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Identification of prognostic
subtypes and the role of FXYD6
in ovarian cancer through multi-
omics clustering
Boyi Ma †, Chenlu Ren †, Yun Gong †, Jia Xi , Yuan Shi,
Shuhua Zhao*, Yadong Yin* and Hong Yang*

Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University,
Shaanxi, China
Background: Ovarian cancer (OC), as a malignant tumor that seriously

endangers the lives and health of women, is renowned for its complex tumor

heterogeneity. Multi-omics analysis, as an effective method for distinguishing

tumor heterogeneity, can more accurately differentiate the prognostic subtypes

with differences among patients with OC. The aim of this study is to explore the

prognostic subtypes of OC and analyze the molecular characteristics among the

different subtypes.

Methods:We utilized 10 clustering algorithms to analyze the multi-omics data of

OC patients from The Cancer Genome Atlas (TCGA). After that, we integrated

them with ten different machine-learning methods in order to determine high-

resolution molecular subgroups and generate machine-learning-driven

characteristics that are both resilient and consensus-based. Following the

application of multi-omics clustering, we were able to identify two cancer

subtypes (CSs) that were associated with the prognosis. Among these, CS2

demonstrated the most positive predictive outcome. Subsequently, five genes

that constitute the machine learning (ML)-driven features were screened out by

ML algorithms, and these genes possess a powerful predictive ability for

prognosis. Subsequently, the function of FXYD Domain-Containing Ion

Transport Regulator 6 (FXYD6) in OC was analyzed through gene knockdown

and overexpression, and the mechanism by which it affects the functions of OC

was explored.

Results: Through multi-omics analysis, we ascertained that the high-risk score

group exhibits a poorer prognosis and lack of response to immunotherapy.

Moreover, this group is more prone to display the “cold tumor” phenotype, with a

lower likelihood of benefiting from immunotherapy. FXYD6, being a crucial

differential molecule between subtypes, exerts a tumor-promoting effect when

knocked down; conversely, its overexpression yields an opposite outcome.

Additionally, we discovered that the overexpression of FXYD6 can induce

ferroptosis in OC cells, implying that a low level of FXYD6 in OC cells can

safeguard them from ferroptosis. Insightful and more precise molecular
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categorization of OC can be achieved with a thorough examination of multi-

omics data. There are significant consequences for clinical practice stemming

from the discovery of risk scores since they provide a useful tool for early

prognosis prediction as well as the screening of candidates for immunotherapy.
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1 Introduction

From a global perspective, ovarian cancer (OC) is the leading

cause of cancer-related deaths among women and the eighth most

prevalent malignancy overall among all cancers in women (1, 2).

Endometrial cancer (3), chronic myeloid leukemia (4), ER (+) or

Her2 (+) breast cancer (5), and EGFR-mutated lung cancer (6) have

all reported successful use of molecularly targeted therapies based

on the molecular classification of malignant tumors, owing to the

ongoing advancements in cutting-edge technologies including

genomics as well as proteomics. Currently, the genetic

mechanisms of OC have been widely validated. Pathogenic allele

mutations in BRCA1 and BRCA2, homologous recombination

genes, and Lynch syndrome have been applied in clinical

diagnosis (7, 8).

Prior research has put forth a lot of effort to identify the

molecular subtypes of OC in order to ascertain the heterogeneity.

A particular instance is the work of Tothill et al. (2008), who used

K-means clustering to classify miRNA gene expression profiling

microarray experiments into six distinct subtypes (9). Tan et al.

used functional genomics to classify five molecular subgroups (10).

Kommoss et al. assessed the correlation between TCGA molecular

subtypes and the effectiveness of bevacizumab in a random

assignment study, which has important implications for clinical

practice. Median progression-free survival (PFS) improved for

proliferative and mesenchymal molecular subtypes, which had the

lowest survival rates, but overall survival (OS) did not alter

significantly (11). However, our understanding of the molecular

characteristics and subtypes of OC still requires further exploration.

There is still room for molecular subtypes to enable more accurate

diagnosis, treatment, and survival prediction. Therefore, starting

from clinical practice, we aim to identify the molecular subtypes

most relevant to prognosis through multi-omics analysis to

distinguish patients and construct a stable classification selector.

With the use of ten multi-omics integration techniques, we were

able to construct exhaustive consensus subtypes of OC by

integrating genomic alterations with mRNA, long non-coding

RNA (lncRNA), and microRNA (miRNA) expression patterns.

We next used ten ML methods to generate consensus molecular

subtypes and, based on the differentially expressed genes (DEGs)

among the subtypes, determined five stable genes related to

prognosis. The molecular subtypes showed strong predictive
02
power for immunotherapy and medication-related outcomes in

both the validation and training cohorts, and they were also a

significant indicator of prognosis. Our study’s results are a vital

benchmark for improving the accuracy of OC molecular subtypes,

improving the categorization of cancerous tumors, and developing

more tailored treatment strategies.
2 Methods

2.1 Data preprocessing of ovarian cancer
multi-omics and multi-center cohort data

Initial data was collected from the OC cohort in The TCGA

(https://portal.gdc.cancer.gov), which included patients with full

transcriptome expression, somatic mutations, and accessible clinical

information, as well as multi-omics data. The TCGAbiolinks

package was used to derive the transcriptome profiles of mRNA

and lncRNA (12). Using the miRBaseVersions.db package, the

TCGA mature miRNAs’ IDs were documented. Additionally,

somatic mutations were obtained via TCGAbiolinks and analyzed

using the maftools program. From the Gene Expression Omnibus

(GEO) database, we also retrieved the corresponding clinical data

and two expression profiles (GSE26193, GSE49997) pertaining to

OC. All expression profiles acquired using arrays were duplicated

and normalized, and the transcriptome’s high-throughput

sequencing was transformed into transcripts per million (TPM)

using kilobase.

The expression matrices and clinical information used in the

microarray data were obtained from the official websites. The data

was processed using the robust limma software after being

downloaded. This package performed background correction, log2
transformation, and quantile normalization. To visualize the data

and examine the uniformity of the distribution of sample expression

abundance values, the boxplot function was employed. If more than

one probe was associated with a given gene symbol, the one with the

greatest expression level was used to annotate the gene. We utilized

TPM values for RNA-seq data from high-throughput sequencing

because they improve sample comparability and are more

equivalent to microarray gene expression (13). For the merging of

different datasets, the “ComBat” function in the sva package was

employed to adjust the batch effects of non-biotechnological biases
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for each dataset using an empirical Bayes framework (14). Many

high-quality studies have reported similar algorithms, ensuring the

scientific validity of our approach (15–17). To further verify the

effectiveness of data merging, we also performed principal

component analysis (PCA) on the merged samples before and

after the merging process (18).
2.2 Multi-omics consensus
integration analysis

The first step that we performed in order to properly carry out a

complete analysis was to match the omics information of four

dimensions by sample ID. In the end, the training set consisted of

276 samples that had all of their dimensions complete. A

logarithmic transformation was performed on the TPM

expression data. In the gene mutation matrix, we discovered

mutations whenever genes featured any of the following non-

synonymous variations: frameshift insertions or deletions, in-

frame insertions or deletions, nonsense or missense or non-stop

mutations, or splice site or translation start site mutations. These

mutations were found in genes that contained any of the

aforementioned variations. For this investigation, we screened

gene signatures using the “getElites” function of the MOVICS

package, which stands for Multi-Omics Integration VIsualization

in Cancer Subtypes. We screen the top 1,500 genes with the largest

degree of variation by setting the “method” parameter of the

“getElites” function to “mad” for continuous variables (mRNA,

lncRNA, miRNA). Afterwards, we tied clinical data with the

“method” parameter set to “Cox” in order to find the predictive

genes with a p-value less than 0.05 in every data dimension. Prior to

analyzing the gene mutation data for binary variables, we screened

the top 5,000 genes with the highest mutation degree using the

“oncoPrint” function of the maftools package. Next, we reset the

“method” option to “freq” in order to find the five most commonly

mutated genes, which allowed us to perform additional screening

based on mutation frequency. We included the results from these

four aspects in our investigation so we could analyze them more

extensively. We continued to identify the best number of clusters for

our investigation after the initial feature selection. It is commonly

understood that the ideal data cluster size is between small enough

to minimize noise and large enough to keep relevant information.

Hence, we utilized the “getClustNum” method from the MOVICS

package to determine the number of subgroups. This method

incorporates the Clustering Prediction Index (CPI), the gap

statistic, and the Silhouette score. Our comprehension of OC

from clinical practice and the recently conducted research led us

to classify the OC omics subtypes into two groups. After that, we

conducted a clustering analysis using the “getMOIC” tool. We

employed the standard settings specified by the MOVICS

software and entered ten clustering algorithms as the

“methodslist” parameter: CIMLR, ConsensusClustering, SNF,

iClusterBayes, PINSPlus, moCluster, NEMO, IntNMF, COCA,

and LRA. The outcomes of each method’s grouping were

subsequently obtained. After the 10 techniques’ clustering results
Frontiers in Immunology 03
were computed, we improved the clustering’s robustness by

integrating the results of several algorithms employing the

“getConsensusMOIC” function, which relies on the notion of

consensus clustering. Both the “distance” and “linkage”

parameters were set to “Euclidean” and “average” respectively

(19). Eventually, our clustering results were obtained.
2.3 Subtype profiling and immune
landscape analysis

Gene Set Variation Analysis (GSVA) was used to determine the

enrichment scores of characteristics linked to multi-therapy (20). A

total of 71 potential regulators linked to malignant chromatin

remodeling and 23 transcription factors (TFs) pertaining to

induced/suppressed targets were utilized in the construction of

the transcriptional regulatory networks (TRNs) (regullons) that

were made possible by the Reconstruction of TRNs and Regulators

Analysis (RTN) R package. Our next step was to use the ESTIMATE

R program to estimate the immune/stroma scores of tumor tissues

and evaluate the distribution of immunological checkpoints among

these subgroups. It was also determined by GSVA whether or not 24

different kinds of tumor immune microenvironment cells were

enriched. Before comparing the consensus clustering to the

Nearest Template Prediction (NTP) and Prediction Analysis of

Microarrays (PAM) classifiers, in order to ensure the subtype

stability, we validated the clustering findings with biomarkers

specific to each subtype in the cohort that was used for testing (19).
2.4 Establishing a consensus prognostic
profile driven by machine learning

We combined ten various approaches to ML in order to create a

molecular categorization that has improved precision and a capacity

to generalize. These algorithms are as follows: CoxBoost, Stepwise

Cox, Lasso, Ridge, Elastic Net (Enet), Survival Support Vector

Machines (survival-SVMs), Generalized Boosted Regression

Models (GBMs), Supervised Principal Components (SuperPC),

Partial Least Cox (plsRcox), and Random Survival Forests (RSF).

Selecting features is a capacity that is incorporated into algorithms

such as Stepwise Cox, RSF, CoxBoost, as well as Lasso. In the model

construction phase, we utilized the TCGA cohort as the training set

for the initial model development. Initially, we invoked the

“optimCoxBoostPenalty” function to ascertain the optimal

penalty (shrinkage) value for the CoxBoost model. Subsequently,

we integrated it with cross-validation and executed 10-fold cross-

validation on the CoxBoost model to identify the best number of

boosting iterations. The “CoxBoost” function was ultimately

employed to fit the model. A stepwise Cox analysis was

conducted utilizing the survival package, and the intricacy of the

statistical model was assessed employing the Akaike Information

Criterion (AIC). The entire range of potential direction parameter

combinations, encompassing “both”, “backward”, and “forward”,

was computed. Utilizing the “cv.glmnet” function and the glmnet
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package, the Lasso, Ridge, as well as Enet models were

implemented. We used 10-fold cross-validation to get the

regularization value lambda and an interval of 0.1 for the trade-

off parameter alpha. Execution of Ridge occurs when alpha is equal

to 0, whereas execution of Lasso occurs when alpha = 1. In all other

cases, Enet will be run. The “survivalsvm” function in the

survivalsvm package was used to perform support vector analysis

on datasets containing survival consequences, which allowed for the

implementation of the survival-SVM model. Employing the gbm

package, the GBM model was implemented. Fitting the GBM was

done using 10-fold cross-validation with the “gbm” function. The

superpc package, an expansion of PCA, was used to implement the

SuperPC model. To conduct 10-fold cross-validation, the

“superpc.cv” function was also employed. The plsRcox package’s

“cv.plsRcox” function was utilized for the plsRcox model. Two

crucial parameters, “ntree” and “nodesize,” were passed into the

“rfsrc” function within the randomForestSRC package in order to

generate the RSF model. For a random forest, “ntree” is the number

of trees, and “nodesize” is the smallest size for the terminal nodes.

For this investigation, we decided to use “ntree” set to 1,000 and

“nodesize” set to 5 (21).

The molecular classification was developed and constructed in

the following manner: analysis was performed in both the TCGA-

OC and GEO cohorts. In all cohorts, genes exhibiting a p-value

below 0.05 and a consistent orientation of hazard ratio (HR) were

classified as stable prognosis-related genes. Ten machine-learning

algorithms were employed. Ninety-five algorithm combinations

were employed to develop the most predictive molecular

classification, achieving excellent concordance index (C-index)

performance. Subsequent to developing the models on the

training set, we conducted further testing on the validation

cohort. We computed the average C-index for each model,

identifying the model with the greatest value as the best one.
2.5 Prognostic value and clinical
application prospect of molecular subtypes

We evaluated every sample in the training as well as validation

sets with respect to the resultant models and categorized the samples

into high-risk (HRG) and low-risk (LRG) groups according to their

results. The prognostic importance of the risk ratings was assessed

using Kaplan-Meier survival curves. Furthermore, we methodically

extracted 16 predictive variables associated with OC and computed

the score for each sample utilizing the published coefficients. In each

cohort, the predictive capability of all features for prognosis was

evaluated using the C-index. To augment the clinical utility of the risk

scores, we developed a nomogram utilizing the components derived

from multivariate Cox (Multiv. Cox) regression. The C-index and

calibration curves were plotted over time to assess accuracy, while the

decision curve was employed to evaluate the clinical advantages for

patients. The interpretation of the prediction model is performed by

SHAP, which is a unified approach to calculate the contribution and

influence of each feature toward the final predictions precisely.
Frontiers in Immunology 04
2.6 Molecular characterization of immune-
omics and comprehensive analysis of
immunotherapy response based on
molecular subtypes

Utilizing the Immunology-Oncology Bioinformatics Resources

(IOBR) package, we gathered numerous earlier-published features

pertaining to tumor microenvironment (TME) cell types,

immunotherapy responses , immunosuppress ion , and

immunological exclusion. Subsequently, we computed the

enrichment scores for each sample employing a standardized

methodology and conducted a thorough analysis of the

immunological disparities between HRG and LRG patients. We

analyzed the disparities in the distributions of tumor mutational

burden (TMB), tumor neoantigen burden (TNB), and programmed

death ligand 1 (PD-L1)–associated gene signatures (PPAGs,

pertaining to tumor angiogenesis) between the two groups and

subsequently reclassified the patients in conjunction with the risk

scores. To evaluate the immunotherapy response, we integrated the

Tumor Immune Phenotype (TIP) algorithm with the Tumor

Immune Dysfunction and Exclusion (TIDE) algorithm.
2.7 Therapeutic screening

Following the stratification of patients into LRG and HRG, the

GSEA algorithm was utilized in order to evaluate the activation

status of oncogenic pathways. In order to acquire information

regarding the drug sensitivity of Cancer Cell Lines (CCLs), the

CTRP v.2.0 (https://portals.broadinstitute.org/ctrp) and the PRISM

Reutilposing dataset (19Q4; https://depmap.org/portal/prism/)

were employed. The dose-response curve was used to derive the

area under the curve (AUC), which was then used as a measurement

of drug sensitivity.
2.8 Patients

In order to create tissue microarrays, we examined

retrospectively data from 180 patients diagnosed with OC and 20

patients who had oophorectomy procedures performed at Xijing

Hospital, Affiliated with the Air Force Military Medical University

for benign reasons between 2011 and 2017 (22, 23). Electronic

medical records stored in the hospital’s database were used for

retrieving the patients’ clinical data. Patients were considered for

the study if they fulfilled the requirements that included the

following: they had a pathologically diagnosed case of OC,

normal ovarian samples, did not get any anticancer medication

before the surgery, and did not experience any serious risk factors

during the surgery that could impact their prognosis. For this group

of patients, researchers used paraffin-embedded tissue samples. We

additionally obtained new cancer and para-cancerous tissues from

six additional OC patients. Patients diagnosed with OC had their

malignant tumor stage assessed in accordance with the
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International Federation of Gynecology and Obstetrics ’

recommendations (2023).
2.9 Cell culture and reagents

The Cell Bank of the Chinese Academy of Sciences in Shanghai,

China, was the source of the OC cell lines OVCAR3 and SKOV3,

which were taken from there. The cells were cultured in a medium

that was composed of RPMI 1640 (PM150110, Procell, China) and

was further enriched with 10% fetal bovine serum (FBS) (164210,

Procell, Wuhan, China). Additionally, the medium contained

penicillin G (100 U/ml, BYT-C0222, Beyotime, China) as well as

streptomycin (100 mg/ml, BYT-C0222, Beyotime, China). At a

temperature of 37°C, the culture was maintained in an incubator

that was humidified and contained 5% CO2.
2.10 RNA processing and primer sequences

RNA extraction, cDNA synthesis, and RT-PCR reaction

systems were carried out in accordance with the instructions of

the RNA extraction, reverse transcription, and cycling reaction

system kits provided by Polymerase. Primer synthesis was

performed by Langjieke Company. The primer sequences used

were: FXYD6 (forward: 5′‐ACCCTGAGGATTGGGGGAC‐3′,
reverse: 5′‐CATTGGCGGTGATGAGGTT‐3′) and the internal

re ference TUBB/b-Tubul in ( forward: 5 ′‐TGGACTCT

GTTCGCTCAGGT‐3′ , reverse: 5′‐TGCCTCCTTCCGTA

CCACAT‐3′).
2.11 Transfection

The design and synthesis of siRNA were carried out by ApexBio

Company. After synthesis, transient transfection was performed

using the transfection reagent Lipo3000. The transfection efficiency

was confirmed by PCR and WB experiments to identify the optimal

transfected small interfering RNA, which was used in subsequent

experiments. The sequences of the interfering RNAs are as follows:

SiFXYD6-1: 5′ -GCUGAAAAGGAGAAGGAAAT-3′; SiFXYD6-2:
5 ′ -AGGAAGCCCAGGUGGAGAAT-3 ′ ; SiFXYD6-3: 5 ′
-CCCAGAAAGCAGAGAACUGT-3′ . The overexpression

lentivirus was purchased from Shanghai GeneChem Co., Ltd., and

the relevant transfection steps were performed according to

the instructions.
2.12 Western blot analysis

The harvested tissues were homogenized and lysed with RIPA

lysis solution (P0013B, Beyotime, China) for 20 minutes, which was

followed by high-speed centrifugation at 13,500 rpm for 15 minutes.

Cell lysates were additionally produced utilizing the RIPA

technique. Following SDS-PAGE fractionation (PG112, Epizyme
Frontiers in Immunology 05
Biotech, Shanghai, China), protein samples were transferred to

PVDF membranes (ISEQ00010, Millipore, USA). The FXYD6

antibody was acquired from Wuhan Sanying at a dilution of

1:1000; the b-tubulin antibody was obtained from Wuhan

Sanying at a dilution of 1:2000; as well as the secondary antibody

was sourced from Wuhan Sanying at a dilution of 1:10000.
2.13 Colony formation

A density of 500 cells per well was used to seed the OC cells onto

6-well plates. We changed the cell culture media every three days.

After 12 days, the colonies were fixed for 15 minutes in 4%

paraformaldehyde before being dyed with crystal violet. We used

ImageJ to calculate the number of colonies in every well after

photographing them.
2.14 Wound healing

We cultivated the OC cells in a medium supplemented with

10% FBS for 24 hours after seeding them in 6-well plates until 90%

confluence was achieved. Afterwards, serum-free media was added

to the wells after the cells were linearly scraped along their diameter

employing a 1000 mL pipette tip. An inverted microscope was used

to capture pictures of the wound at 0 and 48 hours after it had

begun to heal, and the distance that had healed was

then determined.
2.15 Cell viability

We seeded 96-well plates with the cancer cell solution,

distributing 6,000 cells per well. In accordance with the guidelines

provided by GlpBio, USA’s Dojindo Cell Counting Kit-8 (CCK-8,

GK10001, after attachment) was used to assess cell viability at 0, 24,

48, and 72 hours. Cell confluence throughout the test was kept

between 80 and 90% by carefully seeding the appropriate amount of

OVCAR3 and SKOV3 cells into 96-well cell culture plates. A

cytotoxicity detection kit for lactate dehydrogenase (LDH) was

used to test the levels (LDH Cytotoxicity Detection Kit, C0016,

Beyotime, China).
2.16 Animal model

Female BALB/c nude mice were sourced from Beijing Vital

River Laboratory Animal Technology Co., Ltd. for the study when

they were 4 to 5 weeks old. The Air Force Medical University’s

Institutional Animal Care and Use Committee ensured that all

experiments involving animals followed its guidelines. Mice

received subcutaneous injections of 1×106 OC cells in 100 mL of a

solution (PBS: Matrigel = 1:1) in the axillary area. All mice were

slaughtered 30 days post-inoculation, and the tumor-bearing tissues

from each mouse were harvested. A portion of the tumor tissues was
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preserved in 4% paraformaldehyde and subsequently embedded in

paraffin for immunohistochemistry (IHC) staining.
2.17 Immunohistochemistry staining

IHC sta in ing was per fo rmed subsequent to the

deparaffinization of tissue slides in xylene and rehydration in

alcohol, subsequently followed by treatment with 3% H2O2 to

inactivate endogenous peroxidase. An antigen repair treatment

utilizing a microwave was subsequently conducted in a 0.1M

sodium citrate buffer at pH 6.0. Following a 30-minute incubation

at room temperature with 5% normal goat serum for blocking,

primary antibodies were subsequently incubated overnight at 4°C.

The nuclear visualization was achieved by first incubating the poly-

HRP secondary antibody for 60 min at room temperature without

light and then counterstaining with hematoxylin. Our hospital’s

pathologists reviewed the stained images captured by the

Caseviewer scanner. We classified FXYD6 expression as either 0

“negative,” 1 “weak,” 2 “moderate,” or 3 “strong” based on the

staining intensity. One ranged from 0% to 25%, and four ranged

from 76% to 100% in the positive proportion area. The FXYD6

expression findings were defined as scores between 0 and 12. All

necessary ethical approvals have been obtained, and the study

project is being carried out in full accordance with established

ethical guidelines (24).
2.18 Ethics

The Ethics Committee at Xijing Hospital, affiliated with Air

Force Medical University, authorized the utilization of retrospective

information concerning patients. Informed permission in writing

was acquired from all subjects.
2.19 Statistical analysis

The unpaired Student’s t-test was utilized for group

comparisons in the event that the variables were regularly

distributed. On the other hand, the Wilcoxon rank-sum test was

utilized in the event that the variables were not normally

distributed. Whenever comparing more than two groups, the

Kruskal-Wallis test was utilized for non-parametric variables,

while the one-way analysis of variance was utilized for parametric

variables. For the purpose of analyzing contingency tables, a two-

sided Fisher’s exact test was performed. The survminer package’s

“surv-cutpoint” function established the threshold for molecular

categorization. It was possible to classify patients in each cohort into

HRG and LRG based on the optimally chosen log-rank statistic,

which mitigated the computational batch impact. We performed

differential expression analysis using the limma tool and multi-

omics clustering using the MOVICS package. We used R v.4.1.0 for

all of our statistical analysis. The images of the in vitro studies were

created using GraphPad Prism 9. Each experiment was carried out
Frontiers in Immunology 06
three times, and the means ± standard deviations (SD) of the

continuous variables were used to represent themselves. Statistical

significance was defined as a P-value below 0.05.
3 Results

3.1 Multi-omics consensus prognostic
related molecular subtypes of OC

After effectively preprocessing all the data, we further validated

our results by employing PCA to analyze the data before and after

handling the batch effect (Supplementary Figure S1). We

independently identified two subtypes from ten multi-omics

integrated clustering algorithms (iClusterBayes, moCluster,

Cancer Integration via MultIkernel LeaRning (CIMLR),

Integrative Clustering of Multiple Genomic Dataset (IntNMF),

ConsensusClustering, Cluster-Of-Cluster-Assignments (COCA),

Neighborhood-based Multi-omics Clustering (NEMO), PINSPlus,

Similarity Network Fusion (SNF), and Landscape Reconstruction

Algorithm (LRA)) (Figures 1A–C), and comprehensively referred to

clustering prediction metrics and gap statistic analysis to determine

the number of molecular classifications (Figures 1D, E). Our

classification system is closely associated with OS (TCGA: P <

0.01; validation set: P = 0.004). Notably, Molecular Subtype 2 (CS2)

exhibits the best survival outcome (Figures 1F, G).

We used the consensus integration approach to integrate the

clustering findings with the specific molecular expression patterns

of the transcriptome (mRNA, lncRNA, as well as miRNA) and

somatic mutations after we obtained the stable prognostic

molecular classification (Figure 1H). We used omics data from

multiple dimensions to identify the 1,500 genes with the greatest levels

of variation. Subsequently, as afirst step in the clusteringprocess, genes

associated with prognosis were eliminated using Cox regression

analysis. Mutation frequency was used to filter candidate genes for

mutation data. Excluding the core feature genes with the greatest C-

index,weused all combinations ofMLalgorithms (Enet, StepwiseCox,

CoxBoost, Ridge Regression, RSF, GBM, Survival-SVM, LASSO,

SuperPC, plsRcox, and Stepwise Cox) to further discover stable

prognostic genes based on subtypes. The molecular categorization of

OC was subsequently constructed utilizing RSF. Thoroughly

established were the connections between molecular categorization

and prospective therapeutic medications, tumor immune

microenvironment, immunotherapy response, as well as prognosis.
3.2 Characterization of integrated
consensus molecular subtypes in OC

Molecular subtypes based on genes related to endometrial

cancer have been applied in clinical practice and achieved good

results. The incidence and mortality of OC are increasing year by

year, and most cases of OC are already at an advanced stage when

diagnosed. Moreover, previous research on the molecular

classification of OC mainly focused on single omics or clinical
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test indicators. Therefore, continuous exploration of new molecular

subtypes is still needed. Based on the previous analysis, we

generated two prognostic molecular subtypes and explored the

characteristics of these molecular subtypes.

To further study the differences in the transcriptome, we

analyzed the potential regulators related to cancerous chromatin

remodeling and 23 transcription factors (TFs) associated with

cancer. The close correlation between regulator activity and

molecular classification confirmed the biological relevance of the

molecular classification. In the CS1 subtype, FOXA1, GATA3,

PPARG, RARB, and EGFR were significantly activated, while

FGFG1, FGFR3, PAG, ESR2, etc. were significantly activated in

the CS2 subtype (Figure 2A). The role of epigenetics in tumors has

received increasing attention, and the activity profiles of regulators

related to tumor chromatin remodeling further highlighted the

potential patterns of differential regulation among CS subtypes.

Our analysis of theCS1 subtype’s levels ofmicroenvironmental cell

infiltration revealed that both the immunological score as well as the

microenvironment score were significantly greater than those of the
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CS2 subtype. Additionally, genes related to immunotherapy were

significantly enriched in the CS1 subtype, which is important

because tumor immunity plays a crucial part in tumorigenesis as

well as progression. It was thus speculated that immunotherapymight

have a better effect on the CS1 subgroup (Figure 2B). However, the

distributionof immune cell infiltrationvaries greatly amongmolecular

subtypes. Combining our previous research and actual clinical

observation results, OC belongs to the immune-desert type of tumor,

and the effect of immunotherapy is not obvious. Therefore, it is still

necessary to explore better therapeutic targets.

To determine the stability of the molecular subtypes, we

performed the same classification in the validation cohort and

found that patients could be clearly divided into two subgroups,

and the survival outcome of CS2 was still better than that of CS1

(Figure 1C). To further determine the effectiveness of the subtypes,

we used NTP to classify each sample in the external cohort into one

of the identified CS subtypes and also evaluated the consistency

between CS and the NTP and K-medoids (PAM) algorithms (p <

0.005) (Figures 2C–E).
FIGURE 1

Integrated common subtypes of ovarian cancer multi-omics. (A) 10 multi-omics clustering methods were used to cluster ovarian cancer patients.
(B) Consensus clustering matrix of two new prognostic subtypes based on 10 algorithms in the TCGA training cohort. (C) Validation of the new
prognostic subtypes in the GEO integrated cohort. (D) Silhouette score was calculated to measure the similarity among samples. (E) Cluster
prediction index and gap statistical analysis of the new prognostic subgroups. (F) The survival outcomes of the two subtypes were different in the
TCGA training cohort. (G) Validation of the survival outcomes of the two subtypes in the GEO integrated cohort. (H) Comprehensive heatmap of the
new prognostic subtypes (mRNA, lncRNA, miRNA, mutated genes).
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3.3 Construction of molecular subtypes

We evaluated five stable DEGs from the TCGA and GEO for a

significant association between expression and OS using univariate

(Univ. Cox) and multivariate (Multiv. Cox) regression models.

Subsequently, these stable differentially expressed survival genes

were incorporated into an integrated framework to perform the

construction of molecular subtypes. To evaluate the predictive

accuracy of all the models, we created standard models in the

TCGA training cohort using 95 different algorithm combinations

and averaged their C-indexes over all the cohorts (Figures 3A, B).

The 95 models demonstrated that RSF algorithm achieved the
Frontiers in Immunology 08
highest average C-index in the development of the final model,

which comprised five core genes (Figures 3C, D). Then, we

calculated the risk scores of each sample in all cohorts. Patients

with high risks had poorer clinical outcomes (Figures 3E, F).
3.4 Comparison of prognosis and
metastasis characteristics of
molecular subtypes

Current developments in next-generation sequencing

technologies have led to the widespread reporting of various gene
FIGURE 2

Molecular profiles and validation of the new molecular subtypes of ovarian cancer. (A) Regulatory activity profiles of 23 transcription factors (top) and
potential regulators related to chromatin remodeling for the two subtypes (bottom). (B) Immune signature profiles in the TCGA training set. The
immune enrichment scores and microenvironment scores of tumor-infiltrating lymphocytes are shown at the top of the heatmap. The upper figure
shows the expression differences of classic immune checkpoint genes, and the lower figure shows the enrichment levels of 24 immune cells related
to the tumor microenvironment. (C) Consistency between the new subtypes and NTP in the TCGA cohort. (D) Consistency between the new
subtypes and PAM in the TCGA cohort. (E) Consistency between NTP and PAM in the GEO validation cohort.
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expression-based prognostic markers. To thoroughly compare

molecular subtypes with other signatures, we rigorously reviewed

pertinent literature published in the last five years and eventually

included 16 distinct signatures in our study (Figures 4A, B). These

markers are linked to several biological processes, including

immunotherapy response, immunological infiltration, and

ferroptosis. The molecular subtypes had a C-index performance

that surpassed nearly all models identified in the present

investigation (Figures 4A, B).

In light of the clinical application possibilities associated with

molecular categorization, we identified promising independent

prognostic markers for OC by independent prognostic analysis

and synthesized them to develop a full nomogram presented as a

web calculator. Figures 4C-E show that Decision Curve Analysis

(DCA) indicated that the nomogram’s therapeutic benefits for

patients were significantly higher than those of using CMLS

alone, and the calibration curve demonstrated that the

nomogram’s accuracy was in line with reality. After that, we

verified the risk score’s independent prognostic significance using

Univ. Cox and Multiv. Cox analyses. The risk score was found to be
Frontiers in Immunology 09
a potential independent prognostic factor in both Univ. Cox and

Multiv. Cox analyses (Figures 4F, G).

3.5 Molecular subtype related
immune characteristics

Utilizing the Immunology-Oncology Bioinformatics Resources

(IOBR) R package, we performed an extensive investigation of the

TME of OC and noted that the infiltration levels of immune cells

(including T cells, B cells, and macrophages) in HRG were elevated

compared to those in LRG (Supplementary Figure S2A). However,

an analysis of the immunosuppressive state revealed that myeloid-

derived suppressor cells played a more significant role in

immunotherapy in the HRG. Therefore, we further analyzed the

pathways related to immune escape and found that the immune

escape state was significantly increased in HRG compared to that in

LRG. Genes related to mismatch repair were mainly enriched in

LRG (Supplementary Figures S2B–D). The results aligned with our

prior study, indicating that HRG is associated with a worse

prognosis, possibly linked to immunosuppression and immune
FIGURE 3

Generation and Prognostic Value of Risk Scores. (A) By integrating and constructing a comprehensive computational framework, combinations of 95
machine learning algorithms were generated. The C-index of each model was calculated from the TCGA cohort and the GEO integrated cohort
(META cohort) and sorted according to the average C-index. (B) The number of genes constituting the combinations of 95 machine learning
algorithms. (C) Hub genes selected by the RSF algorithm. (D) Univariate Cox regression results in the training cohort and the validation cohort.
(E) Survival analysis of patients with high and low risk scores in the training cohort. (F) Survival analysis of patients with high and low risk scores in the
validation cohort.
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evasion, suggesting that HRG OC patients are more prone to being

categorized as “cold tumors.” Subsequently, we further examined

the differences of immune checkpoint, T cell depletion and immune

escape cytokine related marker genes in the high-low risk group,

and the results indicated that the expression of immune checkpoint
Frontiers in Immunology 10
marker was higher in the low-score risk group, while the expression

of immune cell depletion and immune escape cytokine was higher

in the high-risk group(Supplementary Figure S2E). These results are

consistent with previous findings that patients in the high-risk

group may benefit less from immunotherapy.
FIGURE 4

Clinical Utility Value of Risk Scores. (A, B) Comparison of the risk scores with other published models in the training cohort and the validation cohort.
(C) Calibration curve of the comprehensive nomogram. (D) Decision curve of the comprehensive nomogram. (E) Comprehensive nomogram based
on the risk scores. (F, G) Univariate and multivariate analyses of the risk scores and other clinical indicators to determine the value of the risk scores.
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TMB and TNB are acknowledged biomarkers for assessing

patient outcomes after immunotherapy. In addition, we also

analyzed the role of tumor angiogenesis-related pathways in

immunotherapy. The results indicated that the LRG had a higher

TMB score; however, no significant difference was seen between the

groups about the TNB. These results could be part of the reasons for

the better prognosis of the LRG (Supplementary Figure S2F).

Angiogenesis in tumors was more pronounced in the HRG, and

there was a strong correlation between the high immune cell

infiltration and the risk of programmed death ligand 1 (PD-L1)-

associated gene signatures (PPAGs), which elevated in parallel with

the risk score (Supplementary Figures S2G, H). In addition to TMB,

TNB, and PPAGs, survival analysis suggested that the risk score

could be a useful supplementary factor for patient prediction.

Patients with OC had a better chance of survival when their risk

score was lower, their TMB or TNB were higher, or their PPAGs

were lower (Supplementary Figures S2I–K).
3.6 Molecular subsets for immunotherapy
and potential therapeutic drug screening

To deeply explore the differential patterns of molecular

subtypes, we systematically investigated the relationships between

the genes used for subgroup construction and copy number

variation; gene set variation score, methylation, and clinical stage

in common malignant tumors of the female gynecological system.

The research findings demonstrated that both the copy number

variation and the variation rate of variant gene expression were the

highest in OC (Supplementary Figures S3A–C). The genes most

closely related to the clinical stage were ALPL and FXYD6

(Supplementary Figure S3D). The degree of methylation variation

was most significant in endometrial cancer (Supplementary Figure

S3E). The gene set variation score showed a negative correlation

with the clinical stage in OC (Supplementary Figure S3F). Analysis

of the activation and inhibition of targets revealed that FXYD6

exhibited the richest target characteristics (Supplementary Figure

S3G). DNA damage and hormone receptors were significantly

correlated in gynecological tumors (Supplementary Figure S3H).

Analysis of immune differences with the core genes as a reference

showed that the distribution of immune cells in OC had the most

significant difference among these classifications (Supplementary

Figure S3I).

Furthermore, we determined the Tracking Tumor

Immunophenotype (TIP) to investigate possible biological

attributes linked to molecular subtypes. We found that the

differences between the HRG and LRG were mainly concentrated

in step 4 (recruitment of tumor immune infiltrating cells), which is

consistent with our previous research (Supplementary Figure S4A).

Furthermore, we employed the TIDE methodology to assess

patients’ outcomes after immunotherapy. We found that the

difference between the two groups was not significant, but the

LRG generally had a higher response to immunosuppressive agents

than the HRG (Supplementary Figure S4B). Combined with the

previous analysis results, it is overall found that the prognosis of the
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HRG is poor. To improve the prognosis level of the HRG, we

performed GSEA pathway enrichment analysis on the HRG. The

findings indicated that the difference pathways were mostly focused

on epithelial-mesenchymal transition, NF-kB signaling,

immunological inflammation, hypoxia, and other pathways

(Supplementary Figure S4C). Subsequently, we employed the

Cancer Therapeutics Response Portal (CTRP) and the Parallel

Resistance in Mixtures Screen (PRISM) to evaluate possible

therapy agents for patients in the HRG. To validate the

robustness of our strategy, we employed cisplatin, a commonly

utilized medication for bladder cancer, to ascertain whether the

sensitivity obtained from the algorithm aligns with established

clinical practice. Studies have established that ERCC1 serves as a

predictive biomarker for individuals undergoing platinum-based

chemotherapy. From this, we derived the following conclusions: in

line with earlier research, patients who had decreased ERCC1 levels

demonstrated stronger responsiveness to cisplatin, suggesting that

this drug may improve chemotherapy outcomes for such

individuals (Supplementary Figure S4D). We then proceeded to

thoroughly investigate possible medications for HRG patients.

Finally, we found that the HRG had a higher sensitivity to

tyrosine kinase inhibitors, which can be used as one of the

candidate drugs to improve the prognosis of patients in the HRG

(Supplementary Figures S4E, F).
3.7 Functional analysis of FXYD6 in vitro

Tumor metabolic reprogramming has received increasing

attention. We retrieved from the core genes and combined them

with the correlation of previous clinical data and found that FXYD6

plays an important role in tumor metabolism and the electron

transport respiratory chain. In addition, we evaluated the predictive

power of individual genes in the predictive model through SHAP

(SHapley Additive exPlanations) and found that FXYD6

contributed the most (Supplementary Figure S4G). Therefore, we

systematically studied the gene function of FXYD6. The literature

search revealed that the function of FXYD6 in OC is currently

poorly understood. We explored its role in tumor cell proliferation

and migration. In the first step, we used RT-PCR to identify

alterations in FXYD6 expression in carcinoma tissues.

Paracancerous tissues showed a significantly greater level compared

to cancerous tissue at the transcriptional level (Figure 5A).

Subsequently, we used tissue microarrays of 200 cases to explore the

differences in expression changes at the protein level. Compared with

normal ovarian tissues, the expression at the protein level in tumor

tissues was significantly lower than that in normal ovarian tissues. The

above results suggest that the content of FXYD6 is higher in normal

tissues and lower in tumor tissues (Figure 5B).

To explore the functional role of FXYD6 in OC, we used siRNA

for gene knockdown and lentivirus for gene overexpression. Firstly,

we detected the expression differences of FXYD6 in normal ovarian

epithelium and OC cell lines by Western blot. The results suggested

that its expression was lower in OC. Based on the expression levels,

we selected OVCAR3 with the highest expression as the knockdown
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cell line and SKOV3 with the lowest expression as the

overexpression cell line (Figure 5C). We utilized CCK8, plate

cloning, and scratch tests to examine the effects of gene

interference on cell proliferation and migration following PCR,
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and Western blotting confirmed the impacts of gene interference

(Figures 5D, F). The findings showed that OC cell proliferation and

migratory capacities were enhanced following gene knockdown and

diminished following gene overexpression.
FIGURE 5

Validation of FXYD6 Expression and In Vitro Functional Analysis. (A) Changes in FXYD6 expression in paracancerous tissues and tumor tissues of 6
ovarian cancer patients at the RNA level. (B) Differences in FXYD6 expression between tumor tissues and normal ovarian tissues at the protein level.
(C) Differences in FXYD6 expression between normal ovarian epithelial cell lines and ovarian cancer cell lines. (D) Detection of the effect of knocking
down FXYD6 by small interfering RNA. (E) Detection of changes in the proliferation ability of ovarian cancer cells after knocking down FXYD6 by
CCK8 assay. (F) Detection of the effect of overexpressing FXYD6 by lentivirus. (G) Detection of changes in the proliferation ability of ovarian cancer
cells after overexpressing FXYD6 by CCK8 assay. (H, I) Detection of the proliferation and migration abilities of cancer cells after knocking down and
overexpressing FXYD6 by wound healing assay. (J, K) Detection of the in vitro proliferation abilities of cancer cells after knocking down and
overexpressing FXYD6 by colony formation assay. ***: Indicates that P < 0.001.
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Specifically, in the CCK8 cell proliferation assay, it was found that

the proliferation ability of OC cells was enhanced after SiFXYD6

treatment (Figure 5E); after overexpression, the proliferation ability of

OC cells was weakened, and the cell growth was very slow (Figure 5G).

The wound healing assay also found that the wound healing ability of

OC cells was enhanced after SiFXYD6 treatment (Figure 5I); after

overexpression, the wound healing ability of OC cells was weakened

(Figure 5H). Figure 5K shows that the control group had significantly

weaker colony formationcapacity followingSiFXYD6treatment,while

Figure 5J shows that overexpression significantly impaired the colony

formation capacity of OC cells. The findings of cancer cell cloning

formationcapacity testingdemonstrated thatboth thenumberandsize

of colonies formed by OC cells were significantly greater following

SiFXYD6 treatment.

In addition, during the process of cell culture, we also observed

that a large number of cells died after FXYD6 overexpression, which

might be one of the reasons for these phenomena. Therefore, we

treated the overexpressed OC cells with 1 mM ferroptosis inhibitor,

5 mM apoptosis inhibitor, and 2 mMnecroptosis inhibitor to explore

the possible causes of cell death. The research findings

demonstrated that the ferroptosis inhibitor could significantly

alleviate the cell death caused by gene overexpression, and the

apoptosis inhibitor could also alleviate it, but to a lesser extent than

the ferroptosis inhibitor (Figure 6A). Therefore, we speculated that

the cell death caused by gene overexpression was largely due to

ferroptosis and partly due to apoptosis.

Based on the above results, we then detected the changes in

ferroptosis-related indicators after overexpression. The research

findings demonstrated that the level of lipid peroxidation in cells

increased after overexpression; the T-GSH/GSSG level was

significantly reduced, that is, the content of reduced glutathione

decreased, and the content of oxidized glutathione increased; and the

content of GSH-Px decreased (Figure 6B). Subsequently, we detected

the level of the ferroptosis marker GPX4 at the protein level, and the

results also showed that the level of the ferroptosis marker was

significantly reduced after gene overexpression, suggesting that

ferroptosis occurred in OC cells after overexpression (Figure 6C).

Subsequently, we investigated the cell proliferation and growth

abilities in vitro and conducted an in vivo tumor-bearing

experiment in nude mice. Each nude mouse was inoculated with

1×106 cells in the axillary region, and the tumor tissues were

collected for comparison 3 weeks after tumor formation. The

research findings demonstrated that the tumorigenic ability of the

cells decreased after overexpression; the weight of the tumor-

bearing tissues was also significantly smaller than that of the

control group (Figures 6D, E). Detection of the cell proliferation

ability revealed that the Ki67 level in the overexpressed tumor

tissues was lower than that in the control group (Figure 6F).
4 Discussion

Methylation, mutation, as well as histone modification are

among the many genetic and epigenetic processes that precisely
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regulate gene expression (25). A thorough investigation of patients’

multi-omics data will enhance our comprehension of disease-

specific regulatory systems (25, 26). Nevertheless, until now, the

majority of research studies conducted have mostly concentrated on

individual omics research (27). The selection of omics clustering

techniques is predominantly influenced by individual preference,

and as their application broadens, the constraints of specific

methods become more apparent. Our research intends to address

this deficiency. We used the most recent 10 clustering techniques

and discovered two prognostic subgroups of OC with distinct

characteristics, which may hold significant significance for the

precise stratified therapy of patients. The novel subtypes have

demonstrated stability across various cohorts. Our classification

has the potential to enhance conventional classification strategies.

ML algorithms are now efficient techniques for analyzing multi-

omics data (28). To elucidate the distinctions in molecular

characteristics among various prognostic subtypes and enhance

clinical applicability, we utilized the GEO as the validation cohort

and TCGA as the training cohort, subsequently identifying the

optimal predictive risk score via 95 algorithmic combinations to

mitigate the constraints imposed by algorithm selection. Presently,

the integration of technologies like artificial intelligence with

extensive biological big data presents overfitting as a significant

concern in the model development process. Models that excel in the

training set often struggle to generalize adequately to different

validation sets. To address the challenges associated with

overfitting the training set, we utilized the average C-index of

multiple validation cohorts as the ranking criterion. The study

revealed that the RSF algorithm had robust prediction capability in

both the training and validation sets. Similarly, we observed that,

compared with other published signatures, the carefully screened

prognostic risk score showed a powerful prognostic value in

each cohort.

Utilizing the Gene Set Enrichment Analysis (GSEA) algorithm

and the Immunology-Oncology Bioinformatics Utilizing the IOBR

R package, we analyzed the enrichment of various immune-related

variables between the two groups. We discovered that various

carcinogenic pathways in the high prognostic score cohort were

significantly active, and the cold tumor phenotype was

more prevalent.

The survival analysis of the low prognostic score also showed a

better prognosis result. Two prevalent predictive instruments, TIDE

and Subclass Mapping, demonstrated improved immunotherapy

response in the LRG, aligning with our analysis and suggesting that

the risk score may facilitate the prompt detection of individuals

responsive to immunotherapy. Furthermore, we comprehensively

evaluated possible therapeutic agents utilizing an extensive

screening strategy demonstrated to be beneficial in prior research.

Ultimately, tyrosine kinase inhibitors were evaluated as potential

therapeutic agents for the LRG.

FXYD6, a member of the FXYD family, is defined by a highly

conserved FXYD motif (Phe-X-Tyr-Asp, where X represents any

amino acid) and serves as the sixth identified member of this ion

transport regulator family (29). The mammalian FXYD family has
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seven members, FXYD1-7, that compose type I transmembrane

proteins exhibiting similarities in both protein structure and

function. FXYD regulates the Na+/K+-ATPase, situated on the

cell membrane and consisting of a and b subunits (30). FXYDs

modulate the comprehensive enzymatic kinetic characteristics of

Na+/K+-ATPase by modifying the transport rate and affinity for Na

+ and K+ ions (31, 32). Recent findings suggest that FXYD proteins

stabilize the active conformation of Na+/K+-ATPase through direct

interaction (30). Several investigations have indicated that FXYD6

is significantly expressed in cholangiocarcinoma and hepatocellular

carcinoma (29, 33). Recent investigations have shown that FXYD1,

FXYD5, and FXYD7 can enhance migration as well as invasion of

OC cells (34). Nonetheless, the role and mechanism of FXYD6 in

ovarian cancer have not been documented until now.
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Studies have reported that FXYD6 can participate in the

electron transfer and ion binding of the Na+/K+-ATPase, thereby

affecting the activity of the enzyme. Regarding its function, we

speculated that interfering with the expression of FXYD6 could

influence the malignant behaviors of OC cells. We first evaluated

the changes in its expression in OC. The research findings

demonstrated that both the RNA and protein levels of FXYD6

were lowly expressed in OC. Consistent with previous studies,

excessive expression of FXYD6 could inhibit the growth of tumor

cells, and this phenomenon might be related to its function. As a

regulator of the Na+/K+-ATPase, FXYD6 has the function of

inhibiting sodium ion transport (32). Excessive expression would

cause an imbalance of intracellular sodium ions, thus triggering a

series of reactions. Our results also reached the same conclusion.
FIGURE 6

FXYD6 Protects Cancer Cells from Ferroptosis and In Vivo Functional Analysis. (A) The viability of cells with overexpressed FXYD6 was detected after
culturing for 24 hours with or without 1 mM Fer-1, 2 mM Necrostatin-1, and 5 mM ZVAD-FMK. (B) Detection of ferroptosis-related indicators including
GSH-Px, MDA, and T-GSH/GSSG. (C) Detection of the ferroptosis marker GPX4 in overexpressed cells. (D) Tumorigenesis experiment in nude mice
using overexpressed cells. (E) Differences in the mass of tumor-bearing tissues. (F) Detection of the proliferation indicator Ki-67 in tumor-bearing
tissues. *: Indicates that P < 0.05; ***: Indicates that P < 0.001. ns, not significant.
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After knocking down its expression, the growth and proliferation of

OC cells were accelerated. After overexpression, its growth was

significantly inhibited, and a large number of cells died.

To explore the causes of cell death after gene overexpression, we

used apoptosis, necroptosis, and ferroptosis inhibitors to alleviate

the cell death caused by gene overexpression. The research findings

demonstrated that the ferroptosis inhibitor could significantly

restore cell death caused by gene interference, and the apoptosis

inhibitor could also partially restore cell death. Therefore, we

speculated that the main reason for the massive cell death after

overexpressing FXYD6 was that the cells underwent ferroptosis. In

the detection of ferroptosis-related markers and lipid peroxidation,

the same conclusion was also drawn; that is, the cells

underwent ferroptosis.

Based on the above conclusions, we attempted to speculate on

the reasons for this phenomenon. Starting from the function of the

gene, FXYD6 has the functions of electron transfer and sodium ion

binding of the Na+/K+-ATPase. As one of the core proteins in cell

energy metabolism, the Na+/K+-ATPase is closely related to the

metabolic reprogramming of cancer cells. To adapt to the need for

rapid growth, the expression of the FXYD6 gene would adaptively

decrease, thus avoiding the death of cancer cells due to metabolic

disorders. In addition, the Na+/K+-ATPase is closely related to the

production of intracellular reactive oxygen species (ROS). Excessive

expression of FXYD6 would cause the inactivation of the Na+/K

+-ATPase to reduce the production of ATP in tumor cells. To adapt

to the low-energy mode, cancer cells would generate a large amount

of ROS, thus triggering the ferroptosis phenomenon in cancer cells.

Compared with the studies published earlier, our study has

several significant differences. For obtaining stable genes, we did not

extract the DEGs between OC and normal individuals in a

conventional way. Firstly, we divided OC into two subgroups by

using the optimal classification algorithm of ML and then extracted

the genes with the most significant differences from these two

subgroups. Therefore, conventional survival analysis might find

that they have no significance for survival. However, for our

classification and selection algorithm, these genes are precisely the

most crucial ones for the population with different prognoses. The

value of conventional differential gene and survival analysis in the

prognostic evaluation of OC patients still needs to be improved. For

these reasons, we designed this experiment and protocol. Regarding

the data used for analysis, we did not start with conventional

protein-coding or lncRNA. Through multi-omics integration, we

conducted multi-omics exploration from four common

dimensions. Methylation data of OC was not included because a

large number of literature and our obtained OC methylation data

analysis showed that the variation difference of OC methylation

data compared with other tumors was very small. Therefore, to

make the algorithm robust, we did not incorporate the methylation

data into our study. For risk score calculation, starting from the

currently conventional algorithms, we generated a large-sample,

multi-dimensional model construction and synthesis method by

combining these common algorithms. The conclusions drawn from

it are better than those of our previous analysis and the algorithms

retrieved from the current literature. In the immune feature
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analysis, we integrated the currently common algorithms used to

evaluate immune features. By analyzing more than 1,000 results, we

obtained the most comprehensive immunological features,

providing a solid basis for practically evaluating the therapeutic

effects among molecular subtypes. Besides, in addition to using the

validation set to evaluate the effect of molecular classification, we

collected samples of OC patients in our hospital. Through IHC and

RT-PCR, we systematically analyzed 200 and 6 samples of OC

patients who visited our hospital and were pathologically diagnosed,

respectively. Through the external cohort, we evaluated the

robustness of the conclusions again. In vitro cytological

experiments, we first determined the role of FXYD6 in the

proliferation and migration abilities of OC and speculated on the

possibilities of the occurrence of this situation after overexpressing

FXYD6. Eventually, we focused our research on ferroptosis.

Nevertheless, we acknowledge that there are still some limitations

in our study. For instance, the cohorts we utilized varied in terms of

size and sequencing platforms; nevertheless, correction methods

were employed to mitigate these disparities. Furthermore,

additional investigation into the precise mechanism of the

tumorigenesis-related activity of the risk score genes is warranted.

Additionally, bigger prospective multi-center cohorts are needed to

more thoroughly validate the risk score’s clinical relevance.
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