Skip to main content

ORIGINAL RESEARCH article

Front. Immunol.

Sec. Cancer Immunity and Immunotherapy

Volume 16 - 2025 | doi: 10.3389/fimmu.2025.1557165

This article is part of the Research Topic Integrating Molecular Mechanisms, Immunotherapy, and Drug Sensitivity in Cancer Immunology and Oncology View all 21 articles

A High Content Clonogenic Survival Drug Screening Identifies Maytansine As a Potent Radiosensitizer For Meningiomas

Provisionally accepted
  • 1 Huashan Hospital, Fudan University, Shanghai, China
  • 2 Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, Shanghai Municipality, China
  • 3 Institute of Radiation Medicine, Fudan University, Shanghai, Shanghai Municipality, China

The final, formatted version of the article will be published soon.

    Radiation resistance significantly hinders the efficacy of radiotherapy for meningiomas, posing a primary obstacle. The clinical inadequacy of therapeutic drugs and radiosensitizers for treating meningiomas further exacerbates the challenge. Therefore, the aim of this study was to identify potential radiosensitizers for treating meningiomas.Methods: A high content clonogenic survival drug screening was employed to evaluate 166 FDA-approved compounds across varied concentration ranges. Cell viability, apoptosis, and radiosensitization were assessed using CCK-8 assays, Annexin V-FITC/PI assays and standard colony formation assays. Transcriptome sequencing, immunofluorescence and cell cycle experiments were conducted to assess transcriptional profile, DNA double-strand break damage and cell cycle distribution. Finally, the radiosensitizing effect of Maytansine was assessed in vivo through subcutaneous tumor implantation in nude mice.The proportion of maytansine exhibiting SRF≥1.5 within the detectable concentration range was 100%. CCK-8 assay indicated the IC50 values of maytansine for IOMM-Lee and CH157 were 0.26±0.06 nM and 0.31±0.01 nM, respectively. Standard clonogenic survival assays and Annexin V-FITC/PI assays revealed maytansine had a notable radiosensitizing effect on meningioma cells. Transcriptome sequencing analysis demonstrated that maytansine can modulate cell cycle and DNA damage repair. Immunofluorescence analysis of γ-H2AX and cell cycle experiments demonstrated that Maytansine enhances DNA double-strand breaks and induces G2/M phase arrest. Moreover, in vivo studies had indicated that Maytansine augments the therapeutic efficacy of radiotherapy.This study highlighted the potential of maytansine as a potent inhibitor and radiosensitizer for meningiomas by inducing G2/M phase cell cycle arrest and enhancing DNA double-strand break damage. These findings opened up a promising path in the development of radiosensitizers aimed at treating this condition.

    Keywords: Meningioma, radiosensitivity, Radiotherapy, high content clonogenic survival drug screening, Maytansin

    Received: 08 Jan 2025; Accepted: 28 Feb 2025.

    Copyright: © 2025 Yu, Deng, Ren, Hua, Wu, Hui, Shao and Gong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Jinxiu Yu, Huashan Hospital, Fudan University, Shanghai, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    94% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more