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Type 2 diabetes (T2D) is a widespread metabolic disorder marked by

hyperglycemia, arising from insulin resistance and relative insulin deficiency.

This review investigates the critical role of Na+/K+-ATPase (NKA), a

transmembrane protein essential for maintaining cellular ion gradients, in the

pathophysiology of T2D. We provide an overview of NKA’s biological functions,

emphasizing its involvement in cellular signaling pathways, insulin secretion, and

glucose homeostasis. The potential of NKA as a therapeutic target for T2D is

analyzed, showcasing innovative strategies such as NKA activators, gene therapy,

and stem cell therapy aimed at enhancing NKA activity to achieve better glycemic

control. Additionally, NKA’s multifunctional role in maintaining cell viability and

modulating immune responses in islet transplantation may offer potential

benefits for improving transplant outcomes. By elucidating the complex

interactions between NKA and T2D, this review aims to shed light on

developing novel therapeutic interventions that meet the multifaceted needs

of individuals suffering from this chronic condition, ultimately improving their

health outcomes.
KEYWORDS

diabetes, type 2 diabetes, sodium-potassium ATPase, islet, b-cells, therapeutic target,
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1 Introduction

Type 2 diabetes (T2D) is the most prevalent form of diabetes (1), affecting millions of

people worldwide and representing a significant global health challenge (2, 3). Despite

efforts, T2D is complex to manage, and there’s a need for more effective treatments

targeting its underlying causes (4). Understanding the pathophysiology of T2D is essential

for developing effective therapeutic strategies (5). Among the various proteins involved in
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glucose metabolism and insulin signaling, Na+/K+-ATPase (NKA)

plays a crucial role in maintaining ionic balance across cell

membranes, which is vital for proper cellular function (6). NKA

is responsible for the active transport of sodium out of cells and

potassium into cells, processes that are critical for maintaining

membrane potential and facilitating cellular signaling pathways (7).

Dysfunction of NKA can have significant implications for insulin

secretion and action, thereby contributing to T2D (5, 8). Recent

studies have also linked NKA to diabetes complications like

nephropathy and neuropathy (9, 10), with changes in its activity

potentially exacerbating these conditions through oxidative stress

and inflammation (11, 12). Additionally, NKA’s role in islet

transplantation, where it may influence cell viability and immune

responses, offers potential benefits for improving transplant

outcomes. To develop new therapeutic approaches for T2D, it is

essential to conduct in-depth research into the specific mechanisms

governing NKA function and its regulation.

2 Biological function of NKA and its
role in cellular function
and metabolism

Structurally, NKA consists of two main subunits: the a subunit,

which is responsible for the catalytic activity of the pump, and the b
subunit, which aids in the proper maturation and localization of the

enzyme within the membrane (13). NKA’s main role is to pump out

three sodium ions and import two potassium ions per ATP

molecule hydrolyzed, maintaining the cell’s membrane potential,

which is vital for functions like muscle contraction and nerve

signaling (13). This activity accounts for 30-40% of animal cells’

energy use, highlighting its importance in energy metabolism and

electrolyte transport (14).

The regulation of NKA activity is complex and involves various

mechanisms, including modulation of its expression levels,

localization within the plasma membrane, enzymatic activity, and

interactions with other proteins (14). NKA’s plasma membrane

location is crucial for its antiport activity, with its movement

between the membrane and intracellular spaces strictly regulated,

although the precise mechanisms remain poorly understood (14).

NKA also functions as a signaling molecule, influencing various

cellular pathways beyond ion transport. It regulates intracellular

sodium and potassium concentrations, which significantly impact

the flow of calcium ions and intracellular pH, thereby influencing

signaling pathways critical for cell survival and function (15, 16).

Additionally, NKA is linked to several metabolic pathways,

including glucose transport and energy metabolism, which are

essential for maintaining cellular homeostasis (14). Its interaction

with signaling molecules allows it to influence pathways that

regulate inflammation, cell growth, and apoptosis (17).

Research has shown that alterations in NKA activity can lead to

various pathological conditions. For instance, impaired NKA

function has been associated with diseases such as heart failure,

where reduced NKA activity contributes to cardiac dysfunction and

hypertrophy (18). Similarly, in the context of hyperuricemia, NKA

signaling impairment has been linked to renal tubular injury,
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highlighting its role in kidney health (19, 20), Moreover, NKA’s

involvement in regulating intracellular calcium levels is crucial for

neuronal excitability and synaptic transmission, indicating its

importance in the nervous system (6).

Overall, NKA is a multifunctional enzyme that is integral to

maintaining cellular ion balance and facilitating various signaling

processes. Its role extends beyond simple ion transport, influencing

metabolic pathways and cellular responses to stressors. Understanding

the complex regulatory mechanisms of NKA and its involvement in

disease processes is essential for developing targeted therapies that can

modulate its activity and improve cellular function in pathological

conditions (17).
3 NKA ion transport mechanism in
diabetic conditions

3.1 The association between NKA
and diabetes

The relationship between NKA and diabetes is complex and

multifaceted, involving alterations in the expression and activity of

NKA that are closely linked to pancreatic function (21). In diabetes,

research indicates a significant reduction in NKA activity (22, 23).

The reduced activity of NKA can lead to an increase in intracellular

sodium levels, which may disrupt cellular homeostasis and

contribute to the dysfunction of pancreatic a-cells and b-cells.
Moreover, studies have highlighted the role of oxidative stress in

T2D (24), which can further compromise NKA activity. Oxidative

stress markers correlate with reduced NKA activity in various

tissues (21). This suggests that the metabolic disturbances

associated with T2D may be, in part, due to the inability of NKA

to maintain ionic balance under oxidative conditions.

Furthermore, the relationship between NKA activity and

metabolic syndrome (MS) is noteworthy, as individuals with T2D

and MS exhibit significantly lower NKA activity compared to

healthy controls (25). Decreased NKA activity correlates with

higher oxidative stress, potentially promoting diabetes-related

complications like cardiovascular disease (26). NKA dysfunction

directly links to features of metabolic syndrome through several

mechanisms. In obesity, reduced NKA activity leads to increased

intracellular sodium levels, which can promote insulin resistance

and hypertension (27–29). High sodium levels can also activate the

renin-angiotensin-aldosterone system (RAAS), contributing to

elevated blood pressure (29). By modulating NKA activity, it may

be possible to address multiple features of metabolic syndrome,

improving overall metabolic health.

The implications of NKA dysfunction extend beyond the

pancreas. For instance, in diabetic peripheral neuropathy (DPN),

which affects a substantial number of T2D patients, GLP-1 receptor

agonist therapies have demonstrated improvements in nerve

conduction and axonal excitability, potentially through the

restoration of NKA function (30). This indicates that therapeutic

strategies aimed at enhancing NKA activity may offer a protective

effect against the neurological complications of diabetes.

Additionally, the modulation of NKA activity has been implicated
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in the regulation of renal function in diabetes, as alterations in NKA

expression and activity can lead to renal tubular dysfunction and

contribute to the progression of diabetic kidney disease (31).

Overall, the evidence suggests that the dysregulation of NKA is a

key factor in the pathogenesis of T2D and its complications,

highlighting the importance of further research into targeted

therapies that could restore NKA function and improve metabolic

outcomes in diabetic patients.
3.2 Role of NKA in islet b-cell and a-cell
function and metabolism

NKA is essential for maintaining cellular ion balance, which is

crucial for the proper function of pancreatic islet cells. In b-cells,
NKA helps maintain membrane potential by regulating sodium and

potassium ion levels, which is vital for calcium influx and insulin

release (32). Impaired NKA function can disrupt this balance,

leading to reduced insulin secretion and contributing to

hyperglycemia. Similarly, in a-cells, NKA’s role in establishing

ion gradients is critical for glucagon secretion. Reduced NKA

activity can impair glucagon secretion, leading to dysregulated

blood sugar levels. This dysfunction can make a-cells less

sensitive to glucose changes, resulting in excessive glucagon

secretion even at low blood sugar levels, which further disrupts

glucose homeostasis.

NKA’s ion transport activity also plays a significant role in

cellular metabolism and energy balance (13). It accounts for 20-25%

of whole-body ATP consumption, highlighting its importance in

energy metabolism (33). In disease conditions, NKA dysfunction

can interfere with mitochondrial function and disrupt energy

production (34). Additionally, NKA interacts with metabolic

signaling pathways such as the AMPK pathway, which is crucial

for cellular energy sensing and regulation (19, 33). Impaired NKA

function can affect AMPK activity, disrupting cellular energy

balance and contributing to metabolic disorders.
4 Biochemical pathways involved

4.1 Insulin secretion pathways

NKA regulates multiple aspects of insulin secretion by affecting

membrane potential and calcium influx (32). For example, normal

NKA activity promotes the opening of voltage-gated calcium

channels, increasing intracellular calcium levels and activating the

fusion and release of insulin secretion granules (32). Additionally,

NKA interacts with the cAMP-PKA signaling pathway (35). When

cAMP levels rise, PKA is activated, enhancing NKA activity and

promoting insulin secretion (36).
4.2 Apoptosis pathways

NKA dysfunction triggers cell apoptosis via multiple

mechanisms (37). One key mechanism involves the accumulation
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of intracellular sodium, which disrupts mitochondrial function and

elevates reactive oxygen species (ROS) levels (37). The increase in

ROS not only damages cellular macromolecules but also activates

apoptotic pathways, such as the mitochondrial and endoplasmic

reticulum stress pathways (37). Additionally, NKA dysfunction

alters the balance of intracellular calcium, leading to the

activation of proteases like calpain (38). This activation results in

structural and functional damage to the cell, ultimately inducing

apoptosis. These pathways underscore the critical role of NKA in

maintaining cell viability and highlight the consequences of its

dysfunction in the context of metabolic diseases like T2D.
4.3 Immune regulation pathways

NKA is involved in multiple signaling pathways in immune

regulation. For example, NKA regulates the activity of the nuclear

factor kB (NF-kB) signaling pathway by affecting intracellular sodium
and calcium concentrations (39). NF-kB plays a key role in the

activation, proliferation, and cytokine secretion of immune cells (40).

Normal NKA activity inhibits the overactivation of the NF-kB
signaling pathway, reducing the production of pro-inflammatory

cytokines and alleviating inflammatory responses (39).
4.4 Oxidative stress

Oxidative stress is a central mechanistic factor in the

dysfunction of NKA and the pathogenesis of T2D (24, 41).

Elevated levels of oxidative markers such as malondialdehyde

(MDA), protein carbonyls, and 8-hydroxy-2’-deoxyguanosine (8-

OHdG) are directly linked to T2D (42). MDA, a product of lipid

peroxidation, indicates damage to cell membranes and organelles,

disrupting cellular homeostasis (43). Protein carbonyls reflect

protein oxidation, which can alter protein structure and function,

impairing NKA’s catalytic activity (44). 8-OHdG, a marker of DNA

damage, suggests genomic instability and can affect the expression

and function of NKA. These oxidative markers contribute to

metabolic dysfunction by impairing insulin signaling, reducing b-
cell function, and promoting insulin resistance (45).
5 The potential of NKA as a
therapeutic target

Given the fundamental role of NKA in regulating insulin

secretion and action, NKA is considered a promising therapeutic

target for improving pancreatic function and insulin sensitivity in

T2D patients. Research indicates that modulating NKA activity can

lead to enhanced glucose homeostasis and improved metabolic

outcomes (22, 46). For instance, specific antibodies targeting the

NKA may stimulate its activity, leading to cardioprotective effects

and improved metabolic profiles in models of chronic kidney

disease and heart failure (47). Furthermore, the use of NKA

activators has been associated with increased osteogenic

differentiation in mesenchymal stem cells, suggesting a broader
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therapeutic potential for NKA modulation beyond metabolic

diseases (48).

Recent investigations have also highlighted the significance of

NKA in various cellular processes, including its role as a signaling

molecule (6). NKA interacts with several proteins, influencing

pathways that regulate cellular metabolism and proliferation (49).

For example, the G protein-coupled receptor GPR35 has been

shown to enhance NKA’s ion transport and signaling activity,

which may have implications for T2D treatment (50).

Additionally, the identification of endogenous negative regulators

of NKA, such as inositol pyrophosphate 5-InsP7, suggests that

manipulating these regulatory pathways could provide new

strategies for enhancing NKA function in T2D (15).

Overall, the modulation of NKA presents a multifaceted

approach to treating T2D and potentially other related

conditions. The ongoing research into NKA’s role in cellular

signaling, its interactions with various proteins, and its

implications in metabolic and oncological contexts highlights its

potential as a versatile therapeutic target. Continued exploration of

NKA’s mechanisms and regulatory pathways will be essential in

developing effective strategies to harness its therapeutic potential in

clinical settings.

6 NKA activators, gene therapy, and
stem cell therapy: novel approaches
for treating T2D

Recent studies have highlighted the importance of NKA in the

context of T2D and its potential as a therapeutic target. NKA

dysfunction is linked to insulin resistance, b-cell failure, and

increased oxidative stress, all of which contribute to the

pathophysiology of T2D. Although there are no reports of direct

applications of NKA activators in the treatment of T2D, existing

findings suggest that modulating NKA activity may offer new insights

for improving insulin secretion and restoring glucose homeostasis.

Future research may further explore the potential applications of

NKA activators in the treatment of T2D. Novel approaches including

NKA activators, gene therapy, and stem cell therapy, can improve

insulin secretion, and restore glucose homeostasis. These approaches

offer novel therapeutic strategies that complement existing

antidiabetic drugs and immunomodulatory therapies, providing a

more comprehensive and updated perspective on the treatment

of T2D.
6.1 NKA activators

NKA activators enhance NKA activity, which is crucial for

cellular ion homeostasis and insulin secretion. The mechanism

involves increasing NKA activity, which helps maintain

intracellular sodium and potassium balance and promotes insulin

release from pancreatic beta cells. This is beneficial for T2D patients

with impaired insulin secretion. Specific NKA activators may

improve glycemic control and insulin sensitivity, reducing blood

glucose levels. However, potential side effects and off-target effects
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require careful monitoring and dosage control. NKA activators offer

a novel therapeutic strategy for T2D.
6.2 Gene therapy

Gene therapy, especially using CRISPR/Cas9, targets genetic

factors in T2D (51). It can edit genes associated with NKA function

to restore normal activity, enhancing insulin secretion and glucose

homeostasis. This is relevant in T2D, where ion transport

dysregulation is a significant issue. Gene editing can correct

mutations impairing NKA function, improving glucose responses

and insulin sensitivity. Gene therapy can also deliver genes

encoding beneficial proteins to enhance beta-cell function (52).

Despite challenges like delivery methods and off-target effects,

ongoing research explores its feasibility and efficacy, offering

personalized and durable solutions for T2D.
6.3 Stem cell therapy

Stem cell therapy provides insulin-producing cells to restore

pancreatic function in T2D (53). The differentiation of stem cells

into pancreatic beta cells addresses the loss of insulin secretion (54).

Advances in stem cell research have enabled the generation of

functional pancreatic cells from PSCs, which can secrete insulin in

response to glucose, potentially reversing hyperglycemia (55, 56).

Adult pancreatic stem cells also show promise in regenerating

damaged tissue and restoring insulin production (57). However,

challenges include generating sufficient functional beta cells,

managing tumorigenesis risk, and post-transplantation

immunosuppression. Ongoing research aims to optimize

differentiation protocols and explore combination therapies to

improve T2D outcomes. Stem cell therapy is a promising

regenerative approach to address the root causes of T2D.
7 Conclusion and future directions

This review has highlighted the multifaceted role of NKA in

T2D, emphasizing its importance in cellular ion homeostasis,

insulin secretion, and immune responses (Figure 1). The key

points addressed include the biological functions of NKA, its

involvement in T2D pathophysiology, and the potential of NKA

as a therapeutic target. Areas warranting further investigation

involve the development of more specific NKA modulators with

fewer side effects and the application of experimental models to

explore the clinical feasibility of targeting NKA. Future research

should focus on refining NKA activators, gene therapy, and stem

cell therapy to enhance their safety and efficacy. The development of

novel experimental models, such as humanized mouse models and

iPSC-derived islets, will be crucial for preclinical testing and

translational research. In conclusion, modulating NKA activity

offers promising therapeutic strategies for T2D, with the potential

to improve glycemic control and enhance b-cell function. These
strategies, if developed and applied effectively, could significantly
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impact the management of T2D and related complications, and

may also contribute to improving outcomes in islet transplantation.
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