulation, and acidic environments. Elevated lactate

concentrations (> 15 mM) suppress the NFAT signaling pathway

in NK cells, reducing IFN-g production and impairing antitumor

signaling (21, 37). Lactate-induced intracellular acidification

disrupts lipid biosynthesis, impairs mitochondrial function, and

increases oxidative stress, ultimately resulting in NK cell apoptosis

(38). These metabolic disturbances significantly reduce NK cell

cytotoxicity and overall antitumor capacity. Lactate also suppresses

critical cytokine synthesis in NK cells by inhibiting the mTOR

signaling pathway, which is essential for their activation and

function (38, 39).

Furthermore, lactate inhibits NK cell activity, primarily by

acidifying the TME, which impairs NK cell degranulation and

reduces key cytotoxic markers such as perforin and CD107a in

various cancer models, including pancreatic and breast cancers
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(40–42). Therapeutic strategies that neutralize acidity and

target lactate metabolism show promise in reversing these

immunosuppressive effects.

2.1.1.3 Dysfunction of Dendritic Cells (DCs)

Lactate inhibits DC activity in the TME through multiple

mechanisms, significantly impairing their antitumor immune

functions. This suppression is primarily due to the interference of

lactate with DC development and maturation, which prevents DCs

from effectively presenting antigens and activating effector T cells.

Lactate inhibits the expression of MHC-II and co-stimulatory

molecules such as CD80 and CD86, leading to DC dysfunction

(43, 44). Lactate also stimulates IL-10 secretion while inhibiting IL-

12 synthesis, further diminishing the ability of DCs to activate

cytotoxic T lymphocytes (CTLs) (45, 46). In melanoma models,

inhibiting lactate production enhances DC function and antitumor

efficacy, highlighting the fundamental role that lactate plays in DC

dysfunction (47).

Glycolysis is a key metabolic process in DCs for antigen

presentation and adaptive immune responses. However, lactate

disrupts DC energy supply by inhibiting glycolysis and the

calcium signaling pathway by activating GPR81, thereby

worsening intracellular acidification and ultimately impairing DC

function (48, 49). It has also been demonstrated that DC motility

and migration are largely dependent on glycolysis (50), and thus,

lactate-induced glycolysis impairs the ability of DCs to mount

antitumor immunity. Lactate also activates SREBP2 in tumor

DCs, driving the conversion of conventional DCs into mature

regulatory DCs, which are then directed to tumor-draining lymph

nodes, thereby inhibiting DC-mediated antigen cross-

presentation (51).

2.1.2 Enhancing effect of lactate on
immunosuppressive cells
2.1.2.1 Regulatory T cells

Lactate in the TME significantly affects the metabolic balance,

signaling pathways, and epigenetic regulation of Tregs, enhancing

their immunosuppressive capabilities and contributing to tumor

immune evasion (52). Studies have shown that elevated MCT1

expression enables Tregs to absorb and utilize lactate more

efficiently, enhancing their survival and functionality (53). In

mouse melanoma models, Tregs lacking MCT1 exhibit decreased

lactate uptake, reduced immunosuppressive abilities, and

diminished tumor-promoting actions, highlighting the pivotal

role of lactate in Treg regulation (27, 54, 55).

In addition to metabolic adaptation, lactate influences Tregs

through signaling pathways and epigenetic modifications that

enhance their stability and suppressive function. Lactate activates

the PI3K/Akt/mTOR pathway, increasing FOXP3 expression and

enhancing Treg-mediated suppression of effector T cells (56). Lactate

also promotes Treg recruitment and infiltration into the TME by

upregulating chemokines such as CXCL12 and CX3CL1, further

contributing to an immunosuppressive environment (55, 57).

Lactate also enhances Treg immunosuppression by boosting the

release of cytokines such as IL-10 and TGF-b (58, 59), which
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intensify the inhibitory effects of Tregs on effector immune cells,

facilitating immune evasion. Comparative studies have shown that

lactate-rich environments foster greater Treg suppressive activity

than glucose-rich environments, highlighting the crucial role of

lactate in Treg-mediated immunosuppression (52).

2.1.2.2 Myeloid-derived suppressor cells

In addition to enhancing Treg-mediated immunosuppression,

lactate drives the activity and recruitment of MDSCs, a key

component of the immunosuppressive network in the TME.

Lactate directly promotes the metabolic adaptation and

immunosuppressive function of MDSCs through complex control

involving epigenetic modifications and signaling networks. Lactate

affects MDSCmetabolism by modulating HIF-1a activity, promoting

the upregulation of ARG1 and iNOS expression (60, 61). This

depletes arginine, which is essential for T-cell activation, while

producing reactive oxygen species and nitric oxide, which directly

impair the functions of effector T and NK cells (62–64). Furthermore,

lactate improves the immunosuppressive potential of MDSCs by

upregulating PD-L1 expression (60, 65). In breast cancer models,

lactate-induced HIF-1a activation enables MDSCs to suppress

effector T cells and accelerate tumor growth (66).

Beyond metabolic control, lactate boosts MDSC recruitment and

accumulation in the TME by acting as a chemoattractant and activating

the mTOR and GPR81 signaling pathways (67, 68). A pancreatic

cancer study showed that lactate-mediated GPR81 activation

significantly promoted MDSC growth and immunosuppressive

activity (7, 60, 69). Furthermore, lactate indirectly inhibits NK cell

activity by promoting the growth and activation of MDSCs (7, 70).

2.1.2.3 Tumor-associated macrophages

TAMs undergo significant metabolic and gene expression

changes during lactate-driven reprogramming, typically polarizing

toward the immunosuppressive M2 phenotype (71). Lactate

enhances the immunosuppressive function of TAMs by activating

the ERK/STAT3 and GPR132 signaling pathways, in part through its

regulation of HIF-1a (72, 73). Activation of these pathways boosts

the production of vascular endothelial growth factor (VEGF) and

ARG1, promoting angiogenesis and immune evasion (74). Lactate

also encourages M2-polarized TAMs to release immunosuppressive

molecules (IL-10 and TGF-b), which impair the activity of CTLs and

NK cells while recruiting Tregs (71, 75–77). Furthermore, lactate-

driven metabolic reprogramming shifts the energy supply of TAMs

from glycolysis to OXPHOS, making them more adaptable to the

hypoxic, high-lactate TME (78, 79). This metabolic transition, in

which lactic acid is efficiently converted to pyruvate, is mainly due to

the preferential dependence of M2 macrophages on mitochondrial

metabolism (80–82). Pyruvate then enters the mitochondria via

the MPC1 transporter and enters the TCA cycle, further

supporting OXPHOS (83). This process ensures that M2

macrophages are able to receive continuous energy production.

This adaptation increases the release of matrix-degrading enzymes,

such as matrix metalloproteinases, which promote extracellular

matrix remodeling, tumor invasion, and metastasis (79, 84).
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These lactate-induced changes in TAM function have been

observed in various cancer models, including breast and gastric

cancer and melanoma, highlighting their crucial role in tumor

development, immune evasion, and resistance to treatment (85).

These findings highlight the importance of TAMs in the TME and

indicate that targeting lactate metabolism and TAM polarization

may offer promising strategies for antitumor therapies.
2.1.3 Effects of lactylation on
TME immunoregulation
2.1.3.1 Lactylation: an emerging PTM and its
biological functions

Lactylation has been newly discovered and plays a crucial role in

immune regulation through transcriptional activation. For example,

H3K18la lactylation on histone 3 enhances chromatin accessibility

and activates the transcription of tumor-promoting genes (86). This

modification upregulates arginase-1 (ARG1) and interleukin (IL)-10

in TAMs, driving them toward an immunosuppressive M2

phenotype and facilitating tumor immune escape (73). In addition

to histones, lactylation affects non-histone proteins, leading to various

physiological effects. For example, lactylation of Aldolase A inhibits

glycolysis, and modification of RIG-I suppresses the NF-kB signaling

pathway, maintaining an immunosuppressive TME (87).

In addition to immune cells, lactylation may regulate key

stromal components of the TME, including cancer-associated

fibroblasts (CAFs) and endothelial cells. CAFs play a critical role

in extracellular matrix remodeling, metabolic crosstalk, and

immune modulation, and accumulating evidence suggests that

lactate metabolism may influence their activation (88). Recent

studies have indicated that lactylation of histone marks may

enhance the transcription of pro-tumorigenic genes, such as

fibroblast activation protein (FAP) and a-SMA (ACTA2),

promoting fibroblast-mediated extracellular matrix remodeling

and tumor progression (89). This effect is likely mediated through

TGF-b and Notch signaling pathways, both of which have been

implicated in lactylation-induced fibroblast activation (90, 91).

Similarly, endothelial cells exposed to high lactate levels exhibit

increased angiogenic potential, and lactylation may contribute to

the expression of angiogenesis-related genes, such as VEGFA and

ANGPT2, thereby facilitating neovascularization within tumors.

Mechanistically, HIF-1a lactylation enhances VEGF signaling,

driving tumor vascularization even under normoxic conditions

(92). However, whether lactylation directly modifies VEGF-

related transcription factors or acts through broader chromatin

remodeling remains unclear.

Collectively, lactylation serves as a critical link between metabolic

shifts and epigenetic regulation, contributing to an immunosuppressive

and tumor-supportive microenvironment. In addition to immune

regulation, its emerging roles in fibroblast activation and

angiogenesis suggest that lactylation-dependent pathways may serve

as promising therapeutic targets. However, further research is needed

to delineate the precise molecular mechanisms by which lactylation

shapes tumor-stroma interactions, providing new opportunities for

metabolism-based cancer therapies.
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2.1.3.2 Lactylation as a key epigenetic regulator of
immune cell activity in the TME

Lactate induces lactylation of both histone and non-histone

proteins, significantly altering the functional states of CD8+ T cells,

Tregs, TAMs, MDSCs, and other immune cells (Figure 2). Studies

have shown that lactate stimulates histone lactylation (e.g.,

H3K18la), which regulates the expression of MCT1 and MCT4

(93). One of the key effects of lactylation is its role in immune

checkpoint regulation. This effect is partly mediated by lactate-

induced histone lactylation, which upregulates PD-1 transcription

and reinforces the exhausted phenotype (94). In addition,

lactylation significantly affects effector immune cells such as NK

and CD8+ T cells. In acute myeloid leukemia, lactate-induced

H4K5la changes enhance PD-L1 expression, which directly

inhibits CD8+ T cell activation (95).

The aforementioned text indicates that lactate can influence

Treg function via lactylation. Lactate modulates TGF-b signaling in

Tregs by lactylating MOESIN, thus stabilizing FOXP3 expression

and promoting a metabolic shift from glycolysis to OXPHOS (96).
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Lactate-induced histone lactylation drives the transcription of genes

associated with Treg activity and stabilizes FOXP3 expression

through epigenetic mechanisms (96, 97). In multiple tumor

models, including human colorectal cancer tissues, histone

lactylation at FOXP3 regulatory regions correlates with

heightened Treg activation and tumor progression (12, 98). This

metabolic reprogramming enhances Treg survival in the TME and

amplifies their immunosuppressive function. Lactate also regulates

the expression of the chemokine receptor CCR8, facilitating Treg

migration to tumors (99).

Lactylation also critically influences macrophage and MDSC

activity. Lactate induces H3K18la histone modifications in the

TME, driving the polarization of proinflammatory M1

macrophages toward the immunosuppressive M2 phenotype

(100). Similarly, in MDSCs, lactate-induced histone lactylation

increases the expression of key immunosuppressive genes. For

example, in melanoma and lung cancer models, histone

lactylation upregulates IL-10 production, further supporting

MDSC expansion and suppressive activity (7). These synergistic
FIGURE 2

Lactate-mediated crosstalk: bridging metabolism, epigenetics, and immune regulation in the tumor microenvironment. lactate, as a major mediator,
connects cellular metabolism, transcriptional control, and immunological signaling networks in the TME. Lactate enters cells through MCT1 and
upregulates MOESIN, stimulating the TGF-b/STAT3 pathway to enhance Treg cell development and immunological suppression. Lactate regulates
HIF-1a stability, VEGF, and PD-L1 expression, facilitating immune evasion. In the epigenetic landscape, METTL3 promotes gene transcription through
m6A RNA alterations, whereas p300 acetylates histones (Kla), hence increasing transcriptional activity. These interrelated pathways govern the TME
by balancing M1 and M2 macrophage polarization, as well as directing immunological homeostasis and tumor growth. The pathways shown
represent select examples of lactate’s downstream effects on immune modulation. TME, tumor microenvironment; MCT, monocarboxylate
transporters; VEGF, vascular endothelial growth factor; PD-L1, programmed death ligand 1.
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processes highlight the crucial role of lactate in the promotion of

MDSC-mediated immunosuppression. Lactate-induced lactylation

of METTL3 regulates m6A RNA modifications, which increase

STAT3 phosphorylation and promote the release of IL-6 and IL-10,

further supporting immunosuppressive signaling (101).

Overall, lactylation is a key regulator of immune cell activity

within the TME and plays a crucial role in tumor immune evasion

through its dual influence on metabolism and epigenetics. From

histone lactylation upregulating PD-1 and FOXP3 expression to

METTL3 lactylation enhancing m6A RNA modifications and IL-10

production, lactate-induced epigenetic modifications orchestrate an

intricate immunosuppressive network. These interconnected

pathways form a critical regulatory system that drives tumor

progression. The complex role of lactate in the regulation of

immune cell function highlights its potential as a therapeutic

target. Indeed, novel strategies could restore immune cell function

and boost antitumor immunity by disrupting lactate-driven

immunosuppressive networks, blocking histone lactylation, or

neutralizing TME acidity.
2.2 Lactate metabolism and tumor
immunotherapy: targeting strategies and
future directions

2.2.1 Neutralizing acidity in the TME: an
innovative strategy for restoring immune
cell function

The acidic TME resulting from lactate accumulation

significantly impairs the function of CTLs and NK cells,

promoting immune evasion and tumor growth. To address this

issue, several novel strategies have been developed to neutralize the

acidity of the TME and restore immune cell function. Table 2

outlines potential extracellular pH (pHe) modulation techniques,

including buffering agents such as sodium bicarbonate and carbonic

anhydrase IX (CAIX) inhibitors.

Lactate-induced immunosuppression in NK cells can be

mitigated by neutralizing the acidic TME. Buffering agents, such

as NaHCO₃, can raise the pHe in tumor tissues, reducing TME

acidity (102). Bicarbonate buffers, which elevate pH, have

demonstrated the ability to restore NK cell functions, including

IFN-g production and cytotoxicity (103, 104). In lymphoma

models, these buffering strategies significantly enhance tumor

control, emphasizing the therapeutic potential of lactate-targeted

interventions (103, 104). Preclinical breast cancer models have

shown that NaHCO₃ enhances T-cell infiltration and activation,

considerably increasing the levels of cytokines such as IFN-g, IL-2,
and IL-12p40 (105). Alkalizing the TME with NaHCO₃ also reduces

PD-L1 expression, enhances T cell activity, and improves ICI

efficacy. This combined approach has demonstrated notable

tumor regression in preclinical studies, highlighting the

therapeutic potential of buffering therapy (105). However,

systemic pH modulation lacks specificity, and off-target effects on

normal tissues remain a concern, limiting its broader

clinical application.
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Another pH-modulating strategy involves proton pump

inhibitors (PPIs). For instance, esomeprazole improves CTL

activity and slows tumor progression by modulating the local

tumor pH (106). A phase III study (NCT01069081) found that

intermittent high-dose esomeprazole enhanced chemotherapy

effectiveness (docetaxel and cisplatin) in patients with metastatic

breast cancer while reducing toxicity (107). Furthermore, PPIs such

as omeprazole exhibit radiosensitizing effects by inducing G1 phase

cell-cycle arrest through p21 overexpression, impairing DNA repair

and enhancing radiation efficacy (108, 109). While promising, the

main benefit of PPIs may be in combination with radiation and

chemotherapy. In a clinical trial combining PPIs with atezolizumab,

researchers found that PPI use was a negative prognostic indicator

for patients with non-small cell lung cancer (110). Similarly,

another meta-analysis showed that PPIs reduced the effectiveness

of ICIs (111).

In contras t to buffer ing agents and PPIs , CAIX

inhibitors provide a tumor-specific approach to regulating pH.

Overexpressed in hypoxic tumor regions, CAIX catalyzes the

conversion of CO₂ to bicarbonate (HCO₃⁻) and protons (H+),

maintaining an acidic environment that supports tumor cell

survival and resistance to treatments (112–116). Inhibiting CAIX

with drugs such as SLC-0111 disrupts the pH balance, increasing

the susceptibility of cancer cells to chemotherapy and radiation

(117). This selective targeting reduces off-target effects and is a

promising approach for integration with existing therapies.

However, CAIX inhibitors have significant drug delivery

limitations at physiologic pH (7.4). Studies have shown that

although CAIX inhibitors such as U-104 can enhance tumor cell

penetration of drugs (e.g., adriamycin) in an acidic environment,

they do not significantly improve drug delivery efficiency at

physiological pH (118). Therefore, combination therapy may be

an effective strategy to improve therapeutic efficacy.

In summary, each of these approaches offers distinct advantages

and challenges. Although buffering agents effectively raise the pH of

the TME, their systemic effects limit their targeted application.

Moreover, PPIs, although useful in modulating tumor acidity,

primarily benefit chemotherapy and radiation response rather

than directly restoring immune function. CAIX inhibitors present

a more precise strategy but require improved tumor-specific

delivery mechanisms to overcome resistance and maximize

efficacy (119). Considering these differences, combining pH

modulation with other immunotherapies may provide an optimal

strategy for overcoming TME-induced immune suppression. For

instance, buffering therapy could enhance the ICI response by

restoring immune cell activity, whereas CAIX inhibitors could be

paired with chemotherapy or radiation to improve treatment

outcomes. Additionally, integrating pH modulation with lactate

transport inhibitors (e.g., MCT inhibitors) could simultaneously

target both TME acidity and metabolic dependencies, offering a

comprehensive approach to disrupting tumor-driven immune

evasion (103, 120).

Addressing these limitations and enhancing the understanding

of the molecular mechanisms involved in pH regulation are

essential for promoting the efficacy of TME-targeted therapies
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and improving cancer treatment outcomes. This includes

examining the impact of pH variations on molecular pathways,

including immune cell activation, cytokine production, and

immune checkpoint regulation. The role of pH regulation in

tumor angiogenesis, extracellular matrix remodeling, and drug

resistance in treatment modalities, including chemotherapy and

immunotherapy, requires further investigation. Investigating these

unresolved molecular interactions is crucial for advancing pH-

targeted therapies and improving their clinical efficacy.

2.2.2 Targeted lactate transport intervention:
therapeutic potential of MCT inhibitors

Lactate transport plays a pivotal role in tumor metabolic

reprogramming, primarily mediated by MCT1 and MCT4. These

transporters help sustain glycolysis, regenerate NAD+, and

maintain an acidic TME, all of which promote tumor growth and

immune suppression. Given their crucial role, MCTs represent

promising therapeutic targets for altering tumor metabolism and

alleviating immune suppression. The MCT inhibitors are listed

in Table 3.

MCT1 inhibition has shown significant preclinical potential.

AZD3965, a specific MCT1 inhibitor, increases intracellular lactate

levels, disrupts glycolysis, and induces tumor cell death (121, 122).

In lymphoma and small-cell lung cancer models, AZD3965

substantially reduced tumor growth and is currently being

evaluated in a phase I clinical study (NCT01791595) (123).

However, the compensatory effect of MCT4 can reduce the

effectiveness of MCT1-targeted therapies. To address this issue,

dual MCT1/MCT4 inhibition strategies were explored. For

instance, syrosingopine inhibits lactate transport through multiple

pathways, and when combined with metabolic modulators such as

metformin, it enhances antitumor activity in solid tumor

models (124).

In addition to direct tumor cytotoxicity, MCT inhibitors have

significant immunomodulatory effects. MCT1 promotes lactate
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uptake in Tregs and TAMs, thereby maintaining their

immunosuppressive phenotype. Inhibiting MCT1 reduces Treg

accumulation in lactate-rich TMEs, enhancing CD8+ T cell

activity and restoring antitumor immunity. In preclinical models,

MCT4 inhibition was shown to enhance NK cell function, thereby

improving tumor control (139, 140). Similarly, it can reduce the

acidification of the TME, upregulate chemokines such as CXCL9

and CXCL10, and improve the responses to ICIs in hepatocellular

cancer models (125). Recently, diclofenac was demonstrated to

inhibit MCT1 and MCT4, thereby reducing glycolytic activity and

lactate accumulation within the tumor microenvironment. This

effect showed that diclofenac not only reverses tumor acidosis but

also preserves T cell effector functions, enhancing the efficacy of

ICIs such as anti-PD1 treatment (126).

Selective MCT1 inhibition (e.g., AZD3965) effectively disrupts

lactate efflux and tumor metabolism but can be counteracted by

MCT4 compensation, limiting its standalone efficacy. Preclinical

studies have shown that the combination of AZD3965 and ICIs can

produce encouraging results (127). Dual inhibition (e.g.,

syrosingopine or diclofenac) overcomes this limitation but

increases the risk of systemic toxicity, as MCTs are essential for

lactate transport in normal cells, such as erythrocytes and muscle

cells (123, 128). Combination strategies may enhance treatment

efficacy while mitigating these drawbacks. For example, MCT

inhibitors could be paired with ICIs to restore immune cell

function by lowering lactate-driven immunosuppression,

improving antitumor immunity. Additionally, combining MCT

inhibition with metabolic modulators, such as metformin, may

amplify metabolic stress in tumor cells, leading to more

pronounced therapeutic effects (129).

Despite these advancements, resistance and toxicity remain

significant barriers to clinical application. Resistance often arises

from compensatory metabolic changes, whereas systemic toxicity

affects lactate-dependent normal tissues. Future research should

focus on enhancing the selectivity of MCT inhibitors, exploring
TABLE 2 pHe modulation targets in tumor microenvironment.

Compound Cancers Research status

Sodium Dichloroacetate (DCA) Breast cancer; prostate cancer; colon cancer; melanoma; glioma; acute myeloblastic
leukemia; myeloma; lung cancer

Preclinical and Phase IV (147, 157–164)

Bafilomycin A1 Lung adenocarcinoma; breast cancer; glioma Preclinical (165, 166)

Bromopyruvate Glioma Preclinical (167)

Esomeprazole Glioma Preclinical (168)

Omeprazole,
Pantoprazole, Lansoprazole

Glioma Preclinical (168–172)

Sodium Bicarbonate Breast cancer Preclinical (105)

Acetazolamide Lymphoma; Clinical Practice Research (173)

Sodium Bicarbonate Pancreatic cancer Phase I/II (174)

SLC-0111 Colorectal cancer; lung cancer; clear cell carcinoma of the kidney; and sarcoma Phase I (117)

G250 (NCT04969354) Renal cell carcinoma Recruiting

Lonidamine (NCT00435448) Prostate cancer Phase III (175)
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combination therapies with ICIs or glycolysis modulators, and

employing nanoparticle delivery systems to improve tumor-

specific targeting (130, 131). By addressing these challenges,

MCT-targeted therapies can substantially improve cancer

treatment outcomes by modifying tumor metabolism and

restoring immune function. Furthermore, combining lactate-

targeted strategies with ICIs offers a promising approach to

counteract TME-induced immunosuppression, as discussed below.

2.2.3 Targeting LDH: Dual potential in metabolic
and immune regulation

LDHA plays a crucial role in tumor metabolism by converting

pyruvate to lactate, replenishing NAD+ for glycolysis, and acidifying

the TME, all of which promote immune evasion and tumor growth.

These functions render LDHA an appealing therapeutic target for

disrupting tumor metabolic pathways and reducing TME-driven

immunosuppression (132–135). LDH-targeting drugs are shown

in Table 2.

Studies targeting LDHA have shown promising results in

preclinical models. For example, both Oxamate (a competitive

inhibitor) and FX11 (an inhibitor targeting the NADH binding

site) reduced lactate production, decreased TME acidity, and
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inhibited tumor growth in gastric, lymphoma, and pancreatic

cancers (136–142). In addition, the combination of FX11 with the

NAD+ production inhibitor FK866 enhanced antitumor activity via

a dual metabolic blockade. New inhibitors, such as Galloflavin and

N-hydroxyindole (NHI) derivatives, further expand LDHA

inhibition strategies. Galloflavin has shown significant lactic acid

inhibition in preclinical trials, whereas NHI derivatives address

resistance to single-target inhibitors by targeting both LDHA and

LDHB (143–146). Combining LDHA inhibitors with other

therapies, such as metformin, has also shown promise in

significantly inhibiting melanoma growth by increasing metabolic

stress in tumor cells. Targeting LDHB offers additional therapeutic

opportunities for cancers that rely on autophagy and lysosomal

pathways (147, 148).

Despite these promising findings, a more critical evaluation of

LDHA-targeted therapies is needed, particularly regarding the

high drug concentrations required for effective inhibition because

of the strong expression of LDHA in tumors (149). These high

concentrations may lead to off-target effects in glycolysis-dependent

healthy tissues, such as CTLs and NK cells, which could limit the

overall efficacy of tumor immune control. Moreover, the strong

expression of LDHA in immune cells like CTLs and NK cells can
TABLE 3 LDH and MCT inhibitors.

Mechanism
of action

Compound Cancers Research status

MCT1/4 AZD3965 Breast and colon cancer, lymphoma xenografts, human
diffuse large B-cell lymphomas, human B-cell lymphoma,
lymphoblast, B-cell non-Hodgkin lymphoma, Raji
Burkitt’s lymphoma cells

Phase I and Preclinical (121, 122)

a-Cyano-4-hydroxycinnamate Glioma, breast cancer, pancreatic ductal adenocarcinoma Preclinical (176–178)

Syrosingopine Breast, colon, cervical cancer, and leukemia cells Preclinical (124)

BAY-8002 Diffuse large B cell lymphoma Preclinical (179)

7ACC2 Pancreatic adenocarcinoma Preclinical (180)

AR-C155858 Breast cancer tumor xenografts Preclinical (181)

Diclofenac Melanoma, cervical cancer, bladder cancer,
colorectal cancer

Preclinical (126, 182)

Gossypol (NCT02697344) Multiple myeloma Phase I

LDHA/LDHB Galloflavin Colorectal, endometrial, and breast cancer Preclinical (143–145)

1-(Phenylseleno)-
4-(Trifluoromethyl) Benzene

Large cell lung cancer, breast cancer, hepatocellular
carcinoma, malignant melanoma, colorectal
adenocarcinoma, murine lung cancer cells

Preclinical (183)

Oxamate Colorectal, pancreatic, gastric, and non-small cell
lung cancer

Preclinical (136–139)

GSK 2837808A Nasopharyngeal carcinoma, pancreatic cancer xenografts Preclinical (184, 185)

AZ-33 Breast cancer Preclinical (186)

GNE-140 Breast, colorectal adenocarcinoma, and lung cancer,
glioma xenografts

Preclinical (187–189)

Compound 24 Pancreas carcinoma Preclinical (190)

Compounds 5 and 11 Osteosarcoma Preclinical (191)
LDH, lactate dehydrogenase; MCT, monocarboxylate transporter.
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impede their effector functions, thus reducing the therapeutic

benefit of LDHA inhibition in immunotherapy. Future research

should focus on developing selective inhibitors that can specifically

target tumor cells while minimizing toxicity to immune cells, as well

as exploring combination strategies with ICIs to enhance the

therapeutic impact of LDHA inhibitors (150). Furthermore,

advanced delivery technologies, such as nanoparticles, could help

improve drug specificity and reduce systemic side effects (130).

2.2.4 Lithium carbonate-mediated metabolic
reprogramming to enhance immune function

As mentioned previously, lactate can function as a carbon

source to enhance oxidative phosphorylation in T cells. The role

of lithium carbonate (LC) in this metabolic reprogramming process

has been shown to significantly improve T-cell function in the

TME. LC enhances T-cell function in the tumor microenvironment

by facilitating lactate entry into mitochondria for ATP production,

shifting energy metabolism from glycolysis to oxidative

phosphorylation. This process improves mitochondrial function,

counteracts lactate-induced immunosuppression, and supports T-

cell survival and anti-tumor activity. LC also facilitates long-term T-

cell memory formation and persistence in tumors, thereby

addressing a major limitation of current cancer immunotherapies.

In preclinical models, LC treatment was found to restore the effector

functions of CD8+ T cells, increasing their ability to kill tumor cells

and improving tumor control (151).

The ability to switch between different metabolic pathways

based on carbon source availability is regulated by key signaling

pathways such as mTORC1 and AMPK (152). These pathways

control the balance between glycolysis and oxidative

phosphorylation, directly affecting T-cell differentiation and

function. Lithium carbonate’s ability to enhance oxidative

metabolism and reduce lactate-mediated suppression of T-cell

function makes it a promising tool for enhancing the efficacy of

ICIs and other immunotherapies (153).

In summary, promoting the mitochondrial use of lactate, as

observed with lithium carbonate treatment, is a powerful strategy

to boost CD8+ T cell metabolism, function, and persistence within the

TME. This approach provides a comprehensive method to reprogram
Frontiers in Immunology 10
T cells, enhance their anti-tumor activity, and potentially overcome

the metabolic barriers that hinder current immunotherapeutic

strategies. By targeting the metabolic pathways that regulate T-cell

function, lithium carbonate offers a novel therapeutic route for

improving T-cell-based therapies in cancer treatment. Nonetheless,

as noted earlier, regulatory T cells, a specific subset of T cells, can be

activated in environments with elevated lactate levels. In the

therapeutic approaches outlined in this section, these cells may also

be stimulated. Their immunosuppressive and tumor-enhancing

properties could adversely affect treatment efficacy or result in

other unforeseen complex outcomes. Consequently, these

therapeutic strategies warrant additional research.

In conclusion, although current pharmacological strategies

targeting lactate show good potential, they also face significant

challenges, largely because the effects of these drugs tend to be

widespread and not limited to specific cell populations. Therefore,

to provide a clearer understanding of their therapeutic perspectives,

we summarized the main strengths and limitations of the four

lactate-targeted therapeutics mentioned above in Table 4.
3 Conclusions

Lactate metabolism plays a crucial role in tumor development and

immune evasion and acts as a link between tumor metabolic

reprogramming and the immunosuppressive TME. Targeting lactate

metabolism presents a promising therapeutic approach, with preclinical

data showing its potential to alter tumor glycolysis, reduce TME acidity,

and boost antitumor immune responses. Strategies such as LDH and

MCT inhibitors, particularly when combined with ICIs, have

demonstrated synergistic benefits, paving the way for clinical application.

Future research should focus on improving the specificity of

lactate-targeting therapies, exploring their role in various cancer

types, and combining them with emerging treatments, such as

CAR-T therapy. Developing biomarkers to guide patient selection

is crucial for optimizing treatment outcomes. A deeper

understanding of lactate metabolism and its integration with

immunotherapy has the potential to transform cancer treatment

by advancing precision medicine.
TABLE 4 Advantages and disadvantages of lactate-targeted therapies.

Therapies Advantages Disadvantages

Neutralizing Acidity Enhancement of immune cell function, improvement of ICI efficacy, and
potential for multimodal therapy

Non-specific effects, potential toxicity,
limited efficacy

MCT Inhibition Direct targeting of tumor metabolism, immunomodulatory effects, and
enhanced ICI efficacy

Compensation mechanisms, systemic
toxicity, risk of drug resistance

Targeting LDH Dual mechanism of action, combined therapeutic potential, multi-
target inhibition

High concentration requirement, immune
cell suppression, risk of drug resistance

Lithium Carbonate-Mediated
Metabolic Reprogramming

Synergistic effect, enhances ICI efficacy, possesses long-term immune memory,
well-supported by extensive preclinical validation

Risk of resistance, clinical
translation challenges

Integration of Lactate-Related Pathways
with Immunotherapy

Synergistic effect, improves T cell function Risk of resistance, clinical
translation challenges
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