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TMED9: a potential therapeutic
target and prognostic marker
in glioma and its implications
across pan-cancer contexts
Benyong Mi and Chaolin Li*

Department of Pediatrics, Jinniu District Maternal and Child Health Hospital, Chengdu, China
Background: The escalating global cancer burden, projected to reach 35 million

new cases by 2050, underscores the urgent need for innovative cancer

biomarkers to improve treatment efficacy and patient outcomes. The TMED

family, particularly TMED9, has garnered attention for its involvement in cancer

progression; however, its comprehensive role across various cancer types

remains poorly understood.

Methods: Utilizing multi-omics data, we analyzed the expression pattern,

prognostic significance, genomic alterations, and immunological features of

TMED9 in various cancer types. Through in vitro experiments, we paid special

attention to its role in glioma, especially its correlation with glioma cell migration

and invasion behavior.

Results: Our findings reveal that TMED9 is significantly overexpressed in various

tumor tissues and is associated with poor prognosis in cancers such as

glioblastoma and lower-grade gliomas. Genetic analysis shows TMED9

mutations predominantly in kidney renal clear cell carcinoma, with its

expression linked to chromosomal instability. Immunological analysis indicates

that TMED9 correlates positively with immune cell infiltration, particularly

macrophages, suggesting its role in promoting tumor immunity. Furthermore,

TMED9 expression was negatively correlated with tumor stemness, indicating its

potential influence on chemotherapy resistance. Knockdown of TMED9 led to

reduced migration and invasion in glioma cell lines.

Conclusions: Our comprehensive analysis positions TMED9 as a critical player in

cancer progression and immune modulation, especially in gliomas. Elevated

TMED9 expression correlates with poorer outcomes and may serve as a

prognostic marker and therapeutic target. Future research should focus on

elucidating TMED9’s mechanistic pathways and validating its role in clinical

settings to enhance glioma treatment strategies.
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1 Introduction

The global cancer burden is increasing. In 2022, there were

nearly 20 million new cancer cases and 9.7 million cancer deaths

worldwide. It is estimated that by 2050, the number of new cancer

cases will reach 35 million (1). Although antibodies targeting

inhibitory immune checkpoints and CAR-T cell therapy have

shown promise in various malignancies, including melanoma,

non-small cell lung cancer, and renal cell carcinoma, patient

specificity, tumor heterogeneity, and the complexities of the

tumor microenvironment continue to limit treatment efficacy (2–

4). The discovery and validation of cancer biomarkers are essential

for the early diagnosis of cancer, monitoring treatment response,

and evaluating prognosis. However, many cancer biomarkers suffer

from insufficient specificity and sensitivity, which limits their

accuracy in early diagnosis and efficacy monitoring (5, 6). In light

of the increasing global cancer burden, identifying new cancer

biomarkers is crucial for enhancing treatment efficacy and

improving patient prognosis.

The transmembrane emp24 domain-containing protein

(TMED) family comprises four subfamilies: the a subfamily

(TMED4 and TMED9), b subfamily (TMED2), g subfamily

(TMED1, TMED3, TMED5, TMED6, and TMED7), and d
subfamily (TMED10), totaling nine members (7). These proteins

are key regulators of protein transport in the human body and play

significant roles in the development of various diseases, including

malignant tumors. Among them, TMED9 has garnered attention

due to its essential role in numerous biological processes. Recent

studies indicate that TMED9 overexpression in ovarian cancer

correlates with poor overall survival, while in breast cancer, high

TMED9 expression is associated with enhanced tumor proliferation

and migratory capacity (8, 9). The role of TMED9 in hepatocellular

carcinoma is also increasingly recognized, as its expression levels

correlate with tumor vascular invasion and unfavorable prognosis

(10). Additionally, research has demonstrated that TMED9

promotes colon cancer metastasis by activating CNIH4/TGFa/
GLI signaling (11). Although TMED9’s role in specific cancer

types has been investigated, there is a lack of a comprehensive

perspective to evaluate the expression patterns and functions of

TMED9 across different cancer types. This limitation restricts our

in-depth understanding of TMED9’s mechanisms of action in the

context of pan-cancer.

In our study, we analyzed the expression pattern, diagnostic

value, prognostic significance, copy number variations, and

epigenetic changes of TMED9 in pan-cancer using multi-omics

data. Specifically, we focused on the immune characteristics and

functional role of TMED9 in glioma, as well as its response to

immunotherapy. Additionally, we investigated the correlation

between TMED9 and the metastasis, migration, and invasion of

glioma cells through cellular experiments. This study aims to

provide a comprehensive analysis of the role of TMED9 in

various cancers and its impact on the clinical significance and

prognostic value of glioma. Furthermore, we seek to elucidate its

functional mechanisms and offer new insights and strategies for

precision medicine and the comprehensive treatment of glioma.
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2 Materials and method

2.1 Datasets acquisition

The raw RNA-seq and clinical data are available at the

Pancancer Atlas publication page (https://gdc.cancer.gov/about-

data/publications/pancanatlas). To increase the number of normal

samples, the normal sample TPM expression data from the

Genotype-Tissue Expression (GTEx) project were paired with

tumor TPM expression data from The Cancer Genome Atlas

(TCGA). To ensure accuracy and eliminate the influence of

anatomical factors, only primary tumor tissues from TCGA were

retained for pairing with the GTEx data. The data were

standardized into unitless Z-scores using the formula (x-m)/s.
The pan-cancer transcript expression profiles and copy number

variation data were obtained from the UCSC XENA website

(https://xenabrowser.net/datapages/). The pan-cancer expression

quantitative trait loci Genome-Wide Association Study (eQTL-

GWAS) co-localization analysis data were sourced from the Open

GWAS website (https://gwas.mrcieu.ac.uk/) (12). The pan-cancer

immune cell infiltration data were downloaded from the Tumor

Immune Estimation Resource 2.0 (TIMER2.0, http://

timer.cistrome.org/) (13). The protein expression data from the

reverse phase protein array were retrieved from The Cancer

Proteome Atlas (TCPA, https://tcpaportal.org/index.html)

database. The pan-cancer immune subtype data were obtained

from prior studies (14). The immune inflammation-related gene

set was downloaded from the official website of the Kyoto

Encyclopedia of Genes and Genomes (KEGG, https://

www.kegg.jp/). The scRNA-seq data were acquired from Tumor

Immune Single-cell Hub 2 (TISCH2, http://tisch.comp-

genomics.org/) (15). The spatial transcriptome data were sourced

from previous studies (16). The Cancer-Immunity Cycle data were

retrieved from the Tracking Tumor Immunophenotype (TIP,

http://biocc.hrbmu.edu.cn/TIP/) database (17). Lastly, the RNAss

tumor stemness score for glioma was drawn from earlier research

(18). The abbreviations for all cancers can be found in

Supplementary Table 1.

The validation dataset for gliomas comes from the Chinese

Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/), Gene

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/),

and ArrayExpress databases (https://www.ebi.ac.uk/biostudies/

arrayexpress) (19). They are CGGA-301, CGGA-325, CGGA-693,

GSE16011 (20), GSE61335 (GPL19184) (21), GSE33331 (22),

GSE42669 (23), GSE72951 (24), E-MTAB-3892 (25), and E-

TABM-898 (26), which are used for the expression analysis,

survival analysis, and functional enrichment analysis of TMED9.

Additionally, datasets GSE100736, GSE138863 (27), and

GSE138942 (28) from GEO are used to assess the expression

differences of TMED9 under different drug treatments. The probe

matrix was annotated as a gene matrix based on the platform file for

each dataset. When a single gene corresponded to multiple probes,

the gene expression value was determined by averaging the

expression levels of those probes. Subsequently, the data were

normalized to unitless Z-score values using the formula (x−m)/s.
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2.2 Expression landscape and genomic
alterations of TMED9 in pan-cancer

The differential expression of TMED9 in human normal tissues

was initially analyzed using the GTEx database. Subsequently, the

expression differences of TMED9 across various immune cells and

tumor cell lines were assessed using the Human Protein Atlas

(HPA) database. Additionally, a pan-cancer expression profile

was employed to examine the differential expression of TMED9

between normal and tumor tissues. The gganatogram package was

utilized to create organ diagrams that visualize the median z-scores

of tumor and normal groups for each organ. Furthermore, the Gene

Expression database of Normal and Tumor tissues 2 (GENT2,

http://gent2.appex.kr/gent2/) was used to further confirm the

differential expression of TMED9 between tumor and normal

tissues (29). Finally, the Proteomics module in the UALCAN

database facilitated the analysis of differential protein expression

of TMED9 in both tumor and normal tissues (30), while

immunohistochemistry results from the HPA database were

utilized to further corroborate the differential protein expression

of TMED9.

The cBioPortal for Cancer Genomics was utilized to analyze the

frequencies of genomic mutations, amplifications, and deep

deletions in pan-cancer studies. Additionally, we focused on the

copy number variation of TMED9 across various cancer types. The

methylation changes of TMED9 were assessed using the Shiny

Methylation Analysis Resource Tool (SMART, http://www.bioinfo-

zs.com/smartapp/) (31). Kaplan-Meier curves were generated using

the Tumor Immune Dysfunction and Exclusion (TIDE, http://

tide.dfci.harvard.edu/) methylation module to evaluate the

prognostic relevance of TMED9 promoter methylation (32). The

ssGSEA method from the GSVA package was employed to compute

scores for different mutation-related gene sets in pan-cancer, and

Spearman correlation analysis was conducted to examine the

relationship between the scores of these gene sets and TMED9

expression (33). Finally, pan-cancer eQTL-GWAS colocalization

analysis was carried out with the coloc package using default

parameters, where the cutoff for colocalization evidence was

defined as PP.H4.abf greater than 0.75, followed by visualization

with the stack_assoc_plot function in the gassocplot2 package.
2.3 Immune correlation analysis

We collected 150 genes associated with immune regulators from

the study by Charoentong et al., which included 41 chemokines, 18

receptors, 21 major histocompatibility complex (MHC) molecules,

24 immunosuppressive factors, and 46 immunostimulatory factors

(34). The Pearson correlation coefficient was employed to assess the

relationship between these genes and TMED9 in pan-cancer. Based

on the median expression value of TMED9, tumor samples were

categorized into high-expression and low-expression groups, and

the proportion of each subtype within these groups was calculated;

significance was determined using the chi-square test. The

TIMER2.0 database was utilized to investigate the abundance of
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different cell types within the tumor microenvironment across 33

cancer types. The ssGSEA method from the GSVA package was

employed to calculate enrichment scores for immune-

inflammation-related function sets, and the correlation between

these scores and TMED9 gene expression was analyzed. The easier

package was used to evaluate the cytolytic activity (CYT) score,

tertiary lymphoid structure (TLS) score, interferon-g (IFN-g) score,
T cell inflammation (T cell_inflamed) score, and chemokine score

(35). Additionally, the TIDE algorithm was applied to predict

potential responses to immunotherapy. Patients with high TIDE

scores exhibited poor treatment efficacy and shorter survival

following immune checkpoint blockade (ICB). Finally, the ROC

Plotter server (https://rocplot.com/) and the Kaplan-Meier Plotter

server (https://kmplot.com/analysis/) were employed to validate the

association between TMED9 and immunotherapy (36, 37).
2.4 Functional enrichment analysis

The GeneMANIA server (http://genemania.org/) was utilized to

predict genes that may interact with TMED9 (38). The ComPPI

database (https://comppi.linkgroup.hu/) was employed to filter out

interacting proteins that do not share common subcellular

localization, allowing for the identification of proteins that

interact with the TMED9 gene (39). In the pan-cancer samples,

the top 30% of samples exhibiting the highest TMED9 expression

were classified as the high expression group, while the bottom 30%

were classified as the low expression group. Differential analysis was

performed using the limma package, and the log2FC values for each

gene were calculated and sorted. Subsequently, the gene set

enrichment analysis (GSEA) function from the clusterProfiler

package was applied (40). Based on protein expression data from

the TCPA database and published research findings, pathway

activity scores for 10 cancer-related pathways (TSC/mTOR, RTK,

RAS-MAPK, PI3K-AKT, ER hormone, AR hormone, EMT, DNA

damage response, cell cycle, and apoptosis) were computed, and

statistical analyses were conducted to compare pathway activity

scores between the high and low expression groups of TMED9 (41).

The CancerSEA database integrates characteristic gene expression

profiles for 14 tumor cell states (42). The z-score algorithm from the

R package GSVA was utilized to calculate the activity of each

pathway and to obtain a combined z-score (43). Subsequently, the

scores were standardized using the scale function, defined as the

gene set score, and the Pearson correlation between the TMED9

gene and the gene set score was calculated.
2.5 Evaluation of the diagnostic and
prognostic value of TMED9

Receiver operating characteristic (ROC) analysis was conducted

using the pROC package, calculating the 95% confidence intervals

and area under the curve (AUC) values, while also generating ROC

curves to evaluate the diagnostic efficacy of TMED9 gene expression

in differentiating between tumor and normal groups. Univariate
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Cox regression and Kaplan-Meier survival analyses were performed

using the survival package in R, where the hazard ratio (HR) and

95% confidence interval (CI) were employed to quantify relative

risk. The cutoff values for high and low expression groups were

established with the survminer package, ensuring that each group

comprised at least 30% of the total sample to mitigate over-

grouping bias. The log-rank test, executed by the survfit function,

assessed the significance of survival differences between the two

groups. Based on TMED9 gene expression, patients were stratified

into four groups: Q1 (highest 25% expression), Q2, Q3, and Q4

(lowest 25% expression). A chi-square test was applied to determine

the significance of differences in patient composition among these

groups. The survival package was also utilized for multivariate Cox

survival analysis of both TMED9 gene and clinical variables,

evaluating the potential of TMED9 as an independent

prognostic factor.
2.6 Single-cell and spatial
transcriptomic analysis

Gene expression files at single-cell resolution in glioma were

obtained from the TISCH2 database, and the pheatmap package

was employed to construct a heatmap visualizing the single-cell

expression landscape of the TMED9 gene in glioma. The Uniform

Manifold Approximation and Projection (UMAP) method was

utilized for dimensionality reduction of the gene expression data.

Specifically, the Nebulosa package was employed to estimate

weighted kernel density for enhanced visualization of the single-

cell data (44). Building on previous studies (45), the Cottrazm

package facilitated the deconvolution of cell composition in spatial

transcriptome slices (46), calculating the predominant cell type in

each microregion, and visualizing the results using the SpatialPlot

function from the Seurat package. The scale function performed z-

score normalization, and the pheatmap package was used for

heatmap visualization, enabling observation of the average

expression of the TMED9 gene across different cell types in each

slice. The SpatialFeaturePlot function of the Seurat package

visualized the expression landscape of the TMED9 gene in each

microregion. Additionally, Spearman correlation analysis assessed

the relationships between cell content across all spots and the

correlation between cell content and gene expression, with results

visualized using the linkET package.
2.7 Analysis of tumor stemness and
drug sensitivity

We assessed the correlation between TMED9 and tumor

stemness in glioma by utilizing RNAss tumor stemness scores

and mRNAsi derived from the one-class logistic regression

(OCLR) algorithm (18). For drug sensitivity analysis, we selected

198 drugs from the Genomics of Drug Sensitivity in Cancer (GDSC)

database. Specifically, the R package oncoPredict was employed to

predict drug sensitivity based on TMED9 gene expression (47).
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Using Spearman correlation analysis, we calculated the relationship

between TMED9 gene expression and the half-inhibitory

concentration (IC50) of antagonists measured in the GDSC

database. A negative correlation suggests that increased gene

expression is associated with heightened sensitivity to the drug,

while a positive correlation indicates that increased gene expression

correlates with enhanced resistance to the drug. Furthermore, to

explore potential therapeutic options to mitigate the tumor-

promoting effects mediated by the TMED9 gene, we conducted

Connectivity Map (cMAP) analysis. In the context of Pan-Cancer,

TMED9 gene-related features were compared with cMAP gene

features using the optimal feature matching method XSum

(eXtreme Sum) through the cMAP database, yielding similarity

scores for 1,288 compounds (48). Compounds with low similarity

scores may inhibit gene-mediated cancer-promoting effects.
2.8 Cell culture and Quantitative real-
time PCR

The U-87 MG and U251 cell lines were obtained from Procell

Life Science & Technology (Wuhan, China). The U251 cells were

cultured in DMEM medium (HyClone, USA) supplemented with

10% fetal bovine serum (Vazyme, China), 100 mg/mL

streptomycin, and 100 U/mL penicillin. In contrast, the U-87 MG

cells were cultured in MEM medium (Gibco, USA), also

supplemented with 10% fetal bovine serum (Vazyme, China), 100

mg/mL streptomycin, and 100 U/mL penicillin. All cells were

incubated in a humidified atmosphere containing 5% CO2 at 37°C.

Total RNA was isolated using TRIzol reagent (Invitrogen, USA)

according to the manufacturer’s instructions. One microgram (1 µg)

of RNA was utilized for complementary DNA (cDNA) synthesis

employing the Hiscript III First Strand cDNA Synthesis Kit

(Vazyme, China). GAPDH was amplified from each sample to

ensure equal cDNA input. Each polymerase chain reaction (PCR)

contained 1 µL of cDNA, 0.6 µL of forward and reverse primers (10

µM), 7.5 µL of ChamQ Universal SYBR qPCRMaster Mix (Vazyme,

China), and 6.3 µL of double-distilled water (ddH2O). The PCR

parameters consisted of an initial denaturation step at 95°C for 10

minutes, followed by 40 cycles of denaturation at 95°C for 15

seconds, annealing at 62°C for 1 minute, and extension at 72°C

for 15 seconds. A final extension phase included one reaction at 60°

C for 1 minute and an additional step at 95°C for 15 seconds. The

forward and reverse primers for GAPDH were GGAGCGAG

ATCCCTCCAAAAT and GGCTGTTGTCATACTTCTCATGG,

respectively, while the primers for TMED9 were GCGCTCTACT

TTCACATCGG and CACCTCCACAAACATGCCAA,respectively.
2.9 Western blotting

Cells were harvested following treatment with small interfering

RNAs (siRNAs). They were subsequently collected by

centrifugation after being washed three times with phosphate-

buffered saline (PBS). Protease inhibitors (Solarbio, China) were
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added to RIPA buffer to prepare total protein extracts. Antibodies

for TMED9, GAPDH, MMP14, Vimentin, and MMP2 were

obtained from Proteintech (China) and employed according to

the manufacturer’s instructions for Western blot analysis. Goat

Anti-Rabbit IgG-HRP (Proteintech, China) served as the secondary

antibody. GAPDH was utilized as the loading control. Enhanced

chemiluminescence (ECL) reagent (4A Biotech, China) was used to

visualize the signals.
2.10 Transwell migration and
invasion assay

The 24-well Transwell chamber (Corning Costar, USA) was

prepared and stored at 4°C overnight. A total of 2 × 10^4

transfected U-87 MG and U251 cells were seeded in the upper

chamber, with or without Matrigel, and incubated in serum-free

medium, while the lower chamber was filled with 10% serum

medium. After 48 hours, the Transwell chamber was removed,

fixed with 4% paraformaldehyde for 15 minutes, and stained with

crystal violet for 5 minutes. Finally, images were captured and

observed using an optical microscope.
2.11 Statistical analysis

All data were processed using web tools and R software (version

4.0.3; https://www.r-project.org/). Pearson correlation analysis was

conducted for normally distributed data, while Spearman

correlation analysis was employed for non-normally distributed

data. The Kruskal-Wallis rank sum test andWilcoxon rank sum test

were utilized to identify differences between multiple variables or

two variables. The Kaplan-Meier method implemented the log-rank

test to evaluate significance. Cell experimental data were analyzed

with GraphPad Prism for Windows (version 9.0.0), and each

experiment was repeated three times. Statistical significance was

determined using Student’s t-test, with p values less than 0.05

considered statistically significant. All statistical tests were two-

tailed. The significance levels are indicated by the following

symbols: *p < 0.05, **p < 0.01, ***p < 0.001.
3 Results

3.1 TMED9 is significantly upregulated in
multiple tumor tissues

The analysis based on the human pan-normal tissue expression

profile revealed that TMED9 is significantly overexpressed in tissues

such as the pancreas, liver, and salivary glands (Supplementary

Figure 1A). Immune cell analysis indicated that TMED9 is primarily

expressed in dendritic cells and monocytes (Supplementary Figure 1B).

Furthermore, high levels of TMED9 expression were observed in

tumor cell lines, including kidney cancer, brain cancer, and myeloma
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(Supplementary Figure 1C). In the differential analysis of tumor and

normal samples from the TCGA, we found that TMED9 is significantly

overexpressed in more than half of the tumor types (Figures 1A, B).

Transcript differential analysis demonstrated that, compared to normal

tissues, the protein transcripts encoded by TMED9 exhibit high

expression in nearly all tumor types (Figure 1C). Subsequent

differential analysis utilizing normal samples from the GTEx

database also revealed significant upregulation of TMED9 expression

across nearly all cancer types (Figures 1D, E). Analysis from the

GENT2 database further corroborated these findings (Supplementary

Figure 1D). Data from the UALCAN database indicated that TMED9

protein levels were elevated in breast invasive carcinoma (BRCA),

colon adenocarcinoma (COAD), clear cell renal cell carcinoma

(ccRCC), uterine corpus endometrial carcinoma (UCEC), lung

adenocarcinoma (LUAD), and glioblastoma multiforme (GBM),

whereas a significant downregulation was observed in pancreatic

adenocarcinoma (PAAD) (Figure 1F, Supplementary Figure 1E).

Additionally, immunohistochemistry results from the HPA database

confirmed the elevated expression of TMED9 in several tumors,

including BRCA, COAD, and GBM (Figure 1G). We also assessed

the correlation between TMED9 and clinical characteristics of tumors.

The results demonstrated that in kidney renal clear cell carcinoma

(KIRC), brain lower grade glioma (LGG), and liver hepatocellular

carcinoma (LIHC), TMED9 expression progressively increased with

tumor progression. Notably, we observed significantly high TMED9

expression during the M1 stage of head and neck squamous cell

carcinoma (HNSC), KIRC, and mesothelioma (MESO), while

significantly low expression was evident in the M1 stage of LUAD,

suggesting a potential association with tumor metastasis. Additionally,

TMED9 was significantly associated with multiple tumor subtypes

(Supplementary Figures 2A, B).
3.2 Genetic alterations of TMED9 in
pan-cancer

Analysis based on the cBioPortal server indicated that TMED9

experienced 161 mutations across 10,953 cancer patients, with KIRC

exhibiting the highest mutation rate, predominantly in the form of

amplification mutations (Figures 2A, B). Copy number variation

analysis similarly revealed that TMED9 had a greater number of

amplification mutations in various cancers, including adrenocortical

carcinoma (ACC) and KIRC, while an increased incidence of deletion

mutations was observed in bladder urothelial carcinoma (BLCA),

lung squamous cell carcinoma (LUSC), and testicular germ cell

tumors (TGCT) (Figure 2C). In pan-cancer analyses, the

expression of TMED9 demonstrated an overall upward trend,

transitioning from homozygous deletion to high copy number

amplification (Figure 2D). Correlation analysis indicated that the

copy number variation of TMED9 was significantly positively

associated with its mRNA expression in almost all cancer types

(Figure 2E). Methylation analysis revealed that, except for rectum

adenocarcinoma (READ), TMED9 exhibited lower methylation

levels in most tumors compared to normal tissues (Figure 2F).
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Furthermore, the methylation level of TMED9 was significantly

correlated with the prognosis of cholangiocarcinoma (CHOL) and

uveal melanoma (UVM) (Figure 2G). TMED9 was positively

associated with multiple genomic scores in KIRC, LIHC, thymoma

(THYM), PAAD, and LGG, suggesting that higher expression of

TMED9 may correlate with increased chromosomal instability in

these patients (Figure 2H). Additionally, eQTL-GWAS co-

localization analysis demonstrated that rs6634 and rs34582406 had

a PP.H4.abf value of 1 across all datasets, indicating that these

variants of TMED9 may share genetic variations with multiple

tumors (Figure 2I, Supplementary Figures 3A–I).
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3.3 Immunological signature of TMED9 in
pan-cancer

The results of the correlation analysis demonstrated that TMED9 is

positively correlated with various immune regulators, particularlyMHC

molecules. This finding indicates that the TMED9 high-expression

group exhibits enhanced antigen presentation and processing

capabilities (Figure 3A). Furthermore, multiple immunostimulators

and immunoinhibitors show varying degrees of positive correlation

with TMED9, thereby emphasizing the strong association between

TMED9 and immunity. Immune subtype expression analysis revealed
FIGURE 1

(A) Evaluation of differential expression of TMED9 in TCGA normal and tumor samples; (B) Evaluation of differential expression of TMED9 in tumor
samples and paired normal samples in TCGA; (C) Evaluation of differential expression of TMED9 transcripts between normal and tumor samples in
pan-cancer; (D) Evaluation of differential expression of TMED9 using TCGA dataset combined with GTEx normal samples; (E) Differential expression
of TMED9 in different organ-related cancer and normal samples; (F) Differences in protein expression levels of TMED9 in pan-cancer; (G)
Immunohistochemistry data validates the differential protein expression of TMED9 between different cancer tumor samples and normal samples
(HPA datasets). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns: not significant.
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that, across pan-cancer, the C1 subtype (Wound Healing) and C2

subtype (IFN-g Dominant) are predominant in the TMED9 high-

expression group, a result confirmed across several specific cancer types

(Figure 3B, Supplementary Figure 4A). Immune cell infiltration analysis

indicated a significant positive correlation between TMED9 and various

immune cell types, including macrophages, in BLCA, LGG,

pheochromocytoma and paraganglioma (PCPG), sarcoma (SARC),

THYM, and UVM (Figure 3C, Supplementary Figures 4B–E).
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Subsequently, we further validated the significant positive correlation

between TMED9 and macrophages in LGG, SARC, THYM, and UVM

using the TIMER2.0 online server (Supplementary Figure 4F).

Additionally, we noted significant positive correlations between

TMED9 and several inflammation-related scores across various

tumors, including GBM, LGG, SARC, and KIRC (Figure 3D). These

findings underscore the association between TMED9 and the tumor

immune microenvironment.
FIGURE 2

(A) Evaluation of the pan-cancer mutational landscape of TMED9 based on the cBioPortal database; (B) Mutation of TMED9 in different cancer types;
(C) Copy number variation levels of TMED9 in pan-cancer; (D) TMED9 expression varies among different CNV types in pan-cancer; (E) Correlation
between copy number variation and mRNA levels of TMED9 in pan-cancer; (F) Evaluation of the differential methylation levels of TMED9 in pan-
cancer tumor samples and normal samples based on methylation data from the SMART database; (G) Association between TMED9 methylation and
tumor prognosis; (H) Heat map of the correlation between TMED9 expression and different gene set scores in pan-cancer; (I) TMED9 co-
localization results of eqTL-GWAS in pan-cancer. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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3.4 TMED9 is significantly positively
correlated with multiple tumor-
related pathways

Gene interaction network analysis revealed that TMED9

primarily interacts with TMED10, TMED2, and TMED1

(Supplementary Figure 5A). ComPPI facilitates the identification of

proteins that may interact with TMED9 (Supplementary Figure 5B).

Gene Set Enrichment Analysis (GSEA) results indicated that the

TMED9 high-expression group is significantly enriched in immune-

related pathways across cancers such as ACC, BLCA, GBM, LGG,

and TGCT. Furthermore, TMED9 exhibits a significant positive

correlation with TNF Signaling via NF-kB and Epithelial-

Mesenchymal Transition (EMT) (Figure 4A). The KEGG

enrichment analysis of highly expressed genes within the TMED9

high-expression group suggested that TMED9 is associated with

various functions, particularly signaling molecules and their

interactions, as well as immune and cancer-related pathways

(Figure 4B). Additionally, proteomics-based pathway enrichment
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analysis demonstrated that the TMED9 high-expression group

exhibits heightened activity in apoptosis, cell cycle, and EMT

pathways across multiple tumors, with a particular emphasis on the

EMT pathway (Figure 4C). The Gene Set Variation Analysis (GSVA)

results revealed a significant positive correlation between TMED9

and the activities of EMT, invasion, and metastasis pathways in GBM,

LGG, and SARC (Figure 4D, Supplementary Figures 5C, D).
3.5 TMED9 is an independent prognostic
factor for glioma

ROC curves indicated that TMED9 may serve as a diagnostic

biomarker for specific cancers (Supplementary Figure 6). The

correlation between TMED9 and overall survival (OS), disease-

specific survival (DSS), progression-free interval (PFI), and disease-

free interval (DFI) was evaluated across 33 tumor types in the TCGA

database. A heatmap summarized the relationship between TMED9

and various survival intervals in all cancers, which was assessed using
FIGURE 3

(A) Correlation between TMED9 and immune regulatory factors in pan-cancer; (B) Correlation between TMED9 and immune subtypes in pan-
cancer; (C) Evaluation of the correlation between TMED9 and immune cell infiltration based on the xCELL algorithm; (D) Correlation between
TMED9 and inflammation-related gene set scores in pan-cancer. *p < 0.05, **p < 0.01, ***p < 0.001.
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the Unicox and Kaplan-Meier methods (Figure 5A). Univariate Cox

regression analysis demonstrated that high TMED9 expression was

significantly associated with poor OS in cervical squamous cell

carcinoma and endocervical adenocarcinoma (CESC), GBM,

HNSC, KIRC, LGG, and UVM. Elevated TMED9 expression was

also identified as a risk factor for poor DSS in GBM, HNSC, KIRC,

kidney renal papillary cell carcinoma (KIRP), LGG, and UVM, while

serving as a protective factor in ACC. For DFI, high TMED9

expression functioned as a protective factor in ACC. Regarding

PFI, high TMED9 expression acted as a risk factor in CHOL,

GBM, HNSC, KIRC, KIRP, and LGG, while remaining a protective

factor in ACC (Figure 5B). Kaplan-Meier curves were utilized to

evaluate these four prognostic outcomes (Supplementary Figures 7A–

T, Supplementary Figures 8A–Q). Furthermore, the results of

proteomics-based survival analysis revealed that high TMED9

expression posed a risk factor for BRCA, GBM, HNSC, KIRC,

LUSC, and pancreatic ductal adenocarcinoma (PDAC)

(Supplementary Figures 9A–F). Overall, these results suggest that

elevated TMED9 expression is generally associated with poorer

prognostic outcomes in patients with GBM, LGG, HNSC, and KIRC.

We concentrated on the clinical prognostic relationship between

TMED9 and glioma. In several additional glioma datasets, we
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observed a significant association between high TMED9 expression

and poor prognosis (Figure 5C, Supplementary Figures 10A–F). After

merging expression profiles and clinical data from GBM and LGG,

we found that high TMED9 expression correlated significantly with

shorter OS, DSS, and PFI in glioma patients (Figures 5D–G).

Moreover, we noted an elevated mortality rate in the top 25% of

patients with the highest TMED9 expression levels (Figure 5H).

Additionally, multivariate Cox analysis based on TCGA and

CGGA datasets indicated that TMED9 is an independent

prognostic factor for glioma (Figures 5I, J). Expression profile data

from multiple datasets confirmed the significant upregulation of

TMED9 in glioma (Figure 6A). Clinical correlation analysis

revealed that TMED9 was highly enriched in high-grade gliomas

and IDH wild-type gliomas within the TCGA database. Furthermore,

samples lacking 1p/19q co-deletion exhibited higher TMED9

expression. The aforementioned results were corroborated in the

CGGA database. In the TCGA database, TMED9 was highly

expressed in samples without MGMT promoter methylation. The

expression of TMED9 showed a similar trend in the CGGA database,

although this difference was not statistically significant (Figures 6B,

C). Overall, these findings indicate that TMED9 is significantly

overexpressed in gliomas with greater malignancy.
FIGURE 4

(A) Gene set enrichment analysis to evaluate the association between TMED9 and tumor-related pathways; (B) Pan-cancer KEGG functional
enrichment analysis; (C) Evaluation of pathway activity differences between TMED9 high and low groups based on TCPA database; (D) Pearson
correlation analysis between pan-cancer EMT signature score and TMED9.
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3.6 TMED9 is significantly associated with
glioma macrophages and immunotherapy

Single-cell analysis revealed that TMED9 is predominantly

expressed in the malignant cells and monocytes/macrophages of

gliomas (Figure 7A). The UMAP visualization and expression
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analysis of the Glioma_GSE162631 and Glioma_GSE148842

datasets confirmed the significant high expression of TMED9 in

both malignant cells and macrophages (Figures 7B, C). Spatial

transcriptome analysis indicated that in multiple normal glioma

sections, TMED9 was primarily expressed in CNS cells and

fibroblast microregions. Conversely, in various glioma sections,
FIGURE 5

(A) Evaluation of the prognostic value of TMED9 in pan-cancer using univariate Cox analysis and KM survival analysis; (B) Univariate Cox survival
analysis of four survival categories (OS, DSS, PFI, and DFI); (C) Forest plot showing the univariate Cox analysis results of TMED9 in the external glioma
dataset; (D) Univariate Cox survival analysis of four survival periods (OS, DSS, PFI and DFI) in glioma (GBMLGG); (E–G) Kaplan-Meier survival analysis
of three survival periods (OS, DSS, and PFI) in glioma (GBMLGG); (H) Chi-square test to evaluate the number of survival and death samples between
different TMED9 expression groups; (I) Evaluation of the potential of TMED9 as an independent prognostic factor for glioma based on TCGA dataset;
(J) Evaluation of the potential of TMED9 as an independent prognostic factor for glioma based on CGGA dataset.
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TMED9 showed dominant expression in tumor cells and

macrophage microregions (Figure 7D). Single-gene localization

analysis revealed that TMED9 expression is similar in tumor cells

and macrophages, suggesting that within the context of glioma,

TMED9 may primarily be expressed by these cell types (Figures 7E,

F). Correlation analysis further supported these localization

findings, demonstrating a significant positive correlation between

TMED9 expression levels and the abundance of tumor cells and

macrophages in the sampled regions (Figures 7G, H).

The analysis of immune cell infiltration across multiple glioma

datasets revealed that TMED9 exhibited a significant positive

correlation with macrophage infiltration, particularly pronounced

in LGG, as illustrated in Figure 8A. The activity of the cancer immune

cycle serves as a direct reflection of immune function. In GBM, we

observed that both cancer cell antigen release (step 1) and immune

cell trafficking to tumors (step 4)—including the recruitment of CD4
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T cells, Th22 cells, monocytes, neutrophils, and eosinophils—were

significantly upregulated in the high TMED9 expression group.

Conversely, T cell recognition of cancer cells (step 6) was

downregulated in this group. In LGG, a more pronounced

correlation between TMED9 and the cancer immune cycle was

observed. Specifically, within the high TMED9 group, cancer cell

antigen release (step 1), immune cell trafficking (step 4)—which

includes recruitment of CD8 T cells, Th1 cells, Th22 cells, monocytes,

natural killer (NK) cells, eosinophils, basophils, Th2 cells, and

regulatory T cells (Treg)—and T cell recognition of cancer cells

(step 6) were upregulated, while priming and activation (step 3) and

cancer cell killing (step 7) were downregulated, as shown in

Figure 8B. Furthermore, higher CYT scores, IFNg scores, T cell

inflammation scores, and TLS scores, alongside lower chemokine

scores, were observed in the high TMED9 group (Figures 8C–G). An

evaluation of the relationship between TMED9 expression and
FIGURE 6

(A) Additional datasets validated the significant high expression of TMED9 in glioma tumor samples; (B) Evaluation of the association between
TMED9 and clinical traits (Grade, IDH mutation, 1p/19q codeletion, and MGMT status) based on the TCGA dataset; (C) Evaluation of the association
between TMED9 and clinical traits (Grade, IDH mutation, 1p/19q codeletion, and MGMT status) based on the CGGA dataset.
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glioma immunotherapy indicated that TMED9 was more highly

expressed in the progressive disease group than in the partial or

complete response groups (Figure 8H). Notably, the TMED9 high

expression group exhibited a higher TIDE score, suggesting

diminished efficacy of ICB and reduced survival following ICB

treatment (Figure 8I). Additionally, we found that TMED9
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expression in the immunotherapy response group markedly

declined among patients receiving anti-PD1 treatment, with an

AUC value of 0.819 for TMED9 in predicting anti-PD1 treatment

outcomes (Figures 8J, K). Survival analysis revealed that, following

immunotherapy, both OS and progression-free survival (PFS) were

shorter in the high TMED9 expression group (Figures 8L, M).
FIGURE 7

(A) Single-cell analysis evaluates the expression level of TMED9 in different cells in glioma; (B, C) TMED9 was observed to be significantly
overexpressed in malignant cells and macrophages in the Glioma_GSE162631 and Glioma_GSE148842 datasets; (D) Expression of TMED9 gene in
each microdomain in spatial transcriptome sections of glioma; (E, F) Expression localization of TMED9 gene in spatial transcriptome sections
UKF334-T-ST and UKF269-T-ST; (G, H) Spearman correlation of TMED9 gene expression with each cell type in microdomains at idle resolution.
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3.7 Knockdown of TMED9 reduces glioma
cell migration and invasion

The GSEA analysis conducted on multiple glioma datasets

revealed a significant positive correlation between TMED9 and the

EMT pathway (Figure 9A; Supplementary Figures 11A–J).

Additionally, pathway enrichment analysis of proteomics data

further underscored this significant positive relationship (Figure 9B).

Transcriptomic data analysis demonstrated that TMED9 was

positively correlated with EMT-related genes, including VIM,

MMP2, and MMP14 (Figures 9C–E). Correlation analysis using

clinical proteomic tumor analysis consortium (CPTAC) proteomics
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data confirmed these findings (Figures 9F–H). To further investigate

the relationship between TMED9 and the EMT pathway, we

conducted cell experiments. In the glioma cell lines U-87MG and

U251, we transfected cells with four distinct siRNAs to knock down

TMED9 and performed RT-PCR and western blot analyses. The

results indicated that both mRNA and protein expression levels of

TMED9 in the transfected groups were significantly lower compared

to the control group (Figures 9I, J). Subsequently, we selected siRNA1

and siRNA3, which demonstrated higher knockdown efficiency, for

follow-up experiments. In the TMED9 knockdown group, significant

reductions in the expression levels of VIM, MMP2, and MMP14 were

observed (Figures 9K, L). Additionally, following TMED9
FIGURE 8

(A) Multi-algorithm calculation of Spearman correlation between TMED9 expression and immune infiltrating cells in glioma; (B) Evaluation of TIP
score differences between high and low TMED9 expression groups in glioma; (C-G) Differences in CYT score, IFNy score, T cell_inflamed score, TLS
score, and Chemokines score between high and low expression groups of TMED9 gene; (H) Difference in TMED9 expression in the first course of
treatment outcomes of LGG; (I) TIDE algorithm evaluates the correlation between TMED9 and glioma immunotherapy; (J) TMED9 expression was
lower in the immunotherapy response group; (K) ROC curve evaluation of TMED9’s predictive performance for immunotherapy efficacy; (L, M) The
group with low TMED9 expression in glioma has longer overall survival and progression free survival when receiving immunotherapy. *p < 0.05,
**p < 0.01, ***p < 0.001.
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knockdown, we noted inhibited migration and invasion capabilities in

U-87MG cells (Figures 9M–O), a finding that was corroborated in the

U251 cell line (Figures 9P–R).
3.8 TMED9 is associated with glioma tumor
stemness and drug sensitivity

Recent studies have demonstrated that glioma stem cells play a

critical role in glioma chemotherapy through a complex and

intertwined signaling network (49). Notably, TMED9 exhibited a

significant negative correlation with the tumor stemness score,

RNAss, in gliomas (Figure 10A). Analysis utilizing the OCLR

algorithm revealed that the TMED9 low-expression group had a
Frontiers in Immunology 14
higher stemness score (Figure 10B). These findings suggest that

increased expression of TMED9 may inhibit the stemness

characteristics of glioma cells, indicating that patients within the

TMED9 low-expression group may exhibit heightened resistance to

conventional anticancer treatments. Through an extensive literature

review, we compiled multiple datasets related to glioma

chemotherapy, which indicated significant differences in TMED9

expression when compared to a control group, including patients

receiving first-line glioma treatment drugs such as temozolomide,

disulfiram, and JQ1 (Figures 10C–F). Additionally, we estimated the

IC50 values for 198 compounds from the GDSC database for each

glioma patient and calculated the Pearson correlation coefficients

with TMED9. Among these, 68 drugs exhibited a positive

correlation with TMED9, whereas 99 drugs demonstrated a
FIGURE 9

(A) Hallmark gene set enrichment analysis of multiple glioma datasets; (B) Correlation of TMED9 expression in gliomas with pathway-level
quantification of functional proteins by TCPA-RPPA sequencing; (C–E) Evaluation of the correlation between TMED9 and EMT pathway-related
genes VIM, MMP2, and MMP14 based on mRNA expression profiles; (F–H) Evaluation of the correlation between TMED9 and EMT pathway-related
proteins VIM, MMP2, and MMP14 based on protein expression profile data; (I, J) Validation of TMED9 knockdown efficiency in U-87-MG and U251
cell lines using PCR and Western Blot assays; (K, L) Western Blot assay to evaluate the expression levels of EMT-related proteins after TMED9
knockdown in U-87-MG and U251 cell lines; (M–O) TMED9 knockdown reduces migration and invasion of the U-87-MG cell line; (P–R) TMED9
knockdown reduces migration and invasion of the U251 cell line. **p < 0.01, ***p < 0.001.
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negative correlation. A bar chart presenting the top 20 drugs with

the highest and lowest correlation coefficients is displayed in

Figure 10G. Notably, among the top 20 negatively correlated

drugs, ERK MAPK signaling inhibitors and PI3K/MTOR

signaling inhibitors were predominantly utilized (Figures 10H, I).
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Furthermore, using the cMAP database, we identified potential

small molecules and drugs (Figure 10J). Among these, the drug AH

6809 was recognized as a potential small molecule capable of

rectifying the biological effects induced by dysregulated TMED9

expression in gliomas (Figure 10K).
FIGURE 10

(A) Correlation between TMED9 and stemness score RNAss in glioma; (B) Correlation between TMED9 and stemness index mRNAsi in glioma; (C–F)
Difference in the expression of TMED9 between drug-treated and control groups in glioma; (G) Spearman correlation of TMED9 with IC50 of drugs
in the GDSC2 database. The correlation plot lists the top 20 drugs; (H) Target genes and pathways of the top 20 negatively correlated drugs; (I)
Multiple drugs targeting the PI3K/MTOR signaling pathway and the ERK MAPK signaling pathway are significantly negatively correlated with TMED9;
(J) In pan-cancer, the XSum algorithm is used to estimate potential small molecules and drugs that correct the biological effects caused by
dysregulated TMED9 expression (from the cMap database); (K) In glioma, AH 6809 may reverse the molecular features caused by dysregulated
TMED9 expression, thereby offsetting its mediated cancer-promoting effects. *p < 0.05, **p < 0.01, ***p < 0.001.
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4 Discussion

The accumulation of misfolded proteins within cells can lead to

severe human protein diseases (50). TMED9, a member of the p24/

emp24 domain-containing protein family, is involved in regulating

intracellular protein trafficking and secretory pathways. It plays a

crucial role in various cellular processes, including the vesicular

trafficking of proteins, the quality control and degradation of

misfolded proteins, and the biogenesis of autophagosomes (51).

TMED9 regulates the transport of substances between the

endoplasmic reticulum and the Golgi apparatus through

interactions with coat protein I (COPI) and COPII coat proteins

(52). During autophagy, TMED9 facilitates the formation of

autophagosomes via membrane contacts mediated by SEC12,

which is essential for cell survival under stress conditions (53).

Furthermore, TMED9 is involved in regulating viral infections and

immune responses, thus highlighting its multifunctionality and

significance in cell biology and disease (54). In cancer, the

overexpression of TMED9 correlates with the progression and

poor prognosis of several cancers, including ovarian cancer,

hepatocellular carcinoma, and breast cancer (8–10). Although the

role of TMED9 in specific cancer types has been extensively studied,

current research has predominantly focused on individual cancer

types, lacking a comprehensive perspective needed to evaluate the

expression patterns and functions of TMED9 across different cancer

types. This limitation restricts our understanding of the

mechanisms underlying TMED9’s role in pan-cancer and

underscores the necessity for macroscopic pan-cancer studies to

characterize the expression profile, genomic alterations, clinical

prognostic value, and immunological features of the TMED9 gene.

Through multi-omics data analysis, we elucidated the expression

landscape of TMED9 in pan-cancer. Our findings reveal significant

upregulation of TMED9 mRNA and protein levels across multiple

tumor tissues, consistent with prior research (55). The genetic

alteration characteristics of TMED9 in pan-cancer offer crucial

insights into its role in cancer pathology. Notably, TMED9

exhibited the highest mutation rate in KIRC, primarily due to

amplification mutations. This observation aligns with previous

genomic studies indicating that KIRC is often associated with

increased gene copy number, which promotes tumor development

(56). Different types of copy number variations have also been noted

in other cancer types, such as ACC, BLCA, LUSC, and TGCT, further

underscoring TMED9’s diverse role in various tumors. Additionally,

we found a significant positive correlation between TMED9 copy

number variations and its mRNA expression levels across almost all

cancer types. This finding supports the established molecular

mechanism in cancer, where increased expression of specific genes

facilitates cancer cell survival and proliferation, which also explains

the general upregulation of TMED9 during tumor progression. In our

methylation analysis, TMED9 exhibited lower methylation levels in

most tumors compared to normal tissues, with the exception of

READ. This observation may relate to the demethylation

phenomenon occurring in the tumor microenvironment, as the

selective demethylation of DNA is closely associated with many

cancers (57). Notably, in CHOL and UVM, TMED9 methylation

levels significantly correlated with prognosis, suggesting that
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methylation status may serve as an important biomarker for

predicting cancer outcomes. The positive correlation between

TMED9 and genomic scores in various cancers further highlights

its potential role in promoting chromosomal instability in tumor

cells. Previous studies have underscored the significant role of genetic

variation in tumorigenesis (58). Our eQTL-GWAS colocalization

analysis identified specific single nucleotide polymorphisms (SNPs)

of TMED9, such as rs6634 and rs34582406, which may share genetic

variation across multiple tumor types, thereby providing novel

genetic evidence for the tumor susceptibility associated with TMED9.

TMED9’s main roles in cells include regulating protein

transport, secretion pathways, and the movement of substances

between the endoplasmic reticulum and the Golgi apparatus. These

functions are likely closely linked to the polarization and activation

of immune cells. Therefore, we investigated the immunological

characteristics of TMED9 across various cancers. Correlation

analysis revealed a significant positive correlation between

TMED9 and numerous immunomodulators, particularly MHC

molecules. This suggests that the high expression of TMED9

confers advantages in antigen presentation and processing

capabilities. This finding aligns with previous studies that indicate

MHC molecules play a crucial role in the tumor immune response

by influencing T cell activation and tumor-specific immune

responses (59). Consequently, TMED9 may facilitate tumor

recognition and clearance by the immune system through

enhanced antigen presentation. The tumor microenvironment’s

various immune subtypes are closely associated with patient

prognosis. The TMED9 high expression group primarily

correlates with the C1 subtype (wound healing type) and the C2

subtype (IFN-g dominant type). In the tumor microenvironment,

macrophages can promote tumorigenesis while also participating in

anti-tumor immune responses. Immune cell infiltration analysis

indicated that TMED9 exhibited a significant positive correlation

with multiple immune cell types, particularly macrophages,

underscoring the close relationship between TMED9 and immune

regulation. TMED9 regulates secretory pathways (e.g., cytokine

release, and antigen presentation) via ER-Golgi transport. By

modulating MHC-I/II trafficking, it could influence macrophage

polarization (e.g., M1/M2 balance), and T-cell activation. The

interplay between pro-inflammatory and anti-inflammatory

response mechanisms in tumors is crucial for regulating immune

escape (60). TMED9 also demonstrates a significant positive

correlation with several inflammation-related scores in various

tumors, including GBM, LGG, SARC, and KIRC. These findings

further underscore the essential role of TMED9 in the tumor

immune microenvironment. Nevertheless, it is important to note

that our pan-cancer analysis is primarily based on correlation

analysis. Therefore, further mechanistic studies are needed to

validate and support our conclusions.

As one of the most prevalent malignant tumors in the central

nervous system, glioma has garnered significant research attention due

to its complex molecular characteristics and immune environment

(61). Given the notably high expression of TMED9 in glioma and its

impact on patient prognosis, we focused on analyzing the relationship

between TMED9 and glioma. Inmultiple glioma datasets, we observed

that high TMED9 expression was significantly associated with poor
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prognosis. Multivariate Cox analysis further identified TMED9 as an

independent prognostic factor for glioma, confirming its potential as a

prognostic marker. Single-cell transcriptome and spatial

transcriptomics analyses demonstrated that TMED9 was

significantly upregulated in malignant cells and macrophages within

glioma. This expression pattern suggests that TMED9 plays a crucial

role in the glioma immune microenvironment, particularly in the

interactions between tumor cells and immune cells. Additionally, we

found that patients in the TMED9 high-expression group had shorter

survival rates following immunotherapy and exhibited poorer

responses to ICB. This result underscores that TMED9 may

influence the efficacy of immunotherapy by modulating the tumor

immune environment and its cellular infiltration characteristics.

Functional enrichment analysis highlighted the correlation between

TMED9 and glioma cell migration and invasion. Knocking down

TMED9 in glioma cell lines significantly reduced the migration and

invasion abilities of these cells, indicating that TMED9 may promote

the biological characteristics of glioma. However, the current

association between TMED9 and EMT is primarily based on

correlational data and partial protein knockdown experiments.

Rescue experiments, which would involve reintroducing TMED9

and assessing the expression of relevant EMT markers, have not yet

been conducted. Notably, high TMED9 expression was significantly

negatively correlated with the stemness score of glioma, suggesting

that TMED9 may contribute to chemotherapy resistance in glioma by

inhibiting tumor stem cell properties. This finding holds important

clinical implications. Further drug sensitivity analysis revealed a strong

association between TMED9 and chemotherapeutic drugs, including

inhibitors of the ERK MAPK and PI3K/mTOR signaling pathways.

However, additional laboratory or clinical validation is required to

confirm the synergistic or antagonistic effects of these drugs.

In summary, our study provides new evidence supporting the

potential of TMED9 as a cancer biomarker through a systematic

analysis of its expression characteristics, genetic alterations, and

biological functions in pan-cancer contexts. We also emphasize the

significance of TMED9 findings in glioma research, showing that it

not only promotes the invasiveness and migration of glioma cells but

also impacts tumor responses to immunotherapy by modulating the

immunemicroenvironment. Future studies should further investigate

the specific mechanisms by which TMED9 operates in glioma.

Concurrently, clinical trials to validate TMED9 as a therapeutic

target may enhance glioma treatment efficacy. These efforts are

crucial for improving patient prognosis and facilitating the

development of new treatment models. We anticipate further

discoveries regarding TMED9 in glioma research that will provide

valuable insights for clinical applications.
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