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Background: Colorectal cancer (CRC) is a highly heterogeneous tumor, with

significant variation in malignant cells, posing challenges for treatment and

prognosis. However, this heterogeneity offers opportunities for personalized therapy.

Methods: The consensus non-negative matrix factorization algorithm was

employed to analyze single-cell transcriptomic data from CRC, which helped

identify malignant cell expression programs (MCEPs). Subsequently, a crosstalk

network linking MCEPs with immune/stromal cell trajectory development was

constructed using Monocle3 and NicheNet. Additionally, bulk RNA-seq data were

utilized to systematically explore the relationships betweenMCEPs, clinical features,

and geneticmutations. A prognosticmodel was then established through Lasso and

Cox regression analyses, integrating clinical data into a nomogram for personalized

risk prediction. Furthermore, key genes associated with MCEPs and their potential

therapeutic targets were identified using protein-protein interaction networks,

followed by molecular docking to predict drug-binding affinity.

Results:We classified CRC malignant cell transcriptional states into eight distinct

MCEPs and successfully constructed crosstalk networks between these MCEPs

and immune or stromal cells. A prognostic model containing 15 genes was

developed, demonstrating an AUC greater than 0.8 for prognostic evaluation

over 1 to 10 years when combined with clinical features. A key drug target gene

TIMP1 was identified, and several potential targeted drugs were discovered.

Conclusion: This study demonstrated that characterization of the malignant cell

transcriptional programs could effectively reveal the biological features of highly

heterogeneous tumors like CRC and exhibit significant potential in tumor

prognosis assessment. Our research provides new theoretical and practical

directions for CRC prognosis and targeted therapy.
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1 Introduction

Colorectal cancer (CRC) is one of the three most common

cancers worldwide and the second leading cause of cancer-related

deaths, driven by its profound molecular and cellular heterogeneity

(1–3). CRC is primarily classified into two genetic subtypes—

chromosomal instability (CIN) and microsatellite instability

(MSI)—with distinct biological behaviors and therapeutic

responses (4–7). Immune checkpoint blockade (ICB) therapy has

shown efficacy in advanced MSI-H tumors, yet most patients

remain unresponsive, underscoring the need for novel biomarkers

(8–10). Molecular subtyping approaches, such as the Consensus

Molecular Subtypes (CMS) classification, integrate bulk

transcriptomic and genomic data to stratify CRC into four

prognostic subtypes (CMS1-4) (11). However, these bulk-level

analyses fail to resolve the continuum of malignant cell states or

their dynamic crosstalk with the tumor microenvironment (TME)

(12, 13).

Recent advances in single-cell and spatial transcriptomics have

revolutionized cancer research by enabling high-resolution

dissection of tumor heterogeneity. Single-cell RNA sequencing

(scRNA-seq) and ATAC-seq reveal transcriptional and epigenetic

diversity within malignant cells, while spatial technologies map

cellular interactions in TME niches (14–17). Despite these

advances, existing studies often categorize malignant cells into

discrete subtypes or focus on isolated TME components,

neglecting the continuum of transcriptional plasticity and

bidirectional stromal-immune interactions (18–20). Traditional

methods like PCA or clustering impose rigid structures on

transcriptional data: PCA reduces variance to orthogonal

components but obscures transitional states, while clustering

forces discrete boundaries on inherently continuous programs. In

contrast, consensus non-negative matrix factorization (cNMF)

decodes continuous transcriptional dynamics, as demonstrated by

its ability to resolve plastic cell states in lung cancer (21).

To advance beyond these limitations, this study integrates single-

cell and spatial multi-omics data, applying cNMF to decode CRC

heterogeneity. We identified eight continuous transcriptional

programs (MCEPs) in malignant cells, encompassing dynamic

phenotypes such as hypoxia adaptation, partial EMT plasticity, and

glandular differentiation. By combining spatial co-localization with

pseudotime trajectory analysis of stromal and immune cells, we

uncovered how MCEPs remodel the TME through specific

regulatory nodes (e.g., TGFB1-mediated fibroblast activation,

HMGB2-dependent angiogenesis). Furthermore, we developed a

prognostic model integrating MCEP-TME interactions, validated

through protein-protein network analysis and experimental

databases to prioritize therapeutic targets.

The eight MCEPs delineate critical biological dimensions in

colorectal cancer progression (1): Inflammatory-Hypoxia Stress

Program (IHS-P) coordinates hypoxic adaptation and immune

modulation within immune-enriched niches (2); Wnt Signaling
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Stress Program (Wnt-S-P) drives canonical Wnt activation in

tumor cores (3); Proliferation Stress Program (PS-P) governs cell

cycle progression through MYC/mTORC1 signaling (4);

Inflammatory Epithelial pEMT Program (IE-pEMT-P) bridges

interferon responses with partial EMT plasticity (5); Intermediate

pEMT Program (I-pEMT-P) mediates TGFB1-dependent stromal

activation (6); Mesenchymal pEMT Program (M-pEMT-P)

executes ECM remodeling in stromal compartments (7); Cell

Cycle Program (CC-P) regulates pan-tumoral mitotic processes

(8); Glandular Secretion Program (GS-P) maintains epithelial

differentiation near normal tissues. This framework deciphers

CRC heterogeneity through malignant cell state dynamics and

their spatial-ecological networks, enabling prognostic prediction

and therapeutic target discovery for precision oncology.
2 Materials and methods

2.1 Download and preprocessing of single-
cell and spatial transcriptomics
sequencing data

Single-cell RNA sequencing data were processed using Seurat

(v5.1.0) with rigorous quality control. Three publicly available human

colorectal cancer datasets were analyzed: GSE166555 (13 tumors, 12

normals) (22), GSE200997 (16 tumors, 7 normals) (23) from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/

geo/), and syn26844071 (141 tumors, 39 normals) (24) from the

Synapse database (https://www.synapse.org/). Doublets were

removed using Scrublet (v0.2.3), followed by gene/cell filtering

criteria: genes detected in ≥3 cells, cells expressing ≥250 genes,

UMI counts <15,000, mitochondrial gene percentage <20%, and

erythrocyte gene ratio <1%.

Spatial transcriptomics data were obtained from the 10x

Genomics Visium HD platform (8 mm resolution) and

downloaded from the official 10x Genomics website (https://

www.10xgenomics.com/), comprising a total of three samples

(25) . Qual i ty contro l was performed on the spat ia l

transcriptomics data, with spots retained for downstream analysis

meeting the following thresholds: detection of ≥10 genes, UMI

counts >20, and mitochondrial gene ratio <25%.
2.2 Cell annotation for single-cell and
spatial transcriptomics data

scRNA-seq data underwent log-normalization and

identification of highly variable genes (vst method). Batch

correction was performed using Harmony (v0.1.0). Cell types

were annotated through a two-step approach: 1) Initial

classification using SingleR (v2.6.0) and CellTypist (v1.6.3) with

canonical markers; 2) Refinement via secondary dimensionality
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reduction and iterative CellTypist-based annotation, followed by

removal of misclassified cells.

For spatial data, we implemented memory-efficient processing

by subsampling 50,000 points using SketchData. Cell type

deconvolution was performed using RCTD (v2.2.1) with scRNA-

seq data as reference. Each spatial sample underwent independent

dimensionality reduction and annotation.
2.3 Identification of malignant epithelial
cells and gene expression
program profiling

Epithelial cells were isolated from the full cell atlas and

subjected to chromosomal copy number variation (CNV) analysis

using inferCNV (v1.18.1), with normal colorectal epithelial cells as

the reference. A CNV score matrix was generated, and unsupervised

K-means clustering partitioned cells into malignant or normal

clusters based on CNV-driven cluster purity.

For malignant cell subtyping, consensus high-variance genes

were identified through 200 iterations of 75% subsampling. Genes

recurrently ranked among the top 2,500 highly variable genes in

≥150 iterations were retained. These genes underwent non-negative

matrix factorization (cNMF) to decompose the expression matrix

into gene expression programs (GEPs) and their corresponding

activity scores. The optimal number of GEPs was determined by

minimizing reconstruction error and maximizing stability via elbow

plot analysis.

To define high-weight genes within each MCEP, genes were

ranked by their absolute weights in the cNMF gene coefficient

matrix. The top 100 genes per program, exhibiting the strongest

association with each transcriptional module, were selected for

downstream spatial mapping. Spatial enrichment scores for these

gene sets were computed using the AUCell R package (v1.24.0),

enabling visualization of MCEP distribution patterns across

tissue sections.
2.4 Pseudotime analysis

Developmental trajectories were reconstructed using Monocle3

(v1.3.5) with UMAP for dimensionality reduction. Cell subtypes

were pre-annotated through immune and stromal cell clustering,

which revealed preliminary developmental hierarchies. To resolve

ambiguous differentiation origins arising from complex branching

trajectories, we implemented a hybrid strategy for root node

selection (1): For lineages with biologically established progenitor-

differentiated cell relationships (e.g., T cell and B cell hierarchies),

root nodes were manually assigned to progenitor states based on

canonical marker expression and prior biological knowledge (2);

For cell types lacking definitive developmental origins, root nodes

were computationally determined by selecting the subpopulation

with the highest transcriptional immaturity index, as quantified by

CytoTRACE2 (v1.0.0). Trajectory-associated genes were identified

using Monocle3’s graph_test function with “neighbor_graph=
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principal_graph” to evaluate gene expression dynamics along

reconstructed paths.
2.5 Expression program crosstalk networks

Intercellular crosstalk networks were constructed by defining

trajectory-associated genes (Moran’s |I| > 0.25, q < 0.05) from each

malignant cell population as target gene sets. For each MCEP, the

top 100 weighted genes in expression programs were selected as

candidate regulators. Ligand-target interactions were predicted

using NicheNet (v2.1.5), generating regulatory potential matrices

where malignant cell regulators were prioritized based on their

capacity to modulate target gene sets. Potential interactions in the

lowest tertile of regulatory scores were nullified to eliminate

spurious associations. Final immune and stromal interaction

networks were reconstructed in Cytoscape (v3.10.2) using

thresholded matrices for edge weighting.
2.6 Bulk sequencing data sources

Bulk RNA-seq data and simple nucleotide variation (SNV) data

for colorectal cancer were obtained from The Cancer Genome Atlas

(TCGA) database (https://www.cancer.gov/ccg/research/genome-

sequencing/tcga). Using the R package TCGAbiolinks (v2.30.4),

we retrieved RNA-seq data from 581 colorectal cancer patients and

51 normal colorectal control samples, along with SNV data for 538

patients. Clinical data for TCGA patients and pan-cancer gene

expression profiles were additionally acquired from the UCSC Xena

database (https://xena.ucsc.edu/).

To complement TCGA data, gene expression microarray

datasets and corresponding clinical information were downloaded

from the GEO database. Datasets included GSE39582 (26),

GSE17536 (27), GSE17537 (27), GSE29621 (28), GSE38832 (29),

GSE143985 (30), and GSE161158 (31), all generated on the GPL570

platform. From GSE39582, GSE17536, GSE17537, GSE29621, and

GSE38832, overall survival (OS) data were extracted. After filtering

samples with missing survival time, status, or non-positive survival

time, 573, 177, 55, 65, and 122 samples were retained, respectively.

Disease-free survival (DFS) and recurrence/survival status data

were obtained from GSE143985 and GSE161158. Following

s imi l a r qua l i t y con t ro l , 91 and 174 sample s wer e

retained, respectively.
2.7 Differential and enrichment analyses

To further investigate the changes in expression program-

related genes at the bulk level, we integrated two distinct gene

cohorts: 1) the top 100 weighted genes from each MCEP module,

and 2) computationally predicted target genes in the MCEP-

immune/stromal cell crosstalk network. Differential gene

expression analysis was performed on this merged gene set using

bulk RNA-seq data from the TCGA cohort through the R package
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DESeq2 (version 1.42.1). Statistical significance was defined as

absolute Fold Change > 1.5 and padj < 0.05. Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses were subsequently conducted on the identified

differentially expressed genes (DEGs) using the clusterProfiler

package (version 4.2.2) to characterize their functional roles.
2.8 Consensus clustering and intra-
cluster comparison

Differentially expressed genes from TCGA were subjected to

univariate Cox regression analysis (survival package v3.5-8, p<0.05)

to identify survival-associated genes. Consensus clustering via

ConsensusClusterPlus (v1.66.0) with 500 bootstraps (80% sample

resampling) and K-means (Euclidean distance) identified optimal

clusters (k=2-10) by evaluating consensus matrices and cumulative

distribution functions (CDF). Subtype-specific survival differences

were assessed by Kaplan-Meier analysis, while chi-square tests

evaluated clinical characteristics (gender, age, stage). Mutation

landscapes were visualized using maftools (v2.18.0), highlighting

the top 15 recurrently mutated genes per subtype.
2.9 Construction of the prognostic model

Gene expression data were obtained from TCGA and seven

GEO datasets (GSE39582, GSE17536, GSE17537, GSE29621,

GSE38832, GSE143985, GSE161158). Batch effects were mitigated

through z-score normalization followed by batch correction using

the `removeBatchEffect` function (limma package v3.58.1). The

TCGA and GSE39582 cohorts were partitioned into a training set

(70% of samples) and an internal validation set (30%), while

remaining datasets served as external validation cohorts.

To address feature redundancy, genes identified by univariate

Cox regression (p < 0.05) were subjected to Lasso regression

(glmnet v4.1-4) for dimensionality reduction. A stepwise

backward Cox regression was then applied to optimize model

complexity by minimizing the Akaike Information Criterion (AIC).

Risk scores were computed for all samples across training and

validation cohorts. Survival differences between high- and low-risk

groups (stratified by median risk scores) were evaluated using

Kaplan-Meier analysis with log-rank tests. Predictive performance

was quantified via time-dependent ROC curves and AUC values.

Model robustness and clinical applicability were systematically

validated across internal and external datasets using survival

outcomes and AUC consistency.
2.10 Bulk immune landscape and
calculation of single-cell and spatial
risk scores

To explore the biological relevance of our prognostic model, we

performed tumor immune microenvironment analysis on the
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TCGA cohort using the IOBR package (v0.99.9). Immune cell

composition was quantified by integrating eight computational

algorithms (MCPcounter, EPIC, xCell, CIBERSORT, IPS,

quanTIseq, ESTIMATE, and TIMER). Spearman correlation

analysis was then applied to evaluate associations among immune

infiltration scores, prognostic feature gene expression, and sample

risk scores.

For single-cell and spatial transcriptomic data, we adapted our

risk scoring approach to address inherent data sparsity. Based on

the regression coefficients from the linear prognostic model, feature

genes were partitioned into two subsets: a positive-coefficient subset

(PosRisk genes) and a negative-coefficient subset (NegRisk genes).

The AddModuleScore function was employed to calculate

PosRiskScore and NegRiskScore for each subset independently.

Final RiskScore was derived as PosRiskScore minus NegRiskScore.

This strategy enabled robust quantification of model-associated

biological processes at cellular and spatial resolutions while

mitigating technical limitations of sparse transcriptomic data.
2.11 Construction of a nomogram

Univariate Cox regression analysis was performed on TCGA

cohort data to preliminarily identify variables (risk score, age,

gender, tumor stage, and other clinical features) associated with

overall survival. Subsequently, multivariate Cox regression analysis

incorporating all candidate variables without prior feature selection

was conducted to evaluate their independent prognostic

contributions while adjusting for potential confounders.

A nomogram integrating the risk score and significant clinical

predictors was developed using the regplot package (v1.1) to

visualize survival probability estimates. Time-dependent receiver

operating characteristic (ROC) analyses spanning 1-10 years were

implemented to quantify predictive accuracy through area under

the curve (AUC) calculations. Model calibration was validated using

the rms package (v6.8-1) by comparing predicted versus observed

survival probabilities via bootstrapped calibration curves (1,000

resamples). Clinical utility was further assessed through decision

curve analysis (DCA) using the rmda package (v1.6), which

quantified net benefits across threshold probabilities ranging from

0% to 100%. This comprehensive validation framework ensures

methodological rigor and supports clinical translation of the

prognostic model.
2.12 Key genes identification with
malignant cell expression programs and
drug screening

Differential expression analysis was performed on prioritized

genes derived from malignant cell expression programs and their

microenvironment-associated targets. Resultant genes were

analyzed through the STRING database (https://cn.string-db.org/)

to construct protein-protein interaction (PPI) networks, which were
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further visualized and analyzed in Cytoscape (v3.9.1). Core hub

genes were systematically identified using the cytoHubba plugin

(v0.1) with four topology-based algorithms: MNC, MCC, DMNC,

and Degree.

Expression differences of candidate genes between tumor and

adjacent normal tissues were statistically validated using the

Wilcoxon rank-sum test. Immunohistochemical images from The

Human Protein Atlas (HPA, https://www.proteinatlas.org/) were

utilized as supporting evidence.

For therapeutic exploration, three-dimensional structures of

key t a rg e t s we r e r e t r i ev ed f rom UniPro t (h t tp s : / /

www.uniprot.org/), and 2,391 FDA-approved small-molecule

drugs were sourced from DrugBank (https://go.drugbank.com/).

Structural data standardization was implemented using rdkit

(v2023.9.6) and meeko (v0.5.1), followed by protein active site

prediction via the Prankweb database (https://prankweb.cz/).

Molecular docking simulations were executed with AutoDock

Vina (v1.2.5), prioritizing compounds based on binding affinity

(DG, kcal/mol). The top two ligands exhibiting optimal docking

scores were selected for binding conformation visualization using

PyMOL (v3.1.0a0).
2.13 Software and data analysis tools

Single-cell and spatial transcriptomic analyses were performed

using R (v4.3.2), with the cNMF algorithm (https://github.com/

dylkot/cNMF) implemented in Python (v3.8.19). Drug virtual

screening was conducted using Python (v3.10.14). Data

visualization was facilitated by R packages, including SCP

(v0.5.6), ggplot2 (v3.5.1), and ComplexHeatmap (v2.18.0).

Univariate and multivariate Cox regression analyses were

executed using the survival package (v3.5-8), while time-

dependent AUC values were computed with the timeROC

package (v0.4). Kaplan-Meier survival curves were generated

using the survminer package (v0.4.9).
3 Results

3.1 Identification of malignant cells and
characterization of heterogeneous
expression programs

In this study, we integrated single-cell transcriptomic data from

three datasets (GSE166555, GSE200997, and syn26844071),

comprising 58 normal colorectal samples and 170 CRC samples.

Following rigorous quality control and dimensionality reduction, a

total of 320,475 cells were classified into 10 major cell types: B cells,

T/NK cells, epithelial cells, plasma cells, fibroblasts, myeloid cells,

endothelial cells, mast cells, mural cells, and enteric glial

cells. Among these, T/NK cells were the most abundant (135,789

cells), followed by myeloid cells and fibroblasts (Figure 1A,

Supplementary Figure S1-Supplementary Figure S2, and

Supplementary Figure S3A-G). These refined annotations were
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(ST1, ST2, ST3), enabling the visualization of the spatial

distribution of different cell types within colorectal cancer

tumors (Figure 1B).

To further investigate CRC heterogeneity, epithelial cell data

were extracted from the comprehensive cell atlas. To ensure the

purity of the epithelial cells, we re-annotated them using the SingleR

and CellTypist algorithms, removing incorrectly classified cells

(Supplementary Figure S4A-B). CNV scoring was performed on

epithelial cells from tumor samples using the inferCNV algorithm,

with normal epithelial cells serving as the reference. K-means

clustering of the CNV score matrix revealed that epithelial cells

from normal samples predominantly clustered in clusters 10, 15,

and 25, exhibiting no significant CNV alterations. In contrast,

epithelial cells from tumor samples showed clear gene copy

number alterations, distinguishing them as malignant cells

(Figure 1C, Supplementary Figure S4C). Malignant epithelial cells

were identified by excluding clusters 10, 15, and 25 from the

tumor samples.

Given the high heterogeneity of CRC cells, traditional clustering

methods were insufficient to fully capture their complexity.

Therefore, we applied the cNMF algorithm, which demonstrated

high stability and low error when set to eight expression programs

(Figure 1D). Consensus analysis confirmed the robustness of these

eight expression programs, with substantial consistency across

repeated experiments and outliers identified using a threshold of

0.05 (Figure 1E, Supplementary Figure S4D). These eight stable

expression programs effectively captured the transcriptional

characteristics of malignant CRC cells, providing a reliable

framework for further analysis of CRC heterogeneity.

To visualize the spatial distribution of these MCEPs, we applied

the AUCell algorithm to spatial transcriptomic data, scoring each

sample based on the top 100 weight genes of each program.

Enrichment analysis of the top 100 weight genes from each

program was conducted, primarily referencing a gene set from

the study by Barkley, D. et al. on pan-cancer tumor cell

heterogeneity, supplemented with enrichment results from

Hallmark Gene Sets and KEGG Pathways (32). This analysis

revealed that MCEP 1, 2, and 7 were associated with stress

responses. MCEP 1 was enriched in pathways related to hypoxia,

antigen processing and presentation, chemokine signaling, and IL-

17 signaling, while MCEP 2 was enriched inWnt signaling. MCEP 7

was enriched in cell proliferation-related pathways, including the

G2M checkpoint, mTORC1 signaling, and Myc targets V1. These

programs were categorized as Inflammatory-Hypoxia Stress

Expression Program (IHS-P), Wnt Signaling Stress Expression

Program (Wnt-S-P), and Proliferation Stress Expression Program

(PS-P), respectively. The spatial distribution of these MCEPs

showed that IHS-P was prevalent in malignant and immune cell-

rich regions, while Wnt-S-P and PS-P were more confined to

malignant cells (Figures 1F, G).

Additionally, MCEP 3, 4, and 6 were associated with pEMT

states. MCEP 3 was enriched in pEMT states and interferon

responses, with higher spatial scores observed in both malignant

and normal epithelial cells. MCEP 6, enriched in mesenchymal,
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FIGURE 1

Functional characterization of malignant cell expression programs in colorectal cancer. (A) UMAP visualization of major cell types color-coded by
cell lineage following quality control. (B) Spatial mapping of cell type distributions across three independent colorectal cancer specimens (ST1-3)
using spatial transcriptomics. (C) Copy number variation (CNV) heatmap of epithelial cells stratified by k-means clustering (left panel). Tumor-derived
cells (red) and normal counterparts (blue) are segregated based on chromosomal amplification (red) and deletion (blue) patterns. (D) Model selection
curve demonstrating the optimal number of expression programs determined by consensus non-negative matrix factorization (CNMF), balancing
stability and reconstruction error. (E) Consensus matrix establishing robust program identification. (F) Spatial activation patterns of MCEPs across
tumor sections (ST1-3). (G) Functional enrichment analysis integrating pan-cancer malignant cell states (Barkley et al.), Hallmark gene sets, and
KEGG pathways.
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myogenesis, and ECM-receptor interaction pathways, displayed

preferential spatial scores in the stromal compartment. Based on

these findings, MCEPs 3, 4, and 6 were categorized as Inflammatory

Epithelial-type pEMT Program (IE-pEMT-P), Intermediate Type

pEMT Expression Program (I-pEMT-P), and Mesenchymal Type

pEMT Expression Program (M-pEMT-P), respectively. The spatial

distributions and enrichment results for these programs are shown

in Figures 1F, G.

MCEP 5, enriched in cell cycle-related pathways such as Cell

Cycle, E2F Targets, and G2M checkpoint, exhibited a dispersed

spatial distribution across malignant and epithelial cells, and was

categorized as the Cell Cycle Expression Program (CC-P). MCEP 8,

primarily enriched in glandular and protein processing pathways in

the endoplasmic reticulum, showed a preference for normal

epithelial cells and was categorized as the Glandular Secretion

Expression Program (GS-P). The spatial distributions and

enrichment analyses for MCEP 5 and MCEP 8 are also shown in

Figures 1F, G.
3.2 Crosstalk networks between malignant
cells and immune cells mediated by
differential MCEPs

To investigate the cell-cell interactions between malignant cells

and immune cells, we first extracted each immune cell type (T/NK

cells, B/plasma cells, and myeloid cells) from the comprehensive cell

atlas for further detailed cell type annotation. T/NK cells were

subdivided into 16 subpopulations, including CD4 Naive, CD4

Effector/Memory, and ILC; B/plasma cells were further

categorized into 6 subpopulations, such as Naive B, Memory B,

and IgA Plasma; Myeloid cells were divided into 10 subpopulations,

including Macro_C1QC, Mast cells, and Mono_CD16 (Figure 2A,

Supplementary Figure S5-7). Subsequently, pseudotime analysis

was performed based on the secondary annotation results of each

immune cell type and the stemness scores of each cell type, leading

to the identification of genes associated with developmental

trajectories in each immune cell population (Figure 2B,

Supplementary Figure S8A).

These genes, associated with the pseudotime developmental

trajectory of immune cell subsets, were used as target gene sets. For

each MCEP, we selected the top 100 weighted genes in the

expression programs as candidate regulators (Figure 2C). Among

the three stress-related MCEPs, IHS-P had the highest number of

regulatory factors, with HLA-DMA and PLAU affecting more target

genes than other factors. In the three pEMT-related MCEPs, I-

pEMT-P had the most regulatory factors, with TGFB1 having the

greatest potential impact. Regulatory factors EDN1 and AREG were

also abundant and shared between I-pEMT-P and IHS-P. In CC-P,

HMGB1 had the most target genes, while TFF1 and WNT4 were

more prominent in GS-P.

Regarding immune cell responses to MCEP crosstalk, TGFB1

and CALR were the main regulatory factors influencing T/NK cells,

with TGFB1 originating from I-pEMT-P and CALR from IHS-P

(Figure 2C, Supplementary Figure S9A, Supplementary Figure
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S10A). Notable downstream target genes of TGFB1 in T/NK cells

included CCL3, FOXP3, and GZMB. For B/plasma cells, EDN1 and

TGFB1 were the main regulatory factors, with EDN1 shared

between IHS-P and I-pEMT-P (Figure 2C, Supplementary Figure

S9B, Supplementary Figure S10B). Potential target genes of EDN1

in B cells included NCF1, PTPRC, and SLC2A3, while TGFB1 target

genes included TIMP1, VIM, and CD38. In myeloid cells, the

primary regulatory factors were TGFB1 and ANXA1, with

ANXA1 originating from I-pEMT-P (Figure 2C, Supplementary

Figure S9C, Supplementary Figure S10C). Potential target genes of

TGFB1 in myeloid cells included ASB2, IGF1, and MMP9.

KEGG pathway enrichment analysis of the potential target

genes in these immune cell subsets revealed significant biological

insights (Figure 2D). The target genes of T/NK cells regulated by

malignant cells were enriched in pathways such as Cytokine

−cytokine receptor interaction, Th17 cell differentiation, and

Chemokine signaling pathway, indicating a key role of cytokine

networks in anti-tumor immune responses. The potential target

genes of B/plasma cells were enriched in pathways such

as Fc gamma R−mediated phagocytosis and Leukocyte

transendothelial migration, suggesting their role in tumor-

associated immunosuppression. In myeloid cells, the target genes

regulated by malignant cells were enriched in IL−17 signaling

pathway and TNF signaling pathway, highlighting their

involvement in immune regulation and inflammation within the

tumor microenvironment. These findings provide valuable

biological insights for the development of future cancer therapies.
3.3 Crosstalk networks between malignant
cells and stromal cells mediated by
differential MCEPs

To investigate the effects of malignant cells on stromal cells, we

performed detailed cell type annotation and stemness analysis on

four stromal cell types: endothelial cells, mural cells, fibroblasts, and

enteric glial cells, using methods similar to those employed for

immune cell analysis (Figure 3A, Supplementary Figure S8B,

Supplementary Figure S11-14). By integrating detailed

annotations and stemness analysis, we reconstructed the

developmental trajectories of these stromal cells and identified

genes associated with their development (Figure 3B). We used

high-weight genes from each MCEP as ligands to identify

potential target genes in stromal cells associated with pseudotime

trajectories, constructing a crosstalk network between malignant

and stromal cells (Figure 3C).

Regarding regulatory factors in MCEPs affecting stromal cells,

IHS-P had the highest number of potential regulatory factors, with

PLAU affecting the most target genes. In Wnt-S-P, MIF was the

only potential regulatory factor, while HSP90B1 and CDH1 were

found in PS-P. Among the pEMT-related MCEPs, M-pEMT-P had

more potential regulatory factors than the others, with BMP4

having the most target genes. I-pEMT-P’s top regulatory factor

was TGFB1, with AREG and EDN1 also shared with IHS-P. CC-P

had two regulatory factors, HMGB1 and HMGB2, with HMGB1
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affecting more target genes, although HMGB2 exhibited stronger

interactions with certain stromal targets. TFF1 was the top

regulatory factor in GS-P.

From a stromal cell perspective, the key regulatory factors for

endothelial cells were HMGB2, TGFB1, and EDN1. HMGB2 target

genes, associated with proliferative endothelial cells, included

ASPM, AURKB, and BIRC5 (Figure 3C, Supplementary Figure
Frontiers in Immunology 08
S15A, Supplementary Figure S16A). TGFB1 and EDN1 target

genes, including CTGF, EDN1, IGF1, and CALCRL, are mainly

involved in angiogenesis. For mural cells, HMGB2, TGFB1, and

EDN1 were the main regulatory factors, with HMGB2 targets such

as FOXM1, KIF20A, and KIF2C, expressed in proliferative mural

cells. TGFB1 and EDN1 targets included CDKN1A, CNN1,

COL1A1, and EDNRB, contributing to cell proliferation and
FIGURE 2

Crosstalk networks between MCEPs and immune cells. (A) Secondary dimensionality reduction annotation of three immune cell types (T/NK cells, B/
Plasma cells, Myeloid cells). (B) Pseudotemporal trajectories reconstructed by Monocle3 for T/NK cells, plasma cells, and myeloid cells. (C) Ligand-
receptor interaction network between MCEP-derived factors (circles, size scaled by target connectivity) and immune cell targets (diamonds, line
width reflecting interaction strength). (D) Pathway enrichment analysis of target genes using hypergeometric testing, showing top five KEGG
pathways per immune subset (point size: gene count; color intensity: -log10[P-value]).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1556386
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1556386
stromal stability (Figure 3C, Supplementary Figure S15B,

Supplementary Figure S16B). In fibroblasts, HMGB2, TGFB1, and

EDN1 were also key regulatory factors, with TGFB1 target genes

including NOX4, THBS2, and DES (Figure 3C, Supplementary

Figure S15C, Supplementary Figure S16C). Enteric glial cells had

fewer potential crosstalk genes, with top regulatory factors ANXA1,

TIMP1, and HLA-A, and target genes such as COL1A1 and
Frontiers in Immunology 09
COL3A1, which may support tumor structure and growth

(Figure 3C, Supplementary Figure S15D, Supplementary Figure

S16D). Overall, the primary regulatory factors influencing stromal

cell crosstalk were HMGB2, TGFB1, and EDN1, with HMGB2

regulating cell cycle-related targets.

Additionally, KEGG pathway enrichment analysis of potential

crosstalk target genes for each stromal cell type revealed significant
FIGURE 3

Crosstalk networks between MCEPs and stromal cells.(A) Secondary dimensionality reduction annotation of four stromal cell types (endothelial cells,
mural cells, fibroblasts, and enteric glial cells). (B) Pseudo-temporal trajectory analysis of four stromal cell subtypes (endothelial cells, mural cells,
fibroblasts, and enteric glial cells) shown through UMAP visualization. Color gradient (purple to yellow) indicates developmental progression from
early to late stages. (C) Ligand-receptor interaction network between stromal cell-derived ligands (circles) and immune cell targets (diamonds). Node
size corresponds to ligand-associated target quantity, line thickness represents interaction strength. (D) KEGG pathway enrichment of stromal cell
target genes. Top five non-disease related pathways are displayed with point size indicating gene count and color intensity showing significance
level (-log10[P-value]).
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biological insights (Figure 3D). Endothelial cell targets were

enriched in pathways such as the p53 signaling pathway, FoxO

signaling pathway, Cellular Senescence, and Cell Cycle, suggesting

their adaptability in the tumor microenvironment. Mural cell

targets were enriched in the Cell Cycle, p53 signaling pathway,

Focal Adhesion, Relaxin signaling pathway, and ECM-receptor

interaction, emphasizing their roles in cell proliferation and

matrix remodeling. Fibroblast targets were enriched in the

Relaxin signaling pathway, Focal Adhesion, IL-17 signaling

pathway, Protein Digestion and Absorption, and TNF signaling

pathway, reflecting their dual role in immune regulation and matrix

homeostasis. Enteric glial cell targets were enriched in IL-17

signaling, TNF signaling, Relaxin signaling, Osteoclast

differentiation, and Protein Digestion and Absorption pathways,

indicating their role in immune function and matrix support in the

gut microenvironment.
3.4 MCEPs validation in CRC progression
and development of MCEPs-related
prognostic model

We conducted a validation study using the TCGA CRC cohort

to explore the relationship between the 8 MCEPs and CRC

progression. First, we merged two gene sets: 1) the top 100

weighted genes from each MCEP module, and 2) predicted target

genes from the MCEP-immune/stromal cell interaction network.

Differential expression analysis was then performed comparing

tumor versus normal tissues. This analysis identified 323

upregulated genes and 215 downregulated genes (Figure 4A).

To validate the relationship between these MCEPs and CRC

onset and progression, we conducted univariate Cox regression

analysis and identified 75 differentially expressed genes (DEGs)

associated with survival, including 26 risk genes and 49 protective

genes (Figure 4B). Clustering analysis based on these genes divided

the TCGA cohort into two subtypes (Figure 4C, Supplementary

Figure S17). Survival analysis revealed significant differences

between the subtypes, with patients in subtype C1 showing

significantly higher survival rates compared to those in subtype

C2 (Figure 4D). Chi-square tests indicated significant differences in

tumor stage, lymph node metastasis, and distant metastasis,

suggesting that tumors in the C2 subtype progressed more rapidly

and were more prone to metastasis compared to those in the C1

subtype (Figure 4E).Genomic analysis revealed that the most

frequently mutated genes in subtype C1 were APC (70%), KRAS

(48%), and TP53 (47%) (Supplementary Figure S18A), while in

subtype C2, the most frequently mutated genes were APC (81%),

TP53 (74%), and TTN (44%) (Supplementary Figure S18B).

A prognostic model for assessing CRC patient survival was

developed using the identified genes. LASSO regression analysis was

performed to reduce the feature set from the 75 survival-related

DEGs identified in the previous study to 29 genes at the minimum l
value (l = 0.0153), including genes such as CLCA1, NPDC1, and

MUC16 (Figures 4F, G). A backward stepwise Cox regression

method was then applied to further reduce the feature set to 15
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genes, with the regression coefficients visualized in a lollipop plot.

The combination of LASSO and backward stepwise Cox regression

methods enabled the identification of the most robust prognostic

markers, minimizing overfitting while ensuring the model’s

predictive accuracy. Thus, these 15 genes were selected to

establish the final prognostic model. Seven features had positive

coefficients, with CLCA1 having the largest coefficient, while eight

features had negative coefficients, with ITLN1 showing the largest

absolute coefficient (Figure 4H).

In the training set, internal testing set, and external independent

validation set, samples were divided into high-risk and low-risk

groups based on the median risk score for each dataset. Significant

survival differences were observed between the two groups

(Figures 4J, K). In the training set, the AUC values for 1-year, 3-

year, and 5-year survival were all greater than 0.7; in the internal

testing set, the AUC value for 1-year survival was greater than 0.7,

while those for 3-year and 5-year survival were above 0.65 (Figure 4I).

The model also demonstrated excellent predictive performance in the

independent validation set, with only GSE17536 showing a 5-year

survival AUC value lower than 0.65. For all other datasets, the AUC

values for 1-year, 3-year, and 5-year survival were all greater than

0.65. Notably, the GSE29621 dataset showed AUC values for 1-year,

3-year, and 5-year survival above 0.7, and the GSE38832 dataset

exhibited even higher AUC values for all three survival endpoints,

with values exceeding 0.75 (Figure 4I).

To further validate the prognostic prediction capability of this

model, we assessed its ability to predict disease-free survival (DFS)

in the GSE143985 and GSE161158 datasets. Samples were divided

into risk groups based on the median predicted risk score, and

significant differences in DFS were observed between the groups

(Figure 4L). In GSE143985, the AUC values for 1-year and 3-year

DFS were above 0.65, with the 5-year DFS AUC value approaching

0.65. In GSE161158, the corresponding AUC values for DFS were

above 0.65 (Figure 4I). The model was further validated in the

TCGA cohort for disease-specific survival (DSS), progression-free

interval (PFI), and disease-free interval (DFI), showing excellent

predictive performance for DSS and PFI, with significant differences

in median survival times (Figure 4M). For DSS, the AUC values

for 1-year, 3-year, and 5-year survival were all above 0.7,

and for PFI, the AUC values were above 0.65 (Figure 4I).

Notably, the model consistently achieved stable predictive

accuracy across six independent validation cohorts (GSE17536,

GSE17537, GSE29621, GSE38832, GSE143985, and GSE161158)

and multiple clinical endpoints (OS, DFS, DSS, PFI), highlighting its

strong generalizability to diverse patient populations and

survival outcomes.
3.5 Multidimensional biological
interpretation of the prognostic model

To gain further insights into the biological underpinnings of the

prognostic model, the cellular abundance of various cell types in the

TCGA cohort was first calculated using deconvolution methods.

Next, the correlation between each gene in the prognostic model
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and the cell scores was computed, revealing that CCL11, IGF1, and

IGFBP3 were significantly correlated with multiple cell types.

Specifically, these genes were positively correlated with cancer-

associated fibroblasts, stromal score, and Tregs, while negatively

correlated with tumor purity (Figure 6A).

The model was then further dissected at the single-cell level.

Using genes with positive coefficients, a PosRiskScore for each cell

was calculated, and similarly, a NegRiskScore was calculated using

genes with negative coefficients. The total RiskScore for each cell was

derived by computing the difference between PosRiskScore and
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NegRiskScore. The distribution of these scores was first visualized,

and distinct distribution patterns for PosRiskScore and NegRiskScore

were observed (Figure 6B). Specifically, PosRiskScore was found to be

higher in endothelial cells and pre-cancer-associated fibroblasts

(preCAFs), potentially linked to angiogenesis and epithelial-

mesenchymal transition. In contrast, NegRiskScore was elevated in

iCAFs, epithelial cells, normal fibroblasts, and myeloid immune cells,

with NegRiskScore correlating with iCAFs and myeloid immune

cells, which might reflect the inflammatory characteristics of the

tumor microenvironment. Higher scores in epithelial cells were also
FIGURE 4

Validation of MCEPs in CRC progression and development of MCEPs-related prognostic models. (A) Volcano plot of differentially expressed genes (|
FC| > 1.5, adjusted p < 0.05). (B) Univariate Cox survival analysis of prognostic genes (HR>1, red: risk factors; HR<1, blue: protective factors; p<0.05).
(C) Consensus clustering matrix for two molecular subtypes. (D) Kaplan-Meier survival comparison between subtypes. (E) Clinical feature distribution
across subtypes (c² test). (F) LASSO coefficient profiles of candidate genes. (G) Optimal l selection through 10-fold cross-validation (minimum
deviance criterion). (H) Final model features with corresponding regression coefficients. (I) AUC values of the prognostic model across different
datasets and prognostic indicators at 1-, 3-, and 5-year time points. (J-M) Kaplan-Meier survival curves stratified by median risk score in: (J) Training
and internal validation sets; (K) External independent validation set; (L) DFS-specific dataset; (M) TCGA cohort with distinct survival endpoints.
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observed, which could be indicative of a more epithelial-like

phenotype associated with partial EMT processes (Figure 6C).

Furthermore, the analysis was extended to the spatial

transcriptomics level. It was shown that PosRiskScore was

predominantly localized in the stromal regions of malignant cell

areas, while NegRiskScore was mainly concentrated in the epithelial

regions. Consequently, the final RiskScore had the lowest score in

the epithelial areas and the highest score in the stromal regions, with
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similar distribution patterns observed across three samples

(Figure 6D). Overall, the positive coefficient features in the

prognostic model were likely to represent higher levels of

mesenchymal traits associated with pEMT, while the negative

coefficient features were likely linked to a more inflammatory

microenvironment and epithelial characteristics of pEMT. Thus,

the final RiskScore reflected the relative balance between epithelial-

mesenchymal features and the degree of inflammation in the
FIGURE 5

Clinical prognostic value and nomogram construction. (A) Forest plots of univariate Cox regression analyses for RiskScore and clinicopathological
parameters (gender, age, tumor stage). (B) Forest plots of multivariate Cox regression analyses for RiskScore and clinicopathological parameters
(gender, age, tumor stage). (C) Clinical nomogram integrating T/N staging, tumor stage, age, gender, and RiskScore. (D) Time-dependent ROC
analysis (1-10 years) for nomogram performance. (E) Calibration curves comparing predicted vs observed survival probabilities at 1/3/5 years. (F)
Decision curve analysis evaluating clinical utility across threshold probabilities.
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tumor microenvironment, offering valuable insights into

patient prognosis.
3.6 Integration of risk score and clinical
features to construct a nomogram for
prognosis prediction

To enhance the prognostic accuracy and clinical applicability of

the model, univariate Cox regression analysis was performed on
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age, gender, clinical stage, Stage_T, Stage_N, Stage_M, and

RiskScore (Figure 5A). Significant survival risk factors were

identified for all features except gender. In multivariate Cox

regression analysis, age, Stage_T, and RiskScore were found to be

independently associated with survival, confirming RiskScore as an

independent prognostic factor (Figure 5B).

A nomogram was subsequently constructed, incorporating age,

gender, clinical stage, Stage_T, Stage_N, and RiskScore (Figure 5C).

It was demonstrated that the nomogram improved clinical

decision-making compared to traditional staging systems through

three key mechanisms: First, continuous risk quantification allowed
FIGURE 6

Multidimensional biological interpretation of prognostic signatures. (A) Spearman correlation heatmap between model genes and deconvoluted
immune cell populations (red: positive, blue: negative). (B) Single-cell UMAP projections visualizing risk-associated signatures: PosRiskScore (positive
coefficient genes), NegRiskScore (negative coefficient genes), and composite RiskScore. (C) Dot plot displaying cell type-specific enrichment of risk
signatures (dot size: scoring cell proportion; color intensity: score magnitude). (D) Spatial distribution patterns of risk signatures across three
representative specimens (ST1-ST3).
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for more precise stratification of patient outcomes than categorical

staging classifications. Second, the multidimensional integration of

molecular risk scores with clinicopathological parameters provided

complementary prognostic information that surpassed the

limitations of anatomical staging alone. Third, the dynamic

estimation of survival probability for specific timepoints (1-10

years) facilitated personalized follow-up planning and therapeutic

decision-making. Stage_M was excluded from the analysis due to

collinearity with overall stage.

Excellent predictive performance was demonstrated by the

nomogram, with AUC values exceeding 0.8 for survival

predictions at 1, 3, 5, and 10 years (Figure 5D). Strong agreement

between predicted and actual survival probabilities was observed in

calibration curves for 1, 3, and 5 years (Figure 5E). Clinical decision

curve analysis revealed that the nomogram consistently provided

higher net benefits across various threshold probabilities when

compared to both individual clinical parameters and traditional

staging systems (Figure 5F). The enhanced clinical utility of the

nomogram was attributed to its ability to synthesize molecular

biomarkers with conventional staging data, addressing the

heterogeneity within traditional stage categories and enabling

more individualized risk assessment. These findings collectively

validated the effectiveness and clinical applicability of the

proposed model.
3.7 Potential drug therapeutic targets
based on MCEPs

To identify actionable therapeutic targets in CRC, we

systematically analyzed 538 DEGs through PPI network

construction. Four distinct topological algorithms (MNC, MCC,

DMNC, Degree) were employed to prioritize the top 100 hub genes

from the PPI network. Subsequent survival impact analysis revealed

that TIMP1 and IGF1 emerged as prognostic risk genes among

these hub genes. Notably, TIMP1 exhibited consistent identification

across all four algorithms, whereas IGF1 was only captured byMNC

and Degree algorithms (Figure 7A). Based on its algorithm-

independent prioritization and significant association with poor

prognosis, TIMP1 was selected as the principal therapeutic target

for further investigation.

Pan-cancer expression profiling demonstrated significant

TIMP1 upregulation in 15 malignancies (including colorectal

adenocarcinoma [COAD], breast invasive carcinoma [BRCA],

and cholangiocarcinoma [CHOL] as representative examples),

while downregulation was observed in 10 cancer types

(exemplified by kidney chromophobe [KICH] and lung squamous

cell carcinoma [LUSC]) with no significant alterations detected in

other malignancies (Figure 7B). Immunohistochemical validation

via the Human Protein Atlas confirmed elevated TIMP1 protein

levels in CRC, breast cancer, glioma, hepatocellular carcinoma, and

gastric adenocarcinoma (Figure 7C), underscoring its pan-

cancer relevance.
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Virtual screening of 2,000 bioactive compounds against the

TIMP1 structure identified Venetoclax (DG = -12.236 kcal/mol)

and Lumacaftor (DG = -12.129 kcal/mol) as top candidates with

superior binding affinities (Figure 7D). Molecular docking

simulations predicted stable interactions between these

compounds and key TIMP1 functional domains.

These findings computationally nominate TIMP1 as a multi-

cancer therapeutic target, with the identified small-molecule

inhibitors warranting preclinical evaluation for targeted therapy

development in CRC and other TIMP1-driven malignancies.
4 Discussion

In this study, we re-examined the biological characteristics of

CRC by leveraging prior research on malignant cell transcriptional

signatures and identified eight major MCEPs (32). These programs

encompass three stress-related categories (hypoxia-inflammation,

Wnt-related, and proliferation), three EMT subtypes (inflammatory

epithelial, intermediate, and mesenchymal), one cell cycle category,

and one glandular secretion category. Each program is critically

linked to functional roles in regulating malignant cell proliferation,

migration, drug resistance, metastasis, and patient prognosis (33–36).

Traditional molecular subtyping approaches, such as those based on

hypoxic metabolism, cellular senescence, or microenvironmental cell

markers (37–39), often oversimplify tumor heterogeneity. Solid

tumors are multifactorial systems, and reliance on binary

phenotypic classifications risks underestimating inter-individual

variability and obscuring underlying biological processes, thereby

limiting the molecular interpretability of subtypes.

To address this, we employed a programmatic state-based

framework to characterize CRC gene expression, accounting for

potential confounders and mutual exclusivity between states.

Importantly, we emphasized continuity within each state rather

than discrete isolation. For instance, malignant cell partial EMT

was defined as a tripartite continuum (mesenchymal, intermediate,

and epithelial), aligning with the evolving concept of “epithelial-

mesenchymal plasticity” endorsed by the International EMT

Association (40). The tumor microenvironment, a complex

ecosystem sculpted predominantly by malignant cells, has

historically been analyzed by grouping tumor cells homogeneously

or partitioning them into static clusters. In contrast, our crosstalk

analysis originated from malignant cell expression programs,

enabling simultaneous exploration of heterogeneity in both

malignant and stromal/immune compartments.

In our analysis of the eight MCEPs, we identified critical

regulators with potential crosstalk interactions in immune/stromal

compartments, including TGFb1 and HMGB1. Functional

annotation of downstream target genes in immune/stromal cells

revealed biological roles consistent with established mechanisms.

Specifically, TGFb1 signaling dysregulation plays a pivotal role in

colorectal carcinogenesis by governing cell growth, differentiation,

migration, and apoptosis (41–43). Pathological overexpression of
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TGFb1 drives epithelial-mesenchymal transition, extracellular matrix

remodeling, and cancer-associated fibroblast activation (44–46).

Notably, TGFb1 emerged as a key regulator in the I-pEMT-P

program, targeting immune cell genes including FOXP3, CD38,

and MMP9—established mediators of immune evasion and

immunosuppressive TME remodeling (47–49). In stromal

compartments, TGFb1 may further facilitate CAF transformation

and immunosuppressive functions through NOX4-mediated

pathways (50).Meanwhile, nuclear HMGB1 functions as a

chromatin-binding factor regulating nucleosome organization,

transcriptional control, and genomic stability, whereas extracellular

HMGB1 modulates cell differentiation, metastatic dissemination, and

apoptosis (51). Concurrently, HMGB2 within the CC-P program

demonstrated regulatory effects on mesenchymal-like cells,
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modulating pro-angiogenic genes such as AURKB, BIRC5, and

FOXM1 that coordinate endothelial and vascular smooth muscle

cell proliferation (52–54). This integrated regulatory network analysis

reveals how malignant cell-derived signals orchestrate multicellular

ecosystem dynamics through conserved molecular pathways,

providing mechanistic insights into TME reprogramming during

CRC progression.

CRC prognosis remains challenging due to pronounced tumor

heterogeneity. Existing prognostic models, often anchored to

singular features (e.g., immune, EMT, or metabolic signatures),

provide incomplete assessments. Our integrative model, combining

immune and stromal features, offers enhanced biological

interpretability. Risk stratification revealed that high-risk scores

correlate with mesenchymal-like, immunosuppressive TMEs
FIGURE 7

Core determinant identification and therapeutic exploration. (A) Protein-protein interaction (PPI) network of top 100 survival-associated genes
identified through MNC/MCC/DMNC/Degree algorithms (border color: survival association; fill color: algorithm source). (B) TIMP1 differential
expression across TCGA tumor types versus normal tissues (ns, P > 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001). (C) TIMP1
immunohistochemical validation in multiple carcinomas and paired normal tissues. (D) Molecular docking of TIMP1 (PDB:3V96) with Lumacaftor
(DG = -12.13 kcal/mol) and Umbralisib (DG = -11.80 kcal/mol), showing binding pocket configurations.
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enriched in CAFs, Tregs, and inflammatory markers. Conversely,

low-risk scores associate with epithelial-like phenotypes marked by

partial EMT, reduced stromal activation, and preserved epithelial

integrity. The model incorporates 15 genes, with CLCA1 and

ITLN1 exhibiting the strongest prognostic weights. CLCA1, a

tumor suppressor, inhibits CRC progression by suppressing Wnt/

b-catenin signaling and EMT, consistent with its reduced

expression in advanced tumors and inverse correlation with

metastasis (55). ITLN1, conversely, antagonizes tumor

neovascularization and MDSC accumulation via IL-17D/CXCL2

axis modulation, thereby reshaping the immunosuppressive TME—

a mechanism aligning with its prognostic significance in both CRC

and ovarian cancer (56, 57). Additional contributors, such as

IGFBP3 and ACAA2, further underscore the multifactorial nature

of CRC heterogeneity. Elevated IGFBP3, driven by genetic

predisposition, may enhance CRC risk through IGF1-mediated

mitogenic signaling, as supported by Mendelian randomization

analyses (58). ACAA2, a fatty acid metabolism enzyme, inversely

correlates with cetuximab resistance, particularly in KRAS-mutant

CRC, suggesting its role in metabolic adaptation and therapy

response regulation (59). This framework bridges molecular

mechanisms to clinical outcomes, providing biological

interpretability to the prognostic model.

As an independent prognostic factor, our model achieved an

AUC >0.8 for 10-year outcome prediction when combined with

clinical variables. Integration with TNM staging via a nomogram

improves CRC management by enabling dynamic survival

probability estimation (1–10 years), optimizing adjuvant therapy

selection, surveillance intervals, and resource allocation.

PPI network analysis identified TIMP1 as a hub gene within the

I-pEMT-P program. TIMP1, a matrix metalloproteinase inhibitor,

exhibits context-dependent roles in cancer. In brain metastases,

astrocyte-derived TIMP1 suppresses CD8+ T cell activity (60), while

in pancreatic cancer, TIMP1-CD63-ERK signaling drives

neutrophil extracellular trap formation and tumor progression

(61). In CRC, TIMP1 correlates with tumor cell proliferation,

invasion, and poor prognosis (62). Our data suggest that the I-

pEMT-P program may remodel the stromal niche via TIMP1,

influencing tumor progression and clinical outcomes.
4.1 Limitations and future directions

Despite the significant findings, this study has some limitations.

Although single-cell data from over 100 samples were analyzed, the

lack of clinical annotations, such as tumor stage, survival time, and

survival status, restricted our ability to directly correlate expression

programs with tumor progression and patient outcomes. Therefore,

we relied on bulk RNA-seq datasets, which included complete

clinical information. Additionally, while computational

predictions identified key regulators, such as TGFb1 and

HMGB2, in stromal/immune modulation, their mechanistic roles

remain unvalidated experimentally. Future studies should employ

co-culture models or in vivo systems to confirm these interactions.
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5 Conclusion

This study identified eight distinct MCEPs that characterize the

transcriptional states of CRC malignant cells. We constructed

interaction networks between these MCEPs and immune or

stromal cells, which led to the development of a prognostic model

consisting of 15 genes. Furthermore, TIMP1 was identified as a key

gene, and two potential drugs, Venetoclax and Lumacaftor, were

highlighted for targeted therapeutic strategies. In summary, this

study provides new insights and references for CRC heterogeneity

and prognostic therapy.
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