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Editorial on the Research Topic

Tertiary lymphoid structures (TLS) in the tumor immunemicroenvironment
Tertiary lymphoid structures (TLSs) (1, 2) are organized clusters of immune cells that

develop within non-lymphoid tissues under specific conditions, including autoimmunity,

chronic infections, and cancer. These structures resemble lymphoid follicles, typically

featuring a core of B cells surrounded by T cells, along with dendritic cells, a supporting

network of extracellular matrix, and specialized high endothelial venules facilitating

lymphocyte entry. TLSs are thought to recruit and activate naive T and B cells within

the tumor microenvironment (TME) via chemokine signaling, contributing significantly to

the complex interplay of immune cells and tumor cells within the TME.

The TME in solid tumors comprises a complex ecosystem of tumor cells, stromal

components, blood vessels, and immune cells. This environment plays a crucial role in

tumor progression and its interaction with surrounding tissues. Tumor-infiltrating

lymphocytes (TILs) exert a powerful influence within the TME, with cytotoxic TILs

inhibiting tumor growth while certain suppressive or exhausted lymphocyte populations

can promote it. TLS have been recognized as a significant source of TILs, and their

presence often correlates with improved patient prognosis. However, our understanding

of TLS function within the TME remains incomplete. Factors like TLS location, density,

and maturity likely influence clinical outcomes, including survival and treatment

response, across different cancer types. Furthermore, research into methods of

manipulating TLS for therapeutic benefit is an area of active investigation, exploring

their potential as immune niches to enhance existing and future cancer therapies. This

Research Topic introduces a collection of articles in our Research Topic focused on TLS

in solid tumors, exploring their anatomy, key features, immunological roles, and future

research directions.
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The fourteen articles in this Research Topic explore TLS across

a range of solid tumors, including non-small cell lung cancer (Xu F.

et al., Xin et al., Berthe et al., and Luo et al.), melanoma (Zhao et al.),

gastrointestinal cancers (Yu et al.), colorectal cancer (Feng et al. and

Xu Z. et al.), pancreatic adenocarcinoma (Gao et al.),

cholangiocarcinoma (Shang et al.), and a meta-analysis across

many types of solid tumors in 19 clinical trials (Jiang et al.).

Several articles provide broader perspectives: You et al. and Ding

et al. offer a comprehensive overview of TLS formation, maturation,

localization, and heterogeneity, emphasizing the clinical

implications of TLS heterogeneity in cancer patients. Zhao et al.

elucidate the impact of immunogenic cell death-inducing

chemotherapeutics on immune cell activation and TLS formation

in melanoma.

These studies collectively highlight three key areas: the

significance of TLS in predicting immunotherapy response and

patient prognosis; the importance of assessing TLS maturity and

density across different tissue types and spatial locations; and the

crucial link between immune checkpoint pathways and TLS

formation and maturation, with implications for understanding

the mechanism of immune checkpoint inhibitors.
1 TLS in predicting immunotherapy
response and patient prognosis

1.1 TLS and prognostic value in
cholangiocarcinoma and pancreatic cancer

Cholangiocarcinoma (CCA), a malignancy of the biliary

epithelium, carries a poor prognosis, hampered by the lack of

reliable biomarkers for predicting treatment response and

survival. Recognizing the role of tertiary lymphoid structures

(TLS) as crucial microenvironments for anti-tumor immunity,

Shang et al. investigated their prognostic value in a cohort of

471 CCA patients. Using H&E and immunohistochemical (IHC)

staining to assess TLS maturity and composition, they observed

varying degrees of TLS maturity and identified a four-gene

signature (PAX5, TCL1A, TNFRSF13C, and CD79A) strongly

expressed within TLS regions. High intratumoral TLS density

correlated with improved overall survival (OS), while,

interestingly, high peritumoral TLS density was associated with

shorter OS. Similarly, a previous study (3) analyzed pancreatic

cancer samples, identifying TLS-associated marker genes and

developing a risk score model. This model stratified patients

into high- and low-risk groups, with the low-risk group

exh ib i t i ng inc r e a s ed immune c e l l i nfi l t r a t i on and

improved prognosis.
1.2 TLS in colorectal cancer: challenges
and opportunities

While TLS are generally associated with favorable outcomes in

several cancers, their role in colorectal cancer (CRC) is more

nuanced. Although some studies have linked TLS presence to
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improved OS, progression-free survival (PFS), disease-free

survival (DFS), and recurrence-free survival (RFS), Yu et al.

highlight the lack of significant association between TLS and OS

in CRC-specific subgroup analyses. This discrepancy may stem

from the presence of pre-existing lymphoid tissues like GALT or

Peyer’s patches, which could be misidentified as TLS. This approach

could potentially enhance the prognostic utility of TLS in CRC.

Furthering this line of inquiry, Xu Z. et al. developed a 14-gene TLS-

related prognostic risk model, validated in TCGA and GEO

datasets . They identified TLS-related subclusters and

characterized hub genes, including PRRX1, a potential

immunomodulatory factor and therapeutic target, whose

expression was elevated in the TLS-positive CRC group. Their

work showcases the combined power of bioinformatics, IHC, and

multiplex immunofluorescence (MIF) for characterizing TLS and

identifying clinically relevant markers.
1.3 TLS in non-small cell lung cancer:
prognostic value and immunotherapy

Non-small cell lung cancer (NSCLC) remains a leading cause of

cancer-related death, and while immunotherapy offers promising

treatment avenues, robust prognostic markers are needed. Xin et al.

revealed TLS in the current landscape of NSCLC and emerging

immunotherapy strategies . Focusing on neoadjuvant

chemoimmunotherapy, Xu F. et al. identified the platelet-to-

lymphocyte ratio (PLR) as an independent predictor of TLS

expression, with lower PLR correlating with higher TLS levels.

Both systemic immune-inflammation index (SII) and TLS were

independent prognostic factors, with high TLS and low SII

associated with improved prognosis. Combining SII and TLS

provided greater prognostic accuracy than either alone. Berthe

et al. developed a multiplex IF panel to evaluate TLS maturity in

NSCLC, finding that TLS relative area and CD21 positivity were

strong prognostic indicators. Their TLS scoring system,

incorporating TLS relative area, B cell density, and CD21+CD23-

FDC density, demonstrated significant prognostic value.
1.4 TLS in pancreatic ductal
adenocarcinoma and the complexity of
TLS characterization

Pancreatic ductal adenocarcinoma (PDAC) is a highly

aggressive subtype of pancreatic cancer, characterized by an

immunosuppressive TME that contributes to immunotherapy

resistance. While immune checkpoint inhibitors (ICIs) have

shown limited efficacy in PDAC, other immunotherapeutic

approaches are under development. Interestingly, the density of

small nerve fibers within TLS aggregates has been linked to

improved OS in PDAC. The complex architecture of TLS,

comprising diverse immune and stromal cell populations, is

essential for effective anti-tumor immune responses. However, the

lack of a standardized TLS definition and the variety of assessment

methods (H&E, IHC, MIF, gene expression profiling) contribute to
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variability in TLS classification and clinical interpretation.

Characterizing TLS at a higher resolution, considering their

functional, compositional, and spatial heterogeneity, is crucial for

understanding their impact on patient survival.
2 TLS maturity and density across
different tissue types and
spatial locations

2.1 TLS formation, maturation,
and characterization

TLS development is a multi-stage process involving fibroblast

activation, immune cell recruitment, and maturation, as detailed by

Gao et al. (4) Cytokines like IL-13, IL-17, and IL-22 play a role in

the init ial fibroblast priming by immune cel ls under

inflammatory stress (5, 6). Histologically, TLS maturity was

primarily distinguished by the presence or absence of germinal

centers (GCs), crucial sites for B cell maturation and affinity

maturation. Mature TLS, containing GCs, exhibit proliferating B

cells, follicular dendritic cells (FDCs) expressing DC-LAMP, and

markers like Ki67, AID, and BCL6. More recently, a three-tiered

maturity model for lung cancer TLS has been proposed,

classifying TLS as early (dense lymphocytic clusters without

FDCs or GCs), intermediate (“primary follicle-like” with CD21

+CD23- FDCs), and mature (“secondary follicle-like” with GCs)

(7). This model underscores the importance of B cell maturation

and humoral immunity in anti-tumor responses. However, TLS

definitions vary across studies, with some relying on basic

histological examination (H&E staining) and markers like

PNAd or Ki67 (8, 9), while others employ more rigorous

characterization based on distinct T and B cell zones, FDCs,

and high endothelial venules (HEVs) (10, 11). This lack of

standardization highlights the need for consistent criteria for

defining and classifying TLS maturity.
2.2 Spatial heterogeneity of TLS in NSCLC

Xin et al. investigated the spatial distribution of TLS in non-

small cell lung cancer (NSCLC), dividing tumor samples into

intratumoral (IT), invasive margin (IM), and peritumoral (PT)

regions. They further categorized TLS as early (E-TLS) or

follicular (F-TLS). TLS density and the proportion of F-TLS were

highest in the IT region, decreasing towards the IM and PT regions.

Surprisingly, lower E-TLS density in the IM region correlated with

better prognosis, possibly due to the suppressive immune

environment at the tumor margin inhibiting TLS maturation. The

IM region also showed increased infiltration of B cells, T cells,

cytotoxic T cells, and macrophages, potentially explaining the

correlation between these cell types and E-TLS density. E-TLS

density in the IM region and TNM stage emerged as independent

prognostic factors.
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2.3 Contrasting TLS distribution and
prognostic significance

In contrast to the findings in NSCLC, Feng et al. ’s

immunotherapy response scoring model in colorectal cancer

revealed a different pattern of TLS distribution and maturation. A

higher proportion of patients with higher scores, based on TLS

characteristics, was observed in the peritumoral region compared to

the intratumoral region. This scoring system, incorporating TLS

distribution, quantity, and maturity, positively correlated with

immunotherapy efficacy. This highlights the context-dependent

nature of TLS and its prognostic significance. Furthermore, the role

of TLS can vary across cancer types. While increased intratumoral

TLS density is often associated with improved outcomes in

intrahepatic cholangiocarcinoma, studies in other liver cancers have

reported conflicting results. Both for hepatocellular carcinoma,

Finkin et al. suggested that intratumoral TLS (12) could promote

tumor progression, while Li et al. (25) linked peritumoral TLS to

better prognosis. Similar discrepancies exist in breast cancer, bladder

cancer, and gastric cancer, emphasizing the functional heterogeneity

of lymphoid aggregates and the need for refined criteria to define

functional TLS.
2.4 Spatial distribution and functional
significance of TLS in different
cancer types

The maturation state and density of TLS vary based on tumor

type and spatial location, leading to diverse prognostic implications.

This spatial heterogeneity is further exemplified in melanoma, where

increased peritumoral mature TLS density is associated with

improved survival (13). In PDAC, TLS are more frequently found

at the invasive margin than in the tumor core (14). While one study

showed a predominance of peritumoral TLS in PDAC samples (8), a

more recent study highlighted the enhanced maturity, immune cell

infiltration, and pro-inflammatory profile of the less abundant

intratumoral TLS, associating them with improved survival (8). The

dense, fibrotic stroma characteristic of PDAC may necessitate the

close proximity of TLS to tumor cells for effective anti-tumor activity

(15–17). These findings underscore the complex interplay between

TLS location, maturation, and the tumor microenvironment in

shaping clinical outcomes. Further research is needed to fully

elucidate the factors influencing TLS function and their

relationship with tumor progression in different cancer types.
3 Link between immune checkpoint
pathways and TLS

3.1 The interplay between immune
checkpoints and TLS formation

Immune checkpoint inhibitors (ICIs) targeting pathways like

PD-1/PD-L1 and CTLA-4/CD80 have shown promise in cancer
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1324093
https://doi.org/10.3389/fimmu.2024.1423775
https://doi.org/10.3389/fimmu.2024.1302903
https://doi.org/10.3389/fimmu.2025.1555677
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gao et al. 10.3389/fimmu.2025.1555677
treatment. Studies have linked TLS abundance and spatial

distribution to ICI response in cholangiocarcinoma (CCA). A

previous study (3) stratified pancreatic cancer patients into high-

and low-risk groups based on TLS marker gene expression. The

low-risk group exhibited higher expression of both co-stimulatory

immune checkpoints (e.g., CD28, TNFRSF4, CTLA4, CD40LG,

ICOSLG, LAG3, PDCD1, TIGIT) and the inhibitory checkpoint

CD276. This suggests that patients with abundant and well-

distributed TLS might respond more favorably to ICIs.
3.2 TLS as a predictive biomarker and
target for ICI therapy

Feng et al.’s work supports the link between TLS and ICI

response. TLS presence could predict anti-PD-1 immunotherapy

response in various cancers, including esophageal carcinoma,

bladder cancer, melanoma, and head and neck squamous cell

carcinoma (HNSCC), and may even be a direct target of PD-1

blockade (18–20). The association between high PD-1 expression at

the invasive margin and TLS presence further suggests that context-

specific PD-1 targeting within the tumor microenvironment may

enhance efficacy (21). Xu Z. et al. also discussed a positive
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correlation between TLS and PD-L1 expression in colorectal

cancer (CRC). These findings, along with evidence linking TLS to

improved outcomes and immunotherapy efficacy in melanoma and

breast cancer (22, 23), suggest that TLS can convert “cold” tumors

to “hot” by enhancing immune recognition and clearance (24).

Furthermore, recent research suggests that combining

immunotherapy with strategies to promote TLS formation or

maturation could amplify treatment efficacy.
3.3 Mechanisms of ICI influence on TLS

The abundance and maturity of TLS reflect a patient’s immune

infiltration status, and ICIs have been shown to increase TLS

abundance in several cancers. Ding et al. found that ICI response

is linked to CXCL13-mediated recruitment of CXCR5+ B cells with

high clonal diversity. Their in vitro data showed increased CXCL13

production in human peripheral blood mononuclear cells after anti-

PD-1 treatment. This enhanced B cell infiltration and B cell receptor

(BCR) diversity facilitates tumor antigen presentation, activating

follicular helper CD4 T cells (Tfh) and tumor-reactive CD8 T cells.

This influx of immune cells into the tumor microenvironment

contributes to TLS abundance, maturation, and spatial organization.
FIGURE 1

Schematic representation of tertiary lymphoid structures (TLSs): the structure of a mature TLS (center), the formation of TLS (top left), the relative
positional relationship with tumor tissue (top right), TLS score with tumor prognosis (bottom left), and cell components involved in TLSs
(bottom right).
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In essence, one mechanism of ICI action involves promoting antigen

presentation by CXCR5+ B cells to activate CD4+ and CD8+ T cells.
3.4 The role of HEVs and immune
checkpoint ligands

Luo et al. ‘s research on NSCLC revealed another ICI

mechanism related to high endothelial venules (HEVs). Mature

HEVs facilitate CD8+ T cell trafficking into the tumor, but immune

checkpoint ligands (ICLs) expressed on these HEVs can hinder this

process. Their ICL total score model demonstrated that HEV ICL

expression predicts both CD8+ T cell infiltration and patient

survival, with higher scores indicating poorer infiltration and

prognosis. This suggests that ICIs can restore the function of

specialized vasculature within TLS, enabling lymphocyte delivery

into the tumor microenvironment and supporting TLS formation.
4 Future directions and limitations

Further research with large, prospective cohorts is needed to

validate these findings and address limitations of previous

retrospective studies, such as limited sample sizes and potential

biases . Future studies should also incorporate more

immunotherapy subgroups and address the challenge of

comprehensively assessing TLS across the entire tumor. Larger

sample sizes will help provide robust prognostic data and

minimize the influence of individual differences and geographic

variation. These efforts will advance the understanding of the

complex relationship between TLS and ICI therapy, paving the

way for more effective cancer immunotherapies.
5 Summary

The articles in this Research Topic provide a meaningful

overview of the crucial relationship between TLS and ICI

immunotherapy, highlighting the clinical significance of TLS in

promoting anti-tumor immunity and predicting its prognostic

value in solid tumors (Figure 1). Future mechanistic studies are

needed to further explore this complex interplay.
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