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Chimeric antigen receptor (CAR)-modified cell therapy products approved for

clinical treatment of hematological malignancies have hitherto been based on T

cells. NK cells represent a promising immune cell type that can be considered for

CAR engineering due to their potential to be generated as off-the-shelf

allogeneic cellular therapy. Viral transduction of NK cells with CARs has been

fraught with challenges of long process time and poor CAR transduction

efficiency. Here, we describe the development of an optimized protocol for

electroporation-based delivery of CAR mRNA into NK cells expanded from

human peripheral blood mononuclear cells in the presence of co-stimulating

feeder cells. This enabled rapid assessment of the functional capacity of NK cells

transiently expressing various CARs to kill liquid and solid tumor cells in vitro.

Ultimately, we anticipate that such an approach will enable selection of CAR

candidates for their subsequent clinical applicability and manufacturability.
KEYWORDS
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Introduction

Natural killer (NK) cells, being part of the innate immune system,

are a highly promising cell type for tumor immunotherapy due to

their potential to be generated as an off-the-shelf allogeneic product

(1, 2). NK cells can target infected or transformed host cells directly

via release of perforin and granzymes and also indirectly through

secretion of various cytokines and chemokines that recruit adaptive

immune cells (3). Their HLA-independent intrinsic killing capability

and alloreactivity against malignant cells are conferred by an array of

endogenous activating receptors such as NKG2D and inhibitory

receptors such as killer-cell immunoglobulin-like receptors (KIRs)

(3). To date, clinical trials have demonstrated that infusing NK cells

into tumor patients are safe as they presented with almost no

incidence of graft-versus-host disease (GvHD), cytokine release

syndrome and neurotoxicity (4–7). Although the endogenous

activating receptors can serve to elicit its innate cytotoxic effects,

introduction of CARs into NK cells can enhance their antigen-

specific anti-tumor cytotoxicity and persistence. At present, six

CAR-T cell therapy products have been clinically approved and

prescribed for autologous use, while the safety and potency of

CAR-NK cells are still being evaluated in multiple clinical trials (8).

Typically, CAR transgenes are packaged into lentiviruses or

retroviruses which are transduced into NK cells, resulting in stable

and long lasting CAR expression in the cells (9). However, this

method is time consuming and results in low and variable frequency

of CAR-modified NK cells, which reduces its effectiveness in

screening for CARs that enhance the anti-tumor function of NK

cells. CAR DNA plasmids or CRISPR-Cas9 ribonucleoprotein

complexes (RNPs) encompassing CAR DNA templates have also

been introduced into NK cells via non-viral transfection (10, 11). In

particular, electroporation of primary T cells with DNA plasmids

have been shown to adversely affect cell viability (12), while similar

delivery of CRISPR-Cas9 RNPs incurs substantially higher cost and

likelihood of undesirable off-target genome editing.

In this study, we developed a protocol that would enable rapid,

comparative evaluation of CARs to mediate tumor-killing efficacies

in NK cells. We report an optimized process in which mature NK

cells from peripheral blood are expanded using feeder cells and

subsequently subjected to nucleofection with in vitro transcribed

CAR mRNAs in place of DNAs. This not only generated

substantially high frequency of CAR+ NK cells but also alleviated

death typically observed after electroporation of NK cells. CAR

expression, albeit transient, lasted for sufficient duration in NK cells

to allow high-performing CARs to be robustly distinguished from

low-performing candidate CARs in a high throughput manner.
Materials and methods

Cell culture

Suspension tumor cell lines (HL-60, MOLM14, U937, MV4;11

and K562) were cultured in complete RPMI medium (cRPMI,

Nacalai Tesque #30264-56) supplemented with 10% fetal bovine
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serum (FBS, Hyclone SV30160.03). PC-9 cells were cultured in

cRPMI medium (Gibco #11875-093) supplemented with 10% FBS

and 2mM L-glutamine (Gibco #25030-081). SKOV3 cells were

cultured in DMEM (high glucose, Gibco, #11960-044) and

DMEM (low glucose, Gibco, #11885-084) at a 1:1 ratio, and

supplemented with 10% FBS. All cells were maintained in

humidified 37°C incubator with 5% CO2.
Feeder cell-based NK cell expansion

NK cells were expanded from human peripheral blood

mononuclear cells (PBMCs, STEMCELL Technologies) as

described previously (13). Briefly, cells were thawed in a 37°C

water bath and washed twice in pre-warmed complete Biotarget™

medium (cBiotarget, Biological Industries, Sartorius #05-080-1A)

supplemented with 10% FBS (Hyclone SV30160.03), 100 unit/ml

penicillin, 100 mg/ml of streptomycin (Sartorius #03-031-1B) and 4

mM L-glutamine (Gibco #25030-081). Cell viability and density were

determined using 0.2% w/v Trypan blue solution (Sigma #T6146) in

phosphate-buffered saline (PBS). Retrieved PBMCs were then co-

cultured with 100-Gy irradiated K562 feeder cells engineered to

express membrane-bound (mb) IL-15, mbIL-21 and 4-1BB ligand

(13) at a ratio of 1:2 in cBiotarget medium supplemented with 10 IU/

ml human IL-2 (Peprotech #200-02-1000 or #200-02-500). Cell

cultures were maintained every two days by replenishing 50% of

the cBiotarget medium supplemented with 10 IU/ml IL-2. On day 7

or day 8, CD3+ T cells were depleted from the culture using CD3

microbeads (Miltenyi Biotech #130-050-101) and LS column

(Miltenyi Biotech #130-042-401) following manufacturer’s

instructions. The remaining CD3- NK cells were cultured at a

density of 2 × 106 cells/ml in cBiotarget medium supplemented

with 50 IU/ml IL-2 and 10 ng/ml IL-15 (STEMCELL Technologies

#78031.2) until the day of electroporation.
Activation of T cells

PBMCs (STEMCELL Technologies) were similarly thawed as

described above in cRPMI media (Gibco #11875-093) and activated

in the presence of bead-bound anti-CD3 and anti-CD28 antibodies

(Gibco #11132D), 20 U/ml recombinant human IL-7 (Miltenyi

Biotec #130-095-362), 10 U/ml recombinant human IL-15

(Miltenyi Biotec #130-095-764) and 0.04 U/ml recombinant

human IL-21 (Miltenyi Biotec #130-095-769) for 3 days.

Electroporation was carried out on day 3.
Flow cytometry

Prior to antibody (Ab) staining, all cells were treated with Human

TruStain FcX (Fc receptor blocking solution; BioLegend #422302).

Surface markers of expanded NK cells were analyzed by staining with

LAG3-FITC (#11-2239-42) and CD96-PE (#12-0969-42) from

eBiosciences, CD3-APC-Cy7 (#300426), CD16-PerCP-Cy5.5
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(#302028), CD226/DNAM-1-FITC (#338303), TIGIT-PE-Cy7

(#372713), NKG2D-BV711 (#563688), TIM3-PE-Cy7 (#345013)

and CD57-PerCP-Cy5.5 (#359621) from Biolegend, CD56-BV510

(#563041), NKG2A-BV510 (#747922), NKG2C-BV650 (#748165)

and PD-1-PerCP-Cy5.5 (#561273) from BD Biosciences, and

KLRG1-FITC (#130-103-705) from Miltenyi Biotec. CAR expression

in nucleofected NK cells was either reported by the percentage (%) of

eGFP+ as surrogate marker for CAR or detected by staining with

recombinant biotinylated protein L (ACROBiosystems #RPL-P814R)

followed by PE-conjugated streptavidin (eBioscience #12-4317-87).

4’,6-diamidino-2-phenylindole dihydrochloride (DAPI; Biolegend

#422801) or Hoechst 33342 (Invitrogen #H3570) solution were used

to exclude dead cells. Samples (at least 2 × 104 events) were acquired

on MACSQuant X (Miltenyi Biotech) or BD LSR II (BD Biosciences)

to assess expression. Data was analyzed with FlowJo

software (TreeStar).
In vitro transcription (IVT) of CAR
constructs

The different CAR constructs were cloned into pcDNA3.1(+)

backbone vector (GenScript). 2 mg DNA template was linearized by

overnight restriction enzyme digestion with XbaI. The linearized

template was then purified using phenol/chloroform method, and

reconstituted in 5 ml of water. The purified template was used for in

vitro transcription using the HiScribe T7 ARCA mRNA kit (with

tailing) (NEB #E2060S), following the manufacturer’s protocol. The

mRNA quality was assessed by running denatured RNA samples on

a 1% agarose gel containing 0.5% bleach at 80 V for 90 min. The

mRNA concentration was measured by Nanodrop and the

respective CAR mRNA molar concentration was calculated.

Single-use aliquots of 66 nmol were stored at -80°C before use.
Generation of CAR-NK cells

To generate CAR-NK cells following expansion, IVT CAR

mRNA was introduced into NK cells via electroporation using P3

Primary cell 4D-Nucleofactor X Kit (Lonza #V4XP-3032 or #V4XP-

3024) and program CM-137 in 4D-Nucleofector X Unit (Lonza).

Electroporated cells were then expanded in cBiotarget media in the

presence of 500 IU/ml IL-2 and 20 ng/ml IL-15 for 24 h. Where T

cells were used as positive control, the nucleofection program EO-115

was used and cells were returned to cRPMI media in the presence of

20 U/ml recombinant human IL-7, 10 U/ml recombinant human IL-

15 and 0.04 U/ml recombinant human IL-21.
In vitro cytotoxicity assay using luciferase-
based method

NK cells were co-cultured with a fixed number (1.125 × 104) of

luciferase-expressing HL-60 cells at effector cell: target cell (E:T)

ratios ranging from 1:1 to 10:1 in 96-well plate for 16-20 h.
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Surviving tumor cells were assessed for associated luciferase

activity employing the Bright-Glo Luciferase Assay System

(Promega #E2620) conducted essentially according to the

manufacturer’s protocol. 75 ml of culture medium was mixed with

75 ml of the prepared luciferase reagent in each well and the plates

were shaken for 5 min to allow complete lysis of cells. Luminescence

of the lysed mixture was measured using the Synergy HTX Multi-

Mode Microplate Reader (BioTek). Percentage (%) cytotoxicity was

calculated as: Dluc [luc (no CAR-NK) - luc (CAR-NK)]/luc (no

CAR-NK) × 100%, where luc represents absolute luciferase units.
In vitro cytotoxicity assay using xCELLigence
platform

For experiments using adherent target cells, PC-9 and SKOV3,

tumor cell growth was monitored in real-time using the

xCELLigence platform (Agilent). 5 × 103 target cells in 100 ml
were seeded into each well in an E-plate 96 (Agilent # 5232376001)

and co-cultured with NK cells at E:T ratios ranging from 1:1 to 10:1

at 37˚C.
Statistical analyses

Differences in numerical values between samples used in in vitro

cytotoxicity assays were compared by multiple unpaired student’s t-

test (for parametric data sets with 2 groups) or by two-way ANOVA

with the Tukey post hoc analysis (for parametric data sets with 4

groups) using Prism GraphPad Software (version 8). In all tests, a

value of p < 0.05 for a given comparison was regarded as

statistically significant.
Results

NK cells were expanded from
cryopreserved PBMCs

NK cells from cryopreserved PBMCs were expanded using a

feeder-based system, employing irradiated K562 cells which have

been engineered to express membrane-bound (mb) IL-15, mbIL-21

and 4-1BB ligand (13). PBMCs were co-cultured with feeder cells at

1:2 ratio on day 0 (Figure 1A). Over a period of 14 days, CD56+

CD3- NK cells expanded at least 10,000-fold in the culture

(Figure 1B). In contrast, feeder-free expansion protocol generated

approximately 2,000-fold expansion after 28 days (10). CD3+ T cells

which is the other major cell type were depleted from the culture at

least one day before mRNA nucleofection by magnetic separation

using CD3 microbeads. Flow cytometry analysis confirmed at least

70% depletion efficiency and >90% CD56hi/+ CD3- NK cell purity

after depletion (Figure 1C). A majority of the remaining NK cells

expressed NK cell activation markers (NKG2D, CD16 and CD226/

DNAM-1), immune checkpoint molecules (TIGIT, CD96),

maturation marker Tim-3, but not terminal differentiation
frontiersin.org
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markers (KLRG-1 and CD57) nor exhaustion markers (PD-1 and

LAG-3) (Figure 1D). Of note, about 15% of expanded NK cells were

positive for another NK cell activation maker, NKG2C, which

marks the adaptive-like NK cells during infection with human
Frontiers in Immunology 04
cytomegalovirus (14). Expression of NK cell inhibitory receptor

NKG2A was negligible (Figure 1D). These data clearly reinforce the

efficacy of feeder cel l-based NK cell expansion from

peripheral blood.
FIGURE 1

NK cells are expanded from cryopreserved PBMCs. (A) Schematic diagram showing timeline of NK cell expansion and CD3+ T cell depletion.
(B) Proportions of CD3- CD56+ NK and CD3+ CD56- T cells gated on DAPI- viable cells at various culture time points as assessed by flow cytometry
(left). Fold expansion of CD3- CD56+ NK cells at indicated time points relative to day 0 with each graph representing a different donor (right).
(C) Proportions of CD3- CD56+ NK cells gated on DAPI- viable cells before and after CD3+ T cell depletion (left) as assessed by flow cytometry.
Percentage (%) of CD3+ cell depletion, calculated as: [(total CD3+ cells before depletion – total CD3+ cells after depletion)/total CD3+ cell before
depletion] x 100%, and % purity of CD3- CD56+ NK cells (right). (D) % of cells expressing various cell surface molecules in DAPI- viable cells after
CD3+ cell depletion as assessed by flow cytometry. Light gray histograms depict fluorescence minus one controls which were used for gating. Data
shown are representative of at least three independent healthy donors.
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An optimized nucleofection condition was
required for the introduction of CAR mRNA
into NK cells

As there was no precedence from previous literature reporting

Lonza nucleofection conditions optimized specifically to

electroporate mRNA into NK cells, we decided to test several

conditions defined by varying nucleofection programs and cell

densities. For these experiments, we used an in-house designed

CAR construct, SLAM01-28z-IRES-eGFP, that carries an eGFP

surrogate marker. We carried out two rounds of optimization,

showing results representative of the latest round (Figure 2,

Supplementary Figure S1). In each experiment, T cells were also

electroporated with its respective optimized program, EO-115, to

serve as positive control (Figures 2A, B, last column of each panel

and Supplementary Figure S1B). Three programs, FA-100, EK-100

and EN-138 resulted in extremely poor viability of NK cells at both

6 h and 24 h post-electroporation (Figures 2A, B, top panel,

columns 3-5). NK cells electroporated with three other programs,

DN-100, CM-137 and CM-158, yielded higher viability, of which

CM-137 achieved the highest, yielding more than 60% viable cells at

both 6 h and 24 h time points (Figures 2A, B, top panel, columns 1,

2 and 6). Moreover, CM-137 was superior in producing the highest

frequency of eGFP+ within viable and consequently, total cells

(Figures 2A, B, second and third panels, column 2). In summary,

visualization of our data via scatter plots correlating % viability with

% eGFP expression identified optimal nucleofection conditions

concurrently maximizing viability of and eGFP expression in NK

cells, revealing the superior performance of CM-137 program

compared with others we tested (Figures 2A, B, bottom panels).

Because we found CM-137 condition to yield high eGFP

expression in and yet preserve viability of NK cells during the

first round of experimental optimization (data not shown), we

tested two different cell densities, namely 0.5 × 106 and 1 × 106

cells, on the effect of CM-137 in separate 20 ml nucleocuvettes.
There were no significant differences with either cell density, albeit

% eGFP expression slightly increased in cells seeded at higher

density (Figures 2A, B, first, second and third panels, compare

columns 2 and 7). Therefore, we conclude that the optimized

condition for mRNA nucleofection into human NK cells is CM-

137 program with 1 × 106 cells per 20 ml nucleocuvette (or

correspondingly, 5 × 106 cells per 100 ml nucleocuvette) followed
by a 24-hour resting period before subsequent assays were

carried out.
Optimized nucleofection condition is
validated using 2448-28z and My96-28z
CARs

Following identification of the nucleofection program CM-137

for introducing CAR mRNA into NK cells, we further validated our

optimized protocol using two, namely 2448-28z and My96-28z,

CARs (Figure 3A). 2448-28z CAR bearing the single chain variable

fragment (scFv) of an antibody (Ab) discovered by our lab targets
Frontiers in Immunology 05
the Annexin A2 antigen on tumor cells (15). Consistently, 2448-28z

CAR-T cells killed annexin A2-expressing SKOV3 ovarian tumor

cells to greater extent than non-CAR counterparts (16). My96-28z

CAR was engineered using a publicly available scFv sequence based

on an anti-CD33 Ab (17) and cloned into MSGV retroviral vector.

When transduced into T cells, My96-28z CAR-T cells exhibited

significantly enhanced cytotoxicity compared with mock-

transduced non-CAR T cells against CD33-expressing tumor cell

lines co-cultured for 48 h (Supplementary Figure S2). Thus,

demonstration of proof-of-concept anti-tumor activity in T cells

motivated their use in NK cells.

After 24 h post-electroporation of NK cells, the transfection

efficiency of each CAR was verified against the non-CAR controls

(Figure 3B) before in vitro co-cultures were initiated for the

cytotoxicity assays. 2448-28z CAR-NK cells were observed to

have better anti-tumor cytotoxic capacity compared to their non-

CAR counterparts at E:T 1:1 and E:T 2:1 against SKOV3 ovarian

cancer cells (Figure 3C, top panels and data not shown). However,

there were no obvious differences at higher E:T ratios, presumably

due to the overriding intrinsic cytotoxic functions of NK cells

(Figure 3C, bottom panels). These observations were consistent

across 4 different donors which we tested. Similarly, My96-28z NK

cells derived from 2 different PBMC donors were more proficient

than non-CAR NK cells at killing HL-60 acute myeloid leukemia

(AML) cells (Figure 3D), although this was not evident in another

AML cell line, MV4;11 (data not shown). Interestingly, the addition

of NK (Figure 3D) or T cells (Supplementary Figure S2) to target

tumor cells at lower E:T led to an initial expansion of tumor cells

which has not been reported before. Although we are unable to

explain this phenomenon observed in suspension but not adherent

tumor cells, we observed that NK cells nonetheless killed tumor cells

at higher E:T ratios although this differed greatly among NK cells

derived from different PBMC donors. Of note, experimental results

were obtained using different PBMC donors which demonstrated

the robustness of our methodology.
Optimized nucleofection condition is ideal
for screening candidate CARs

We then proceeded to further assess three SLAM01-28z CAR

candidates bearing short, intermediate and long spacer lengths for

capacity to direct killing of tumor cells (Figure 4A). All three CARs

recognize the Lewis X type glycan on SLAMF7 antigen expressed on

target cells, e.g. HL-60 and PC-9 (Supplementary Figure S3). As

before, we ensured that the CAR is adequately expressed in NK cells

before carrying out the in vitro cytotoxicity assay (Figure 4B). This

screening showed that SLAM01-28z (L) CAR-NK cells was not

more effective than mock-transfected NK cells in killing both HL-60

(Figure 4C) and PC-9 (Figure 4D) as no significant difference in

anti-tumor cytotoxicity was observed between SLAM01-28z (L) and

non-CAR NK cells at all E:T ratios tested. Despite all three CARs

being expressed at similar frequencies in NK cells (Figure 5A), NK

cells carrying either S, I or L variant of SLAM01-28z CAR exhibited

similar cytotoxicity against HL-60 cells compared with non-CAR
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NK cells (Figure 5B). Our proof-of-concept screening suggested

that SLAM01-28z, though efficacious as an Ab-drug conjugate (data

not shown) should not be pursued further as a CAR. Together, the

results in Figures 3-5 showed that NK cells transfected with different

CARs exhibited different levels of cytotoxicity against target cells
Frontiers in Immunology 06
which are significantly or negligibly different from that of non-CAR

counterparts. Hence, it is likely that the varying anti-tumor

cytotoxicity levels observed are attributed to the CAR per se and

not the nucleofection process, suggesting that our workflow of rapid

nucleofection is a feasible strategy for transient CAR transgene
FIGURE 2

CM-137 is the optimal program for nucleofection of CAR mRNA into NK cells. (A, B) NK cells were electroporated using various Lonza nucleofector
programs. % viability of (top row panels) and % eGFP within viable (second row panel) and total (third row panel) cells were assessed at 6 h (A) and
24 h (B) post-electroporation. Data were summarized in scatter plots to identify the most optimal nucleofection conditions concurrently maximizing
viability of and eGFP expression in NK cells (bottom panels). Data shown are representative of 2 independent experiments.
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FIGURE 3

2448-28z and My96-28z CAR enhances anti-tumor cytotoxicity of NK cells. (A) Schematic diagram of 2448-28z and My96-28z CAR constructs
cloned into pcDNA3.1(+) vector. (B) % eGFP as surrogate marker for 2448-28z CAR as assessed by flow cytometry (left) or % My96-28z CAR as
assessed by Protein L staining followed by flow cytometry (right) in viable NK cells 24 h post-electroporation. (C) Cell index response curves of
SKOV-3 co-cultured with 2448-28z CAR-NK cells in the xCELLigence system. (D) % cytotoxicity (calculated as described in Materials and Methods)
of My96-28z NK cells against luciferase-expressing HL-60 cells 20 h following their co-incubation with NK cells derived from two different PBMC
donors at the indicated E:T ratios. Data shown in (C, D) are the mean ± SD of technical triplicates of NK and tumor cell co-culture; multiple unpaired
student’s t-tests, *, p < 0.05; **, p < 0.005; ****, p < 0.0001.
Frontiers in Immunology frontiersin.org07
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FIGURE 4

SLAM01-28z (long, L) CAR-NK cells exhibited anti-tumor cytotoxicity similar to that of non-CAR counterparts. (A) Schematic diagram of SLAM01-28z
CAR constructs, with varying spacer lengths, cloned into pcDNA3.1(+) vector. (B) % eGFP+ in viable NK cells 24 h post-electroporation as assessed
by flow cytometry. (C) % cytotoxicity (calculated as described in Materials and Methods) of SLAM01-28z (L) CAR-NK cells against luciferase-
expressing HL-60 cells co-incubated at indicated E:T ratios for 20 (h). (D) Cell index response curves of PC-9 co-cultured with SLAM01-28z (L)
CAR-NK cells in the xCELLigence system. Data shown in (C, D) are the mean ± SD of technical triplicates of NK and tumor cell co-culture; multiple
unpaired student’s t-tests.
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expression in NK cells to prioritize best and deprioritize worst

performing CAR candidates.
Discussion

NK cells with high fitness are successfully
and reproducibly generated with our
protocol

As a first step toward applying NK cells for immunotherapy, we

derived a workflow that successfully and reproducibly generates NK
Frontiers in Immunology 09
cells with high numbers and high viability (Figure 1). Achieving

viable cells is an important part of successful electroporation/

transfection, as we have observed on rare occasions that NK cells

having viability of lower than 50% do not express high levels of CAR

(data not shown). Being able to generate high numbers of NK cells

is also crucial for translation of our transfection workflow to

clinical applications.

In our approach, we used irradiated and engineered K562 feeder

cells for NK cell expansion. While non-feeder-based approaches

have been tested, using feeder cells resulted in more robust and cost-

effective expansion in our hands. Although the use of K562 chronic

myeloid leukemia cells may pose a safety risk, the cells are irradiated
FIGURE 5

NK cells expressing SLAM01-28z CAR with varying spacer lengths have comparable anti-tumor cytotoxicity. (A) % eGFP+ in viable NK cells 24 h post-
electroporation. (B) % cytotoxicity (calculated as described in Materials and Methods) of SLAM01-28z (S, I, L) CAR-NK cells against luciferase-
expressing HL-60 cells co-incubated at indicated E:T ratios for 20 (h). (C) Schematic diagram showing our optimized workflow that can be adopted
for future screening of CAR candidates in NK cells. Data shown in (B) are the mean ± SD of technical triplicates of NK and tumor cell co-culture;
multiple unpaired student’s t-tests, *, p < 0.05.
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at a high dosage of 100 Gy which sufficiently mitigates this risk.

Moreover, final clinical NK products will be assessed for their

critical quality attributes (CQAs) including being free of

contamination from feeder cells prior to infusion.
An optimized protocol for mRNA
nucleofection into human NK cells can be
used for screening CAR candidates

As Lonza’s nucleofector has not been reported to be used for

CAR mRNA transfection into NK cells prior to our work, we

embarked on this study to determine the most optimal program to

be used for this purpose. In this study, we concluded that CM-137 is

the most ideal program to be used to transfect NK cells, and that

varying cell density between 0.5-1 × 106 NK cells in 20 ml
nucleocuvettes do not significantly alter the transfection efficiency

(Figure 2). Subsequently, the same conditions encompassing the

nucleofection program can be implemented on the Lonza platform

for the purpose of clinical translation.

We applied the optimized program to test CARs containing

three distinct scFv (Figures 3A, 4A). The first two 2448-28z and

My96-28z CARs we tested validated the robustness of our

optimized protocol. Consistent with our previous work showing T

cells harboring these CARs specifically lysed CAR antigen-

expressing tumor cells, NK cells bearing the same CARs killed

their respective target cells more efficiently than their non-CAR

counterparts (Figure 3).

In this paper, we also described a phenomenon which, to our

knowledge, has not been documented in the literature. The co-

cultures of immune (NK or T) cells with suspension tumor cells

consistently resulted in stimulation of expansion of the tumor

cells. The killing effect by the immune cells overcome the

stimulatory effects at higher E:T ratios. To provide a definitive

mechanistic explanation of this observation is beyond the scope

of this paper, but we propose that investigation of the molecular

mechanism underlying the stimulatory versus cytotoxic effects

of immune cells against suspension such as HL-60 AML tumor

cells will be useful for further cytotoxicity studies of

immune cells.

When we examined CAR candidates of interest, SLAM01-28z

CAR variants bearing different spacer lengths directed similar

tumor killing efficacy in NK cells (Figures 4, 5). This is contrary

to previous observations that SLAM01 functioned effectively as an

Ab-drug conjugate. Nevertheless, we assert that our strategy is

useful to continue screening CAR candidates for further pursuit

toward clinical translation. The development time for optimizing

CAR constructs is now 4 days with mRNA nucleofection instead of

2 weeks with retroviral transduction (Figure 5C). Upon

identification of a potential CAR, we will adapt the CAR into a

lentiviral or retroviral backbone which will be used for stable

transduction of CAR into NK cells for further verification studies,

such as preclinical in vivo assays. We have successfully utilized such

a workflow for CAR-T cells (16), and aim to demonstrate that this is

applicable to CAR-NK cells as the subject of future investigation.
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