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Background: The tumor microenvironment plays a crucial role in the

progression of both glioma and glioma-induced autoimmune encephalitis.

However, there remains a significant lack of effective therapeutic targets for

these diseases.

Method: We collected 54 CT images of glioma patients and 54 glioma-induced

autoimmune encephalitis patients, respectively. Radiomics features were extracted

from tumors and encephalitis regions using Python, followed by dimensionality

reduction via random forest and lasso regression, and construction of radiomics-

based risk scores. Genomic data matched with clinical information were analyzed

to identify key prognostic genes significantly associated with risk scores. Gene

expression was validated by immunohistochemistry using our clinical samples.

Immune infiltration was evaluated using five algorithms (MCP-counter, EPIC,

TIMER, QUANT and IPS). The association between hub genes and immune

checkpoint markers as well as immunoregulation-related genes was also

analyzed using Spearman correlation.

Results: We identified 980 radiomics features both in glioma and encephalitis

patient images and selected four key features through lasso regression to build a

radiomics-based risk score. COL22A1 was strongly correlated with the risk score

and identified as the hub prognostic gene. COL22A1 expression was higher in

glioblastoma tissues and cell lines, and correlated with clinical factors such as

higher age, WHO grade, and IDH mutation status. Immune infiltration analysis

indicated associations with diverse immune and stromal cell populations,

including CD8+T cells, macrophages, and CAFs. COL22A1 was also positively

correlated with immune checkpoints and immune-regulated genes.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1562070/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1562070/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1562070/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1562070/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1562070/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1562070/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1562070&domain=pdf&date_stamp=2025-03-06
mailto:wenjie.shi@med.ovgu.de
mailto:ulf.kahlert@med.ovgu.de
mailto:zhengquan.yu@neurosci.com.cn
https://doi.org/10.3389/fimmu.2025.1562070
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1562070
https://www.frontiersin.org/journals/immunology


Yan et al. 10.3389/fimmu.2025.1562070

Frontiers in Immunology
Conclusion: Our study highlights the critical role of COL22A1 in gliomas and

glioma-Induced Autoimmune Encephalitis, demonstrating its strong association

with poor prognosis and its significant involvement in tumor immune regulation.
KEYWORDS

artificial intell igence, tumor microenvironment, COL22A1, autoimmune
encephalitis, radiomics
Introduction

Glioblastoma (GBM) represents the most common and severe

type of malignant primary brain tumor, making up roughly 30% of

all primary brain tumors (1). Glioma-Induced Autoimmune

Encephalitis is a Common Paraneoplastic Syndrome of GBM.

This disease predominantly affects the elderly and shows a higher

prevalence in men compared to women, with annual incidence rates

ranging between 0.59 and 5 cases per 100,000 individuals (2, 3).

However, There remains a significant lack of effective therapeutic

targets for these diseases.

Gliomas are classified into four grades based on histopathology,

from low-grade (I and II) to high-grade (III and IV, with IV being

GBM), reflecting their levels of malignancy (4). Recent

advancements have introduced genetic criteria such as TERT

promoter mutations, EGFR amplification, and chromosomal

changes for a more precise diagnosis and tailored treatment of

glioblastoma IDH-wildtype (5). Despite advances in understanding

its molecular biology and pathogenesis, GBM remains extremely

difficult to manage, with nearly inevitable tumor recurrence.

Patients typically have a median survival of approximately 15

months and a five-year survival rate of 6.8%, underscoring the

urgent need for new treatment approaches for GBM patients (1, 6).

The primary treatment modalities for GBM include surgical

resection, chemotherapy, and radiation therapy. Advances in

surgical resection, such as frameless stereotaxy and brain

mapping, have enhanced the precision of tumor removal,

significantly influencing survival rates (7, 8). Standard post-

surgical treatments, including temozolomide and radiation

therapy, target residual cancer cells, extending progression-free

survival but not fully eradicating the disease (6, 9). Improved

radiation techniques now more accurately focus on cancer cells

while protecting healthy tissue, addressing the challenges of hypoxic

tumor environments to enhance treatment efficacy (10). Recent

progress in comprehending the molecular and genetic

underpinnings of GBM has spurred the creation of novel

treatments targeting specific genetic alterations and signaling

cascades. For instance, immunotherapy has shown potential as a

treatment option, though overall efficacy remains moderate in GBM

clinical trials, with certain patients achieving extended survival

following therapy (11). The ReACT Phase II trial demonstrates
02
that rindopepimut, combined with bevacizumab, significantly

enhances survival and induces a strong immune response against

EGFRvIII in patients with relapsed GBM, showing promising results

in both progression-free and OS rates (12). In addition, another

study reveals that the recombinant poliovirus/rhinovirus chimera

PVSRIPO acts as a powerful intratumoral immune adjuvant in

GBM, enhancing antitumor immunity by promoting dendritic cell

and T cell infiltration and inducing specific cytotoxic T lymphocyte

responses against tumor antigens (13). However, GBM employs a

variety of mechanisms to evade immune detection and suppression,

including an intact blood-brain barrier (BBB) that restricts immune

cell entry, a tumor microenvironment (TME) that suppresses

immune responses, and the manipulation of immune checkpoints

and other key pathways (14–16). As a result, phase III clinical trials

involving immune checkpoint inhibitors (ICIs) and vaccine

therapies for GBM have yielded disappointing outcomes (17).

Autoimmune encephalitis (AE), characterized by brain

inflammation due to an aberrant immune response targeting self-

antigens in the central nervous system, represents a diverse group of

disorders (18). While infections are the most common triggers,

recent scholarly reports suggest that gliomas may also induce

autoimmune encephalitis through mechanisms such as altered

immune system functions and disrupted immune surveillance

(19). The presence of gliomas might lead to an increased

production of autoantibodies against brain antigens, potentially

triggering this autoimmune condition. This underscores the

intricate relationship between tumor-related mechanisms and

immune system dysfunction, highlighting the critical need for

meticulous clinical evaluation and monitoring in glioma patients.

Therefore, elucidating the immune complexities of GBM and

identifying its immunosuppressive factors are key to enhancing

immunotherapy. Similarly, recognizing what triggers gliomas to

cause autoimmune encephalitis is vital for improving diagnostic

precision and refining treatment approaches, ultimately minimizing

misdiagnosis and delays in therapy.

In this study, we identified COL22A1 as a novel shared

biomarker in glioblastoma (GBM) and its induced autoimmune

encephalitis (AE) through radiogenomics. Building on this

foundation, we further explored the immunological characteristics

of this gene, providing valuable insights for the precise diagnosis

and treatment of both diseases.
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Materials and methods

Data obtain and prepared

We collected 54 CT images of glioma patients and 54 Glioma-

Induced Autoimmune Encephalitis patients from our hospital. All

images were normalized and low-quality images were removed. The

genomic information of the patients was obtained by matching

clinical information from the corresponding public databases. In

addition, clinical tissue samples and baseline data were collected for

subsequent validation of core gene expression.
Radiomics feature extra and
related riskscore

We used 3D slice to first label the DICOM-formatted glioma

images and Glioma-Induced Autoimmune Encephalitis images. In

the next step, we used Python to perform feature extraction for both

groups and used Random Forest to perform dimensionality

reduction analysis on the common features. Further, we

performed further feature selection on the results extracted by

Random Forest, where we used lasso regression. Finally, we built

Radiomics related Riskscore based on the regression coefficients and

feature expressions from lasso regression.
Identify hub prognosistic gene associated
with riskscore

We performed batch survival analysis on the matched genomic

data and defined genes as significant for influencing the prognosis

of gliomas if HR was greater than 3 and p less than 0.05.

Subsequently, we correlated these screened genes with riskscore

by Spearman method and identified novel and strongly correlated

candidate genes.
Expression validate and survival analysis of
hub gene

We first verified the expression of the gene in tissue samples

from public database. Then we download cell line expression data

of this gene from The Cancer Cell Line Encyclopedia(CCLE)

database, ggplot2 was used for visualization. Subsequently, we

collected 20 gliomas as well as paired paraneoplastic tissue

samples from the hospital’s brain center and performed

immunohistochemical analyses, and the experimental steps were

performed in strict accordance with standardized procedures.

Further, we performed a correlation analysis with the clinical

data based on the differences in the expression of the gene at the

protein level in the tumor samples. Finally, we evaluated the effect

of the gene on the survival events of the patients, and the outcome

indicators were Overall Survival(OS), Disease-Free Survival(DFS),
Frontiers in Immunology 03
and Progression-Free Survival(PFS), respectively. In addition, we

likewise analyzed the correlation of core genes with patient clinical

information in public databases for clinical variables including

age, gender, race, WHO classification, IDH status, and 1q/

19q codeletion.
Enrichment analysis of hub gene

To explore the potential biological mechanism of this gene, we

performed single-gene GSEA analysis. We first categorized the

samples into high and low groups by the median expression

value, followed by single-gene GSEA analysis using the R package

cluster, where an absolute NES value greater than 1 was considered

a meaningful enrichment result. Subsequently, we used the ggplot2

package to visualize the enrichment results of interest.
Immune infiltration analysis of hub gene

To explore the relationship between the hub gene and immune

cell infiltration within the tumor microenvironment, we conducted a

comprehensive immune infiltration analysis using five distinct

algorithms, they are Microenvironment Cell Populations counter

(MCP-counter), Estimating the Proportions of Immune and Cancer

cells(EPIC), Tumor Immune Estimation Resource(TIMER), Quantify

the immune cell types(QUANT), and Immunophenoscore(IPS).

These algorithms were selected due to their complementary

strengths in quantifying immune cell proportions and activity

across diverse datasets. Gene expression data for the hub gene were

extracted from TCGA datasets, and normalized as appropriate for

each algorithm. Statistical analyses were conducted to assess the

correlation between hub gene expression and immune infiltration

levels, using Spearman correlation. These analyses provided a multi-

faceted view of immune infiltration and its association with the hub

gene, offering insights into its potential role in immune regulation

within the tumor microenvironment.
Immune check points and immune
regulate factor with hub genes

To investigate the association between the hub gene and

immune checkpoint molecules, we analyzed the correlation

between hub gene expression and key immune checkpoint

markers, including BTLA, CD274, CD96, PDCD1LG2, ICOS,

IDO1, CD86, LAG3, and PDCD1. Gene expression data were

obtained from TCGA public database, and normalized prior to

analysis. Spearman correlation analyses were conducted to

determine the strength and direction of the association between

the hub gene and immune checkpoint molecules. Additionally, we

visualized these relationships using scatter plots, generated in

ggplot2, to better understand the interaction between the hub

gene and immune checkpoints.
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Results

Radiomics selection and risksocre build

The identification process of core genes is shown in Figure 1A.

From all patients image, we collect 980 radiomics features and after

conduct random forest a total of 131 radiomics features were selected.

We show the top 5 importance radiomics features in Figure 1B.

Further, our study found that lasso regression analysis of the above

results suggested that a total of 4 Radiomics features were selected

(Figures 1C, D). We then performed risk score calculation based on the

regression coefficients and feature expression.
COL22A1 was positive with radiomics
related risksocre

On the other hand, we screened a total of 2113 glioma

prognostic genes with HR greater than 3 and p less than 0.05 by

batch survival analysis and showed the top 10 gene names in

Figure 1E. Finally, we performed correlation analysis between the

above genes and riskscore, and the results suggested that the top 10
Frontiers in Immunology 04
genes were VAMP8, CYBA, COL22A1, FCER1G, NPC2, KIF15,

CCNJL, PLK4, MCM8, and SMC4 (Figure 1F). Synthesizing the

results of the literature review and correlation analysis, we finally

identified COL22A1 as a follow-up study.
COL22A1 was high expression in GBM and
negative with survival rate

The transcriptome data analysis results validation that

COL22A1 was high expression in GBM tissues while compared

with normal tissues (Figure 2A). And the Cell lines results show that

this gene expression high in SNU626 cell lines and low expression in

SW1783 cell line (Figure 2B). Our center IHC results also

demonstrate that this gene high expression in GBM tissues

(Figure 2C). We further analyzed samples with high and low

tumors suggested by immunohistochemical results. The results

suggested that patients with high expression had greater age and

were more male, more obese patients, as well as high WHO grade

(Figure 2D). In addition, the survival analysis show that high

expression of COL22A1 was negative with survival rate, no

matter OS,DFS or PFI (Figures 2E-G).
FIGURE 1

The identification process of core genes (A),The top 5 importance radiomics features (B). Lasso regression results suggested that a total of 4
Radiomics features were selected (C, D). We then performed risk score calculation based on the regression coefficients and feature expression. The
top 10 glioma prognostic genes (E). The correlation between prognostic genes and riskscore, and the results suggested that the top 10 genes were
VAMP8, CYBA, COL22A1, FCER1G, NPC2, KIF15, CCNJL, PLK4, MCM8, and SMC4 (F).
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COL22A1 was associated with
clinical factors

The results of the correlation analysis suggest that patients with

high expression of the gene usually imply a higher age (Figure 3A).

However, there was no difference in the expression of the gene by

sex or race (Figures 3B, C). Interestingly, we observed a similar

gradual increase in the expression of this gene as the WHO Grade

increased (Figure 3D). In addition, we found that the expression of

this gene was elevated in the WT and 1p/19q codeletion groups of
Frontiers in Immunology 05
IDH and was statistically different between the groups

(Figures 3E, F).
COL22A1 was involved in multi-immune
pathway and classical pathway

The GSEA analysis results show that, this gene could be

enrichment in multi-immune pathway, such as T cell receptor

signaling pathway (Figure 4A), intestinal immune network for lga
FIGURE 2

The transcriptome data analysis results validation that COL22A1 was high expression in GBM tissues while compared with normal tissues (A). And the
Cell lines results show that this gene expression high in SNU626 cell lines and low expression in SW1783 cell line (B). The IHC results also
demonstrate that this gene high expression in GBM tissues (C). Patients with high expression had greater age and were more male, more obese
patients, as well as high WHO grade (D). The survival analysis show that high expression of COL22A1 was negative with survival rate, no matter OS,
DFS or PFI (E-G).
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production (Figure 4B), and Natural killer cell mediated

cytotoxicity (Figure 4C). In addition, the enrichment results also

demonstrate that COL22A1 was involved in cell cycle (Figure 4D),

DNA replication (Figure 4E), P53 signaling pathway (Figure 4F),

Adipocytokine signaling pathway (Figure 4G), Tgf Beta signaling

pathway (Figure 4H), and hedgehog signaling pathway (Figure 4I).
COL22A1 was related to
immune infiltration

The expression of COL22A1 was found to be associated with

immune infiltration across multiple analytical platforms. In the

MCP-counter analysis, COL22A1 expression showed a positive

correlation with CD8+ T cells, endothelial cells, and fibroblasts

(Figure 5A). Similarly, the EPIC analysis revealed a negative

correlation with B cells and CD4+ T cells, while showing a

positive correlation with cancer-associated fibroblasts (CAFs) and

macrophages (Figure 5B). TIMER analysis further confirmed a

positive correlation between COL22A1 expression and

macrophages as well as dendritic cells (DCs) (Figure 5C). In the

QUANT analysis, COL22A1 expression was negatively correlated

with B cells and positively correlated with M2 macrophages

(Figure 5D). Finally, IPS analysis demonstrated a positive

correlation with MHC molecules and endothelial cells (ECs), and

a negative correlation with suppressive cells (SCs) and tumor-

associated angiogenic factors (CPs) (Figure 5E). These findings
Frontiers in Immunology 06
collectively suggest that COL22A1 plays a significant role in

modulating the tumor immune microenvironment by interacting

with diverse immune and stromal cell populations.
COL22A1 was associated with immune
checkpoints and immune regulated genes

The expression of COL22A1 was positively correlated with

several immune checkpoints and immune-regulated genes,

suggesting its involvement in immune modulation. Specifically,

COL22A1 showed significant positive correlations with immune

checkpoint molecules, including BTLA, CD274, CD96,

PDCD1LG2, ICOS, IDO1, CD86, LAG3, and PDCD1 (Figures 6A-

I). Additionally, COL22A1 exhibited correlations with immune-

regulated genes, further supporting its role in modulating the

immune microenvironment. These findings highlight the potential

importance of COL22A1 in immune escape mechanisms and its

relevance as a candidate for therapeutic targeting in immuno-

oncology (Figure 6J).
Discussion

In recent years, the application of multi-omics has

revolutionized the diagnosis and prognostic prediction of cancers,

offering unprecedented insights into complex biological systems
FIGURE 3

The results of the correlation analysis suggest that patients with high expression of the gene usually imply a higher age (A). However, there was no
difference in the expression of the gene by sex or race (B, C). Interestingly, we observed a similar gradual increase in the expression of this gene as
the WHO Grade increased (D). In addition, we found that the expression of this gene was elevated in the WT and 1p/19q codeletion groups of IDH
and was statistically different between the groups (E, F).
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and their interactions in various oncological conditions.

Correspondingly, an increasing number of studies are applying

multi-omic approaches to improve the diagnosis and prognostic

stratification of GBM, facilitating more precise and targeted

therapies (20). Yan et al (21). developed and validated a deep-

learning imaging signature that significantly predicts survival

outcomes in GBM patients, correlates with key biological

pathways and genetic alterations, and outperforms traditional

clinical molecular approaches in risk stratification, demonstrating

an improved C index and net reclassification improvement. In

addition, a previous study, by integrating clinical, radiomic, and

genetic data, significantly enhanced the accuracy of predicting OS in
Frontiers in Immunology 07
IDH-wildtype GBM patients, with the combined omics approach

improving the concordance index and achieving AUCs of 0.78 in

the discovery cohort and 0.75 in the replication cohort (22). As in

our study, we have integrated radiomics and genomics to identify

five genes (VAMP8, CYBA, COL22A1, FCER1G, and NPC2)

positively correlated with a risk score designed to predict the

aggressiveness and potential outcomes of GBM, as well as its

potential to trigger AE. This approach enhances our

understanding of GBM’s complex behavior and its implications

for AE, providing a more robust predictive model for clinical

outcomes. Among these genes, COL22A1 was identified as the

hub gene, indicating its critical influence on the regulatory
FIGURE 4

The GSEA analysis results show that, this gene could be enrichment in multi-immune pathway, such as T cell receptor signaling pathway (A),
intestinal immune network for lga production (B), and Natural killer cell mediated cytotoxicity (C). In addition, the enrichment results also
demonstrate that COL22A1 was involved in cell cycle (D), DNA replication (E),P53 signaling pathway (F), Adipocytokine signaling pathway (G), Tgf
Beta signaling pathway (H), and hedgehog signaling pathway (I).
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networks affecting GBM behavior and patient prognosis, as well as

its potential role in driving AE. This highlights COL22A1’s

importance not only in GBM progression but also in its potential

to activate immune mechanisms involved in AE.

Collagen type XXII alpha 1 chain (COL22A1), a member of the

collagen family, is known for its role in the structural matrix of

connective tissues (23). Like many in its family, COL22A1 and related

collagen products are implicated in promoting tumor development,

indicating its potential significance in cancer biology and tumor

progression (24). In a recent study, COL22A1was identified as part of

a group of extracellular matrix molecules that show elevated

expression in the TME of GBM, suggesting its involvement in

regulating the complex angiogenic processes within GBM and

potentially impacting patient survival outcomes (25). In addition,

COL22A1was found to be overexpressed and to play a pro-oncogenic

role in GBM, as demonstrated by impaired proliferation, migration,

and invasion of glioma cells following COL22A1 silencing,

underscoring its significance in tumor progression and as a

biomarker for predicting patient survival (26). In our study,

COL22A1 was also shown to be highly expressed in multiple GBM

cell lines and verified at the protein level. Furthermore, the expression

of COL22A1 is associated with common clinical risk factors such as

older age, male gender, and higher tumor grade. Additionally, high

expression of COL22A1 correlates with poorer patient prognosis.

These findings confirm the potential role of COL22A1 in the

progression of GBM and highlight its significance as a marker for

prognosis and a target for therapeutic intervention. However, current

research does not establish a direct link between the gene COL22A1
Frontiers in Immunology 08
and AE nor its impact on the immune profile of GBM, highlighting

an area for future studies to explore potential connections that could

provide deeper insights into the genetic and immunological

underpinnings of these conditions.

Immunotherapy has dramatically altered the landscape of

cancer treatment, with significant successes using checkpoint

inhibitors and CAR T cells for various cancers (27), while GBM

has consistently demonstrated robust resistance due to its unique

intrinsic and adaptive immune evasion mechanisms (14, 28). For

example, the CheckMate 143 trial, the first large randomized study

targeting programmed death-1 (PD-1) signaling in GBM,

demonstrated that nivolumab did not extend OS in patients with

recurrent GBM compared to bevacizumab (29). The TME of GBM

may partly explain the suboptimal outcomes observed, as a study

has shown that the clinical response to anti-PD-1 immunotherapy

in GBM is linked to specific genetic alterations, immune-related

expression profiles, and the degree of immune cell infiltration,

which collectively reflect the tumor’s clonal evolution and

adaptive immune landscape during treatment (22, 30). Notably,

we found that the expression of COL22A1 positively correlates with

common immune checkpoints such as PD-1 (PDCD1), PD-L1

(CD274), and LAG3 in GBM, suggesting that COL22A1 may play

a significant role in regulating immune evasion mechanisms in

GBM. Additionally, DEGs between groups with high and low

COL22A1 expression were enriched in immune-related pathways

such as the T Cell Receptor Signaling and Natural Killer Cell-

Mediated Cytotoxicity pathways, suggesting a significant role for

COL22A1 in modulating immune responses in the TME. Moreover,
FIGURE 5

The expression of COL22A1 was found to be associated with immune infiltration across multiple analytical platforms. In the MCP-counter analysis,
COL22A1 expression showed a positive correlation with CD8+ T cells, endothelial cells, and fibroblasts (A). Similarly, the EPIC analysis revealed a
negative correlation with B cells and CD4+ T cells, while showing a positive correlation with cancer-associated fibroblasts (CAFs) and macrophages
(B). TIMER analysis further confirmed a positive correlation between COL22A1 expression and macrophages as well as dendritic cells (DCs) (C). In the
QUANT analysis, COL22A1 expression was negatively correlated with B cells and positively correlated with M2 macrophages (D). Finally, IPS analysis
demonstrated a positive correlation with MHC molecules and endothelial cells (ECs), and a negative correlation with suppressive cells (SCs) and
tumor-associated angiogenic factors (CPs) (E).
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a previous study has revealed that changes in the extracellular

matrix (ECM) components, such as the loss of Hyaluronan and

Proteoglycan Link Protein 1 (HAPLN1), significantly impacted

immune responses and cell migration within the TME in aging

skin (24). Given that COL22A1 is known for its role in ECM

organization and has been associated with tumor progression in

other studies (31, 32), It is plausible that COL22A1 could similarly

influence the structural and functional dynamics of the ECM,

potentially affecting interactions between immune cells and

cancer cells. However, establishing a definitive link between

COL22A1 and the immune response requires further exploration.

Overall, we utilized machine learning to analyze radiomics data,

constructing a risk model integrated with genomic data that

identifies COL22A1 as a hub gene. This model is designed not

only to diagnose and predict the prognosis of GBM but also to

assess the potential for GBM to drive AE. Building on this

foundation, we further explored the relationship between

COL22A1 and the TME, discovering correlations with multiple
Frontiers in Immunology 09
immune cell checkpoints, chemokines, and MHC loci that influence

immune responses, enriched in immune-related pathways. These

findings highlight COL22A1’s potential as a therapeutic target and

lay the groundwork for developing new immunotherapeutic

strategies that could address both GBM prognosis and the

likelihood of associated AE. However, our study has several

limitations. Firstly, the impact of COL22A1 on the survival of

GBM patients and their response to immunotherapy has not been

validated with real-world data. Secondly, the interaction between

the tumor and its microenvironment is a complex process, and we

did not explore the effects of COL22A1 on the GBM and AE TME at

the single-cell level. Additionally, although our research shows that

COL22A1 expression correlates with common immune checkpoints

and MHC loci, suggesting its potential as a target for immune

evasion, it remains unclear whether this effect is mediated through

immune checkpoints or influences the interactions between

immune and tumor cells via the extracellular matrix.

Furthermore, the specific immune mechanisms through which
FIGURE 6

COL22A1 showed significant positive correlations with immune checkpoint molecules, including BTLA, CD274, CD96, PDCD1LG2, ICOS, IDO1,
CD86, LAG3, and PDCD1 (A–I). Additionally, COL22A1 exhibited correlations with immune-regulated genes, further supporting its role in modulating
the immune microenvironment (J).
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GBM drives AE via COL22A1 are still unclear. Further studies are

needed to clarify these mechanisms.
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