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Objectives: This study aimed to identify key immune genes to provide new

perspectives on the mechanisms and diagnosis of vascular dementia (VaD) based

on bioinformatic methods combined with biological experiments in mice.

Methods: We obtained gene expression profiles from a Gene Expression

Omnibus database (GSE186798). The gene expression data were analysed

using integrated bioinformatics and machine learning techniques to pinpoint

potential key immune-related genes for diagnosing VaD. Moreover, the

diagnostic accuracy was evaluated through receiver operating characteristic

curve analysis. The microRNA, transcription factor (TF), and drug-regulating

hub genes were predicted using the database. Immune cell infiltration has

been studied to investigate the dysregulation of immune cells in patients with

VaD. To evaluate cognitive impairment, mice with bilateral common carotid

artery stenosis (BCAS) were subjected to behavioural tests 30 d after chronic

cerebral hypoperfusion. The expression of hub genes in the BCAS mice was

determined using a quantitative polymerase chain reaction(qPCR).

Results: The results of gene set enrichment and gene set variation analyses

indicated that immune-related pathways were upregulated in patients with VaD.

A total of 1620 immune genes were included in the combined immune dataset,

and 323 differentially expressed genes were examined using the GSE186798

dataset. Thirteen potential genes were identified using differential gene analysis.

Protein-protein interaction network design and functional enrichment analysis

were performed using the immune system as the main subject. To evaluate the

diagnostic value, two potential core genes were selected usingmachine learning.

Two putative hub genes, Rac family small GTPase 1(RAC1) and CKLF-like MARVEL

transmembrane domain containing 5 (CMTM5) exhibit good diagnostic value.

Their high confidence levels were confirmed by validating each biomarker using
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a different dataset. According to GeneMANIA, VaD pathophysiology is strongly

associated with immune and inflammatory responses. The data were used to

construct miRNA hub gene, TFs-hub gene, and drug-hub gene networks. Varying

levels of immune cell dysregulation were also observed. In the animal

experiments, a BCAS mouse model was employed to mimic VaD in humans,

further confirmed using the Morris water maze test. The mRNA expression of

RAC1 and CMTM5 was significantly reduced in the BCAS group, which was

consistent with the results of the integrated bioinformatics analysis.

Conclusions: RAC1 and CMTM5 are differentially expressed in the frontal lobes of

BCAS mice, suggesting their potential as biomarkers for diagnosing and

prognosis of VaD. These findings pave the way for exploring novel molecular

mechanisms aimed at preventing or treating VaD.
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1 Introduction

Vascular dementia (VaD) is the second leading cause of

dementia after Alzheimer’s disease (AD), accounting for at least

20% of all dementia diagnoses (1). The primary manifestations of

VaD include cognitive impairment, as well as behavioural and

psychological symptoms (2). The persistent decline in the quality

of life induced by VaD imposes significant medical and economic

burdens on patients, families, and society. Therefore, an unmet

need exists to investigate the molecular causes and prospective

diagnostic indicators of VaD.

Bioinformatics is an interdisciplinary field that combines biology,

computer science, and information technology (3). The discipline not

only assists researchers in processing and analysing large-scale

biological data but also provides new insights and methods for the

diagnosis, treatment, and prevention of diseases (4). For instance,

through bioinformatics analysis, researchers can identify genes and

biomarkers associated with AD, thereby supporting personalized

medicine (5). A previous study using integrative systems biology

analysis demonstrated that short-chain acylcarnitines/amino acids

and medium/long-chain acylcarnitines are most closely related to

AD, which is mediated by adenosine triphosphate-binding cassette

transporter A1 and carnitine palmitoyltransferase 1A (6). In addition,

three cerebrospinal fluid (CSF) proteins, CSF sodium-/potassium-

transporting ATPase subunit beta-1, serglycin, and thioredoxin-

dependent peroxide reductase mitochondria, may serve as potential

novel diagnostic biomarkers (7). However, VaD has not garnered

significant attention.

Machine learning, an essential branch of artificial intelligence,

leverages algorithms to learn from data and make predictions, and

has been widely applied in data analysis across various domains (8).

In bioinformatics, machine learning is employed for extracting

valuable information from complex biological data, building
02
predictive models, and identifying patterns (9). The application of

machine learning has enabled bioinformatics research to process

big data more efficiently, driving significant progress in areas such

as disease prediction and drug discovery (10).

The objective of this study was to screen and identify key genes

associated with the occurrence and progression of VaD through

comprehensive bioinformatics analysis. Additionally, the analysis

also aimed to investigate the pathological mechanism of VaD.

Initially, we acquired the gene expression profiles of patients with

VaD and healthy brain samples from a public database.

Subsequently, we identified significant modules and differentially

expressed immune-related genes in VaD, and screened out the key

VaD genes using machine learning algorithms. Moreover, we also

assessed the expression of key genes in mice with bilateral common

carotid artery stenosis (BCAS) and discovered that their expression

was decreased in such mice, suggesting that these genes significantly

contributed to the onset and development of VaD. Thereby offering

novel insights for further investigation into the pathogenesis and

diagnosis of VaD.
2 Materials and methods

2.1 Microarray data source

Datasets GSE186798 (11) and GSE122063 (12) were downloaded

from the Gene Expression Omnibus (GEO) database. The microarray

data from GSE186798 included 10 samples each from vascular

dementia-associated post-stroke dementia, post-stroke non-

dementia, and healthy controls. Only fit and post-stroke dementia

samples were selected from this dataset. All brain tissue samples were

obtained from the frontal brain regions. The GSE122063 microarray

data used as the validation set comprised brain samples from 44
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healthy individuals, 36 individuals with VaD, and 56 with AD. Only

gene expression data from the frontal lobe of 18 patients with VaD

and 22 matched controls were retained. The GSE186798 dataset was

sequenced using GPL23159, and GSE122063 using GPL16699, both

of which are derived from the human body.

The ImmPort (13), GeneCards (14), and Molecular Signatures

Databases (MSigDB) (15) were used to obtain 1791, 15898, and 20741

immune-related genes, respectively. Finally, 1620 immune-related

genes were identified at the intersection of the three gene sets.
2.2 Identification of VaD-associated
immune-differentially expressed genes

Differential gene analysis was performed using the R package

“limma” to determine the DEGs between control and VaD samples

(16). The thresholds for differential genes were set at a log2 fold

change (log2FC) > 0.5 and a p-value < 0.05, indicating DEGs with

increased expression. Potentially downregulated DEGs were

represented by log2FC < −0.5 and p-value < 0.05. Volcano plots

were employed to illustrate the results of differential gene

expression. Differentially expressed immune genes were identified

by intersecting DEGs and immune genes.
2.3 Gene set enrichment analysis and gene
set variation analysis

GSEA was performed to identify significantly enriched

functional gene sets using the R package “clusterProfiler” (17).

This method determines whether a priori-defined gene set

demonstrates statistically significant concordant differences

between two biological states or phenotypes (18). The MSigDB

contains functional annotations of the gene sets used in GSEA.

Additionally, the dataset was analysed simultaneously for multiple

gene sets. The gene set was considered significantly enriched if a

result of a nominal P-value < 0.05 and a Q-value of < 0.25 was

acquired. Gene sets meeting the abovementioned conditions were

sorted from high to low according to enrichment score (ES).

GSVA is a method used to estimate the variation of gene set

enrichment across samples in an expression dataset, conducted

utilising the R package “GSVA” (19). The ES for gene signatures was

then calculated using GSVA. Between-group differences in gene set

enrichment were determined using the Limma package. Only the

gene set with a P-value of < 0.05 was considered significant.
2.4 Function enrichment analysis

Gene Ontology (GO) annotation of the DEGs, consisting of

biological process (BP), cellular component (CC), and molecular

function (MF) terms, was performed using the R package

“clusterProfiler”. The top three BP, CC, and MF outcomes were

illustrated as Laplace plots utilising ggplot2, with a cutoff criterion

of P < 0.05.
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Functional enrichment of the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways for DEGs was performed using the R

package “clusterProfiler”. Moreover, ggplot2 generated Laplace

plots for the top three significant KEGG pathways based on P< 0.05.
2.5 Protein-protein interaction network

The STRING online database was utilized to determine

interacting genes (20). To fully comprehend the functional

interactions between proteins and select essential hub genes, the

PPI network was visualised and analysed using the Cytoscape

software. The MCODE algorithm was used to search for highly

clustered subnetworks (21).
2.6 Machine learning

Two machine learning algorithms were used to investigate

candidate genes for VaD diagnosis. The Least Absolute Shrinkage

and Selection Operator (LASSO) is recognised as a type of penalised

regression that can be used to screen variables and strengthen

prediction accuracy (22). Random forest (RF), recognised as a

feature selector, ranks genes based on their impact on the

accuracy of the RF (23). This method forecasts continuous

variables and identifies patterns with noticeable variations (24).

The LASSO regression and RF analysis were carried out utilising the

R packages “glmnet” (25) and “randomForest” (26). Intersecting

genes identified by LASSO and RF were proposed as potential hub

genes for VaD diagnosis. The positions of the identified genes were

mapped to chromosomes using R packages “circlize” (27).
2.7 Hub genes validated by gene
expression values and receiver operating
characteristic analysis

To verify the expression of hub genes in the diseased and

normal states, the GSE186798 and GSE122063 datasets were used

as the internal and external validation sets, respectively. T-test and

the “ggplot2” package of R language were used to assess and

illustrate the expression of hub genes. Box plots were generated to

ascertain whether the predicted VaD target genes exhibited

significant differential expression in the validation set.

The “pROC” package was employed to evaluate the diagnostic

predictive significance of essential genes (28). VaD was identified

using the area under the curve (AUC) and 95% confidence interval

(CI). An AUC >0.7 was regarded as a potential diagnostic value (29).
2.8 Immune infiltration analysis

CIBERSORT, a computational method utilising tissue gene

expression profiles, was used to ascertain the proportion of

immune cells in the samples (30). We calculated 22 immune cell
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types using the CIBERSORT method in the R package. A violin plot

was generated to reveal striking differences in the relative

compositions of immune cell populations between the VaD and

control groups. Spearman’s correlation was utilized to examine the

association between immune cell subtypes.
2.9 GeneMANIA analysis and prediction of
potential microribonucleic acid,
transcription factor, and drugs related to
hub genes

The GeneMANIA database was used to construct networks that

generated gene function hypotheses, examined gene lists, and

determined gene priority through functional analysis (31).

NetworkAnalyst, JASPAR, and Comparative Toxicogenomics

Database (CTD) were used to predict potential miRNAs, TF, and

drugs associated with hub genes. NetworkAnalyst is a

comprehensive visualisation and analysis tool for gene expression

data (32). JASPAR is a database of nucleotide profiles describing the

binding preferences of TF, which provides predicted TF-

deoxyribonucleic acid (DNA) interactions (33). The CTD is a

comprehensive, publicly accessible database that offers manually

curated information regarding chemical–gene/protein interactions,

chemical–disease associations, and gene–disease correlations.
2.10 Experimental animals

The use of all animal experiments was approved by the Animal

Care and Use Committee of Beijing Neurosurgical Institute. Male

C57BL/6 mice aged 8–10 weeks (22–25 g) were purchased from

Charles River Laboratory Animal Technology Co., Ltd. (Beijing,

China). The mice were housed at the Laboratory Animal Center of

the Beijing Neurosurgical Institute with free access to water and lab

chow and were maintained under a 12-h light/dark cycle. The

mouse model of BCAS was generated following the methods

previously described (34). The mice were randomly divided into

the following groups (N=7 mice per group): (1) BCAS: both

common carotid arteries (CCAs) were constricted with micro-

coils of an internal diameter of 0.18 mm; (2) Sham: same surgical

procedure as that applied for the BCAS group except for the

implantation of micro-coils.
2.11 Morris water maze test

Cognitive function was assessed using the MWM test on day 30

after BCAS. The MWM test was performed as previously described

(35, 36). Briefly, the MWM involved a round water tank divided

into four quadrants. The water temperature was maintained at 24 ±

2°C. The escape platform (10 cm in diameter) was fixed in the

centre of the southwest quadrant (target quadrant) and immersed

approximately 1 cm beneath the surface of the water. During the

training session, mice were delicately positioned into the water
Frontiers in Immunology 04
maze, released facing the wall from one of the four quadrants in

random order, and allowed to swim freely in search of the hidden

platform. The mice were provided 60 s to discover the hidden

platform, and the latency to reach the escape platform was recorded.

If the mouse failed to find the platform within 60 s, it was guided to

the platform and allowed to remain there on the platform 30 s. Each

mouse was tested four times daily, beginning from different

quadrants, with 40-min intervals between trials. Additionally, the

mean was calculated as the daily score. The probe trial was

conducted 24 h after the final training trial. Each mouse was

allowed to swim freely in the tank and the platform was removed

for 60 s. The latency to find the target quadrant, the frequency with

which the mouse crossed the original platform, and the swimming

velocity were automatically recorded using video tracking software

(EthoVision, Noldus, Netherlands).
2.12 Quantitative real-time polymerase
chain reaction

Brain tissue was rapidly removed from the frontal lobe, and the

messenger RNA (mRNA) levels of RAC1 and CMTM5 were

measured using qRT-PCR. Total RNA was isolated using the

TRIzol reagent, and complementary DNA synthesis was

conducted using a Revert Aid First Strand complementary DNA

Synthesis Kit (Yeasen) in accordance with the manufacturer’s

guidelines. qRT-PCR was performed using SYBR Green Real-

Time PCR Master Mix (Yeasen) on a StepOne Plus Real-Time

PCR System (Applied Biosystems). Glyceraldehyde-3-phosphate

dehydrogenase was used as a reference gene. All quantitative PCR

was performed in triplicate using seven independent purified RNA

samples. The primer sequences are listed in Table 1.
2.13 Data expression and statistical analysis

Statistical analyses were performed using GraphPad Prism

software (version 7.00; GraphPad Software Inc., USA). All data

were presented as the mean ± standard error of the mean.

Comparisons between groups were statistically evaluated using

Student’s t-test. Statistical significance was set at P < 0.05.
3 Results

3.1 Data processing and identification of
VaD-related pathways

Figure 1 depicts the flow chart for the bioinformatics analysis in

this study. Information sets were obtained from the GEO database

(GSE186798), including brain samples from 10 patients with VaD and

10 controls. In the comparison of VaD and control samples, 323 DEGs

were identified, of which 138 were upregulated and 185 were

downregulated. Figure 2A illustrates a volcano plot of the DEGs.

Furthermore, GSEA revealed distinct upregulated gene sets linked to
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VaD, and the top five pathways were selected. We identified that the

immune-related pathways were significantly activated in the VaD

group, including “prostaglandin signalling”, “interleukin (IL)-17

pathway”, “cytokine-cytokine receptor interaction”, “overview of

inflammatory and profibrotic mediators”, and “lym pathway”

(Figures 2B–F). The GSVA revealed similar results. Moreover, “IL6-

JAK-STAT signalling and “inflammatory responses” were highly

activated in the VaD group, whereas oxidative phosphorylation was

hyperactivated in the control group (Figures 2G, H).
3.2 Screening of immune-associated DEGs,
functional enrichment analysis and
PPI construction

The immune-related genes of the three immune datasets

interacted with the DEGs to identify 13 immune-related DEGs

(Figures 3A, B). According to KEGG analysis, “T cell receptor

signalling pathway”, “Hematopoietic cell lineage” and “FC gamma

R-mediated phagocytosis” were the three conditions where common

genes (CGs) were most highly enriched. GO analysis indicated that

CGs were predominantly enhanced in BP terms, including “FC

receptor-mediated stimulatory signalling pathway”, “positive

regulation of response to external stimulus”, and “positive

regulation of cell-matrix adhesion”. Concerning CC metaphysics,

the CGs primarily settled within the “immunological synapse”, “focal
Frontiers in Immunology 05
adhesion”, and “ruffle membrane”. MF analysis demonstrated that

“epidermal growth factor receptor binding”, “SH3 domain binding”,

and “cytokine receptor activity” were crucial elements in the metric

system (Figure 3C). Enrichment analysis revealed that VaD was

primarily associated with inflammatory responses, which strongly

correlated with the pathological progression of the disease.

We constructed a PPI network to identify node genes and searched

for densely connected subnetworks. As depicted in Cytoscape, the PPI

network of the immune DEGs contained 12 paired interactions and

involved nine genes. Node genes were displayed using the MCODE

plug-in (Figures 3D, E). Additionally, we conducted a correlation

analysis of the immune DEGs. DEFB107A and DEFB107B

demonstrated a notable positive correlation, while RAC1 and CD3E

exhibited a significant negative correlation (Figure 3F).
3.3 Identifying potential hub genes using
machine learning

Candidate genes were screened utilizing LASSO regression and

RF machine learning methodologies for diagnostic value assessment.

Figures 4A, B demonstrate that the LASSO regression algorithm

identified 10 probable candidate biomarkers. Figures 4C, D

demonstrate that the RF algorithmic program systematically

arranged the sequences to facilitate the estimation of the relative

importance of each gene. When the Venn diagram illustrating the
FIGURE 1

The flow chart of the study.
TABLE 1 Primers used for qRT-PCR.

Gene Primer sequences (5’-3’)

RAC1 F: GGACACCATTGAGAAGCTGAAGG R: GTCTTGAGTCCTCGCTGTGTGA

CMTM5 F: TTCGGAGTGGACAAGACCTTCC R: CCAGTGTGATGAGGAACTCTAGC

GAPDH F: CATCACTGCCACCCAGAAGACTG R: ATGCCAGTGAGCTTCCCGTTCAG
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overlap of the 10 most essential genes identified by LASSO and the

five probable candidate genes from RF was presented (Figure 4E),

four hub genes (RAC1, FABP6, DEFB107B, and CMTM5) were

identified for final confirmation. Figure 4F displays the positions of

hub genes on the chromosomes.
3.4 Validation of the hub genes

The GSE186798 dataset was used as an internal validation set to

verify the reliability of hub genes. Violin plots were employed to

determine the expression levels of screened hub genes. The results

demonstrated that the expression of RAC1, FABP6, DEFB107B, and

CMTM5 significantly differed in the VaD group compared to that

in the control group (Figure 5A). Additionally, RAC1 (AUC 0.71,
Frontiers in Immunology 06
CI 0.58–0.85), FABP6 (AUC 0.70, CI 0.56–0.83), DEFB107B (AUC

0.75, CI 0.63–0.88), and CMTM5 (AUC 0.71, CI 0.58–0.85) had a

potential diagnostic value for VaD based on the plotting of ROC

curves (Figures 5B–E).

As DEFB107B was not tested, RAC1, FABP6, and CMTM5

were validated using an external validation set (GSE122063 dataset).

Our results demonstrated that RAC1 and CMTM5 were

significantly decreased in the VaD group compared to those in

the control group (Figure 5F). Furthermore, ROC analysis revealed

that these two hub genes, RAC1 (AUC 0.83, CI 0.69–0.97), and

CMTM5 (AUC 0.76, CI 0.60–0.92) had a good diagnostic value for

VaD. Nevertheless, the diagnostic significance of FABP6 (AUC

0.50, CI 0.31–0.69) was poor, with AUC values falling below 0.70

(Figures 5G–I). Therefore, hub genes RAC1 and CMTM5 were used

in subsequent experiments.
FIGURE 2

Identification of differentially expressed genes and VaD-Related pathways. (A) VaD-related differentially expressed genes (DEGs) volcano plot with
log2FoldChange in the horizontal coordinate and -log10(P-value) in the vertical coordinate. Red nodes indicate upregulated DEGs, blue nodes
indicate downregulated DEGs, and gray nodes indicate genes that are not significantly differentially expressed. (B-F) GSEA analysis showing the top
five pathways associated with VaD. (G) GSVA analysis illustrating VaD-related pathways. (H) Violin plot showing the expression level of VaD-related
pathways. Blue for control samples, red for VaD samples. Data represent the mean ± SEM. *P<0.05.
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3.5 GeneMANIA, and immune cell
infiltration analysis

A functional network established using GeneMANIA indicated

that these pathways were closely linked to immune and inflammatory

responses (Figure 6A). As memory B cells, follicular helper T cells,

activated dendritic cells, and activated mast cells were not expressed

in the sample, they were excluded from the subsequent phase of the

analysis. Macrophages M1 and resting natural killer cells exhibited a

notable positive correlation. Conversely, macrophages M0 and

macrophages M2 cells had a significant negative correlation.

Spearman’s test was used to assess significant differences in

immune cell infiltration between patients with VaD and the control

group (Figure 6B). In addition, we evaluated the proportions of 18

immune cell subtypes between the groups. The findings revealed a

strikingly different immune cell presence in the VaD group compared

to that in the control group. Gamma-delta T cells were significantly

reduced in patients with VaD compared to those in the controls,

indicating the necessity of increasing this type of cell within the VaD

immune microenvironment (Figure 6C).
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3.6 Establishment of regulatory network
for miRNAs, TFs, and drugs-hub genes

Furthermore, miRNAs perform various functions in the regulation

of gene expression. Hub gene and miRNA regulatory networks were

constructed using Cytoscape to predict miRNAs targeting hub genes

based on the NetworkAnalyst database. In Figures 7A, B, the two hub

genes and their associated regulatory miRNA molecules are displayed.

Similarly, we predicted the TFs of the target genes using the JASPAR

database, which could be harnessed as innovative regulators of VaD

pathogenesis (Figures 7C, D). Moreover, the CTD was used to

conduct our final drug discovery search to lay the foundation for

VaD treatment (Figures 7E, F).
3.7 Vascular dementia in BCAS mice and
qRT-PCR validation of data

To investigate whether the BCAS model induces cognitive

impairment in mice, we conducted the MWM test. On day 5 of
FIGURE 3

Identification of immune-associated DEGs, and enrichment and correlation analysis. (A) Immune genes Venn’s diagram. (B) Immune genes and DEGs
Venn’s diagram. (C) GO and KEGG analysis of the genes immune-associated DEGs. (D, E) PPI network of the immune-associated DEGs, and the
MCODE plug-in is used to depict the most important module. Blue for downregulated genes, red for upregulated genes. (F) Correlation Analysis of
the immune-associated DEGs. *P<0.05.
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the training phase, the BCAS group exhibited a longer escape

latency to the platform in comparison to that observed in the

sham group (Figure 8A). Representative images of the traces from

the spatial probe assessment are displayed in Figure 8B. Compared

with the sham group, escape latency (Figure 8C) was significantly

higher and the frequency of times crossing the target (Figure 8D)

was significantly lower in the BCAS group, indicating that cognitive

dysfunction was triggered by chronic cerebral hypoperfusion

(CCH). Furthermore, no significant difference was observed in

swimming velocity between the two groups (Figure 8E),

suggesting that the MWM test performance was not affected by

variations in swimming, motor ability, or motivational deficits.

To verify the bioinformatic findings, qRT-PCR was

performed. The results demonstrated that the mRNA expression

levels of RAC1 and CMTM5 were significantly lower in the VaD

group than in the control group. This indicates that the data

mining outcomes were reliable and have considerable research

significance (Figures 9A, B).
4 Discussion

The immune response is a protective process against external

stimuli or internal injuries involving various immune cells and

cytokines (37). Studies have demonstrated that the immune

response of the nervous system plays a crucial role in VaD (38).
Frontiers in Immunology 08
CCH, the leading cause of VaD (39, 40), induces endothelial

dysfunction, increases blood-brain barrier permeability, and

facilitates the leakage of plasma proteins into the brain,

culminating in robust immune and inflammatory responses (41).

Animal research on VaD induced by CCH has validated that

microglia become activated following the onset of cerebral

hypoperfusion, ultimately resulting in white matter damage and

VaD (42, 43). Consistently, the GSEA and GSVA results of our

study revealed that immune-related pathways were highly activated

in the VaD group, indicating that the immune response plays an

important role in the development of VaD.

The involvement of multiple molecular pathways in

neuroimmune regulation gives rise to several potential biomarkers

(44, 45). However, investigations of these potential biomarkers in

the context of VaD have yielded inconsistent results. This

inconsistency makes the application of inflammatory biomarkers

in VaD problematic. To resolve this issue, we incorporated

integrated bioinformatic analysis and machine learning to identify

two hub genes (RAC1 and CMTM5) with diagnostic potential.

These results were validated using in vivo experiments.

RAC1, a member of the Rho GTPase family, was ubiquitously

expressed (46). The activity of RAC1 within cells is regulated by its

binding state with GTP (guanosine triphosphate) and GDP

(guanosine diphosphate). Specifically, RAC1 is active when bound

to GTP and inactive when bound to GDP (47). When activated,

RAC1 facilitates the allosteric regulation of p21-activated kinase,
FIGURE 4

Evaluating hub genes for VaD using machine learning. (A, B) The Lasso model’s biomarker screening. (C, D) The random forest algorithmic program
displays the error, and variable importance plot. (E) The Venn figure illustrates two methods used to identify four candidate diagnostic genes. (F)
Position of candidate diagnostic genes on chromosomes.
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FIGURE 5

Validation of the hub genes. (A) Violin plot showing the expression of target genes in internal validation set. (B-E) ROC curves for RAC1, FABP6,
DEFB107B, and CMTM5 in internal validation set. (F) Violin plot showing the expression of RAC1, FABP6, and CMTM5 in external validation set. (G-I)
ROC curves for RAC1, FABP6, and CMTM5 in external validation set. Data represent the mean ± SEM. **P<0.01; ***P<0.001.
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FIGURE 6

GeneMANIA, and immune cell infiltration analysis. (A) PPI network construction using GeneMANIA analysis. (B) Correlation of the cell types of 18
immune cells. (C) 18 categories of immune cells’ proportions in the VaD and control groups. Data represent the mean ± SEM. **P<0.01.
FIGURE 7

Establishment of regulatory network for MiRNAs−Hub Genes, TFs-Hub Genes, and Drugs-Hub Genes. (A, B) MiRNA regulatory networks for RAC1
and CMTM5. (C, D) TFs regulatory networks for RAC1 and CMTM5. (E, F) Predicted drug regulatory networks for RAC1 and CMTM5.
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thereby promoting its phosphorylation and subsequent activation

(48). Additionally, RAC1 functions include the regulation of various

physiological processes such as cytoskeletal reorganisation, cell

migration, and cell adhesion (49). A previous study demonstrated

that neuronal RAC1 significantly enhanced cognitive recovery after

stroke by activating various signalling pathways, including

promoting axonal plasticity and reducing the astrocytic barrier
Frontiers in Immunology 11
(50). Another study showed that RAC1 promoted axonal

regeneration and alleviated cognitive dysfunction by regulating

glial fibrillary acidic protein signalling (51). RAC1 is involved in

NADPH oxidase activation, leading to ROS production, which

influences immune signalling and antioxidant regulation (52).

Our results indicated that the expression of RAC1 was reduced in

VaD, which is consistent with these results.
FIGURE 8

Mice subjected to CCH exhibited impaired cognitive function. (A) Average escape latency for each group during the training phase. (B)
Representative swimming path of each group during the testing phase. (C) Average escape latency for each group during the testing phase. (D)
Number of times crossing the platform for each group. (E) Average swimming speed for each group. N = 7. Data represent the mean ± SEM. NS,
nonsignificant; ***P<0.001. BCAS, both common carotid arteries (CCAs) were constricted with microcoils of an internal diameter; Sham, same
surgical procedure as BCAS group except for the implantation of microcoils.
FIGURE 9

Validation of the expression of hub genes in BCAS Mice. (A) The mRNA levels of RAC1 in the frontal lobe of each group. (B) The mRNA levels of
CMTM5 in the frontal lobe of each group. N = 7. Data represent the mean ± SEM. *P<0.05; ***P<0.001. BCAS, both common carotid arteries (CCAs)
were constricted with microcoils of an internal diameter; Sham, same surgical procedure as BCAS group except for the implantation of microcoils.
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CMTM5 is a novel tumour suppressor belonging to the CMTM

family that contains a MARVEL domain in its structure and was

initially reported by the Human Disease Gene Research Center of

Beijing University in 2003 (53). CMTM5 played a potentially crucial

role in transmembrane signalling and inhibiting tumour cell

proliferation, adhesion and migration through regulating EGFR

and PI3K/AKT Pathway (54, 55). However, the role of CMTM5 in

VaD is not well established. To the best of our knowledge, this is the

first study to demonstrate that CMTM5 expression is downregulated

in the brain tissue of mice with VaD. Furthermore, we predicted

miRNAs, TFs, and drugs linked to CMTM5 using internet databases,

which provided clues for the diagnosis and treatment of VaD.

Our study has certain limitations. Firstly, owing to the differences

in analytical thinking and approaches, our investigation may be a

secondary mining of a previously released dataset, yielding divergent

findings. The two hub genes screened in this study have not been

experimentally validated in human brain tissue. Secondly, our

analysis was based on a limited sample size, necessitating additional

evidence to confirm our hypotheses. Further research with large

sample size is required to ascertain the diagnostic accuracy of hub

genes for VaD, to elucidate the connection between hub gene levels

and future treatment strategies, and to identify the immune-related

pathological mechanisms underlying VaD. Thirdly, this study utilised

only the BCAS animal model for VaD, and further experiments are

necessary to validate these findings in other models of VaD.

In conclusion, we identified two hub genes (RAC1 and CMTM5)

associated with VaD, reinforcing the potential of specific hub genes as

biomarkers. These findings pave the way for future research into

accurate diagnosis and enhanced understanding of VaD pathogenesis.
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