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Introduction: Pancreatic adenocarcinoma (PAAD) is characterized by a

profoundly immunosuppressive tumor microenvironment (TME) that limits the

efficacy of immunotherapy. Emerging evidence suggests that tumor-specific

metabolic reprogramming may drive disease progression and shape the immune

landscape in PAAD.

Methods:We integratedmulti-omics data from TCGA, GEO, and ICGC to identify

key metabolism-related genes (MRGs) that influence immune cell infiltration,

tumor progression, and patient survival. Based on nine pivotal MRGs (including

ANLN, PKMYT1, and HMGA1), we developed and validated a novel metabolic-

prognostic index (MPI). Functional enrichment analyses were conducted to

elucidate the metabolic pathways associated with different MPI risk groups. In

vitro experiments and drug sensitivity analyses were performed to confirm the

oncogenic role of selected MRGs and to explore their therapeutic implications.

Results: The MPI effectively stratified patients into high- and low-risk groups.

High-MPI scores correlated with poor overall survival, elevated tumor mutation

burden (TMB), and an immunosuppressive TME, evidenced by reduced CD8⁺ T-
cell infiltration and increased expression of immune checkpoints (PD-L1, TGF-b).
Functional enrichment revealed glycolysis and folate biosynthesis as dominant

pathways in high-MPI groups, whereas fatty acid metabolism prevailed in low-

MPI groups. Experimental validation underscored the role of ANLN in promoting

epithelial-mesenchymal transition (EMT) and immune evasion via NF-kB
signaling. ANLN knockdown significantly reduced glycolytic activity, tumor cell

migration, and immune evasion. Drug sensitivity analyses indicated resistance to
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gemcitabine but sensitivity to afatinib in high-MPI patients. Although TIDE

analysis predicted immune checkpoint inhibitor (ICI) resistance in high-MPI

tumors, a subset of patients showed favorable responses to anti-PD-L1 therapy.

Discussion: These findings provide a comprehensive framework for understanding

how metabolic reprogramming shapes PAAD’s immunosuppressive TME and

affects treatment outcomes. By accurately stratifying patients, the MPI serves as

a promising tool to guide therapeutic decisions, including targeted therapy

selection and immunotherapy prediction, ultimately offering potential for more

personalized management of PAAD.
KEYWORDS

pancreatic adenocarcinoma, multiple omics data, MPI score model, survival analysis,
immune landscape
Introduction

Pancreatic adenocarcinoma (PAAD) has a relatively low global

incidence (1), ranking 10th among cancers worldwide (2). In 2020,

PAAD accounted for an estimated 125,000 new cases and 26.1% of

cancer-related deaths in China. Despite its low incidence, PAAD

has a high mortality rate, ranking sixth or seventh globally among

malignant tumors (3, 4), with 26.1% of PAAD-related deaths

occurring in China (5). The prognosis of PAAD patients is closely

related to their clinicopathological stage, which serves as a crucial

basis for determining treatment strategies. Currently, PAAD

treatment primarily relies on surgery, chemotherapy, and

radiotherapy (6). In recent years, new therapeutic drugs, such as

albumin-bound paclitaxel (7), Fluorouracil, as well as new

treatment regimens like FOLFIRINOX (8), have shown significant

efficacy in PAAD. However, a significant number of patients do not

benefit from conventional sequential therapy, possibly due to the

lack of effective biomarkers or predictive models. At present, the

treatment of PAAD has entered the stage of genetic diagnosis and

classification-based therapy (9). Studies have identified a subset of

PAAD patients with specific gene mutations, and the use of targeted

therapies or specialized drugs for these patients has shown

significant improvements in prognosis (10).

The tumor microenvironment refers to the internal

environment in which tumor cells arise and survive (11). It

includes not only tumor cells themselves but also fibroblasts,

immune and inflammatory cells, glial cells, and other surrounding

cells (12), as well as interstitial cells, microvessels, and biomolecules

infiltrating nearby areas (13). The characteristics of the tumor

microenvironment mainly fall into three categories: hypoxia (14),

chronic inflammation (15), and immunosuppression (16). Tumor

metastasis depends on the tumor microenvironment, which

promotes metastatic events and the formation of a distal

metastatic microenvironment (17), facilitating tumor cell

dissemination, implantation, and metastasis.
02
Unlike other solid tumors, the interstitial components of PAAD

account for more than 80% of the tumor volume, wrapping around

the tumor parenchyma to form a stromal barrier and contributing

to PAAD progression (18). For example, pancreatic tumor cells

activate Pancreatic Stellate Cells (PSC) by secreting fibroblast

growth factor and TGF-b, recruiting PSC to the surrounding

tumor cells (19). Activated PSC promotes tumor cell growth and

proliferation by secreting growth factors and an abundant

extracellular matrix (20). In addition, in PAAD, antitumor

effector immune cells, such as CD4+, CD8+ effector T

lymphocytes, and NK cells, are reduced or nonfunctional (21),

while immunosuppressive cells, such as tumor-associated

macrophages (TAMs), regulatory T lymphocytes (Tregs), and

myeloid suppressor cells (MDSCs), are functionally active and

proliferate in large numbers (22). Thus, a microenvironment

conducive to PAAD immune escape can be created (23).

Due to the limited supply of oxygen and nutrients in the local

tumor microenvironment (24), the occurrence and development of

solid tumors are strongly influenced by metabolic stress, such as

metabolic waste accumulation and pH changes (25). Tumor cells

shape a unique tumor microenvironment (TME) to evade immune

surveillance through metabolic adaptations that support their

growth and metastasis, maximizing nutrient utilization to meet

their energy and biosynthetic needs. Studies have found that

oncogenic signals and tumor metabolites regulate cellular intrinsic

metabolic remodeling and mediate metabolic communication

between tumor cells and TME (26), contributing to the

development of tumor intervention therapies (27). For example,

in hypoxic tumor regions, tumor cells produce large amounts of

lactate, which impedes T-cell activation and tumor immune

surveillance (28). In addition, lactic acid promotes the

differentiation and polarization of TAMs, induces an M2-like

phenotype, and reduces antitumor immune activity (29).

Metavert, an inhibitor of glycogen synthase kinase 3b and histone

deacetylase, normalizes glucose metabolism in PAAD cells and
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converts M2-type TAMs into an anticancer M1 phenotype in a

mouse model (30). These results highlight the importance of

metabolic patterns in PAAD and their interaction with tumor

microenvironment, warranting further exploration.

Tumor metabolic remodeling is the cornerstone of all malignant

biological activities, including the initiation and progression of PAAD

(31). Identifying metabolic intervention targets in the tumor

microenvironment can inhibit the energy acquisition and

biosynthesis of PAAD, thereby controlling disease progression.

Tumor and immune cells share several metabolic pathways, and

targeting tumor cell metabolism will inevitably affect some immune

cell functions (32). In addition to providing prognostic insights,

metabolic reprogramming models, such as the metabolic prognostic

index, could guide treatment decisions in PAAD by identifying

patients who may benefit from targeted therapies or immune

interventions. By understanding how tumor metabolism influences

the immune microenvironment, these models offer the potential to

tailor therapeutic approaches for improved patient outcomes. This

study aims to investigate metabolic reprogramming differences in

PAAD using large-scale transcriptomic data to identify a balance

between tumor inhibition and immune cell activity maintenance. It

will provide new insights and directions for targeting the

microenvironment and metabolic remodeling of PAAD.
Methods

Data download and preprocessing

The gene expression profile data of The Cancer Genome Atlas

Program (TCGA) pan-cancer datasets were downloaded from the

Xena Browser database (https://xenabrowser.netl), and batch-

standardized profiles were corrected and log-transformed. The

stemness index (mRNAsi) of The Cancer Genome Atlas Program

(TCGA) pan-cancer data was also obtained from this database.

Metabolism-related genes (MPI genes) were identified by

downloading metabolic and protein interaction networks from

published studies.

We get TCGA PAAD genome mutation data (WES),

transcriptome data (RNA-Seq, Z-score standardized), and clinical

in format ion from the cB ioPor ta l da tabase (ht tps : / /

www.cbioportal.org/). WES includes single-nucleotide variants

(SNVS) and small insertion-deletion mutations (indels). Overall

survival data and clinical phenotype data of PAAD patients were

also retrieved from the database. Factors such as history of chronic

pancreatitis, diabetes, cancer location (pancreatic head or tail, etc.),

grade, stage, drinking status, smoking status, gender, age,

radiotherapy history, and others were considered (Table 1).

The read count expression spectrum and Fragments Per

Kilobase of transcript per Million mapped reads (FPKM)

expression data for PAAD were downloaded from GDC (https://

portal.gdc.cancer.gov/). An additional transcriptomic and clinical

dataset for PAAD samples (PACA-AU) was obtained from the

ICGC (https://licgc.otgl). Two PAAD datasets, GSE62452 and
Frontiers in Immunology 03
TABLE 1 TCGA PAAD sample clinical information summary table.

Number of patients (n) 176

Median age and range at
diagnosis (years)

65 (35-88)

gender

Female 80

Male 96

History of chronic pancreatitis

Yes 13

No 127

Unknown 36

History of diabetes

Yes 38

No 107

Unknown 31

Occurrence site

Body of Pancreas 14

Head of Pancreas 137

Tail of Pancreas 14

Other 11

TNM staging

T T1 (7) T2 (23) T3 (141) T4 (3) Unknown (2)

N N0 (49) N1 (122) Unknown (5)

M M0 (78) M1 (4) MX (94)

AJCC Stage

I (21) II (145) III (4) IV (4) Unknown (2)

Grade

G1 (31) G2 (93) G3(48) G4 (2) Unknown (2)

Radiotherapy or not

No 116

Yes 43

Unknown 17

Smoking

No 64

Yes 79

Unknown 33

Drinking

No 63

Yes 101

Unknown 12
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GSE21501, were downloaded from the GEO database (https://

www.ncbi.nlm.nih.gov/gds). Clinical and transcriptomic data were

used to validate the analysis. In addition, the R package

IMvigor210CoreBiologies was utilized to extract clinical and

transcriptomic data from 298 patients treated with the PD-L1

blocker atezolizumab.
Pan-cancer analysis to identify
metabolically altered genes specific
to PAAD

MPI genes were obtained from published studies, and log-

transformed, batch-standardized expression profile data were

downloaded from the Xena Browser database. The Wilcoxon

rank-sum test was used to identify differentially expressed gene

sets, which were classified as PAAD-specific metabolism-related

genes. PAAD samples were designated as the experimental group,

while samples from other types served as the control group. The

Benjamini and Hochberg method was used to adjust for multiple

comparisons, and the fold change (FC) was calculated as the ratio of

the median expression value in PAAD samples to the median

expression value in samples from other tumor types. Selection

criteria included a false discovery rate (FDR) ≤ 0.01 and an

absolute |log2-transformed fold change (log2FC)| ≥ 3. The

differentially expressed genes identified were classified as PAAD-

specific metabolism-related genes (MIPros). Principal component

analysis (PCA) was conducted using the R package Psych to validate

these MIPros, and the first two principal components (PC1, PC2)

were plotted.

The R package clusterProfiler was used to perform Gene Set

Enrichment Analysis (GSEA) on the pan-cancer prognostic gene

collection of MIPros in TCGA database. Gene expression levels in

tumor samples were used as the independent variable, while the

overall survival (OS) time was used as the dependent variable. The

Cox proportional hazards model was applied to identify prognostic

gene sets across pan-cancer data, with a selection threshold of p

≤ 0.05.

For the identified PAAD tumor-specific metabolism-related

genes, PCA was performed using R-package psych to analyze

these MIPros, and the first two principal components (PC1 and

PC2) were plotted. A straight line was drawn according to PC1 =

3PC2, dividing PAAD samples into two groups, denoted as PCA

subtypes C1 and C2. The log-rank test was used to assess the

association between PCA subtypes and overall survival time, while

the Wilcoxon rank-sum test was applied to examine the

relationship between the PCA subtypes and Homologous

Recombination Deficiency (HRD) score and TMB.
Development and performance evaluation
of the MPI score prognostic system

Based on the identified key module genes and differentially

expressed genes of the PCA subtypes, a univariate Cox regression
Frontiers in Immunology 04
model was applied to identify prognostic factors with a significance

threshold of p ≤ 0.05. Least Absolute Shrinkage and Selection

Operator(LASSO)-logistic regression was then used to eliminate

redundant factors and refine the selection of prognostic markers.

The MPI score was calculated using the following formula,

incorporating the proportional regression coefficient of risk from

the Cox regression model and the expression levels of the selected

prognostic factors, thereby constructing the prognostic risk score

model:

MPI scorei  =  o
n

j=1
Cj 

∗ expij

This formula calculates the MPI score for the ith sample, where

Cj represents the regression coefficient of the jth prognostic factor in

the Cox regression model, and expij denotes the expression level of

the jth prognostic factor in the ith sample. The log-rank test was

conducted to assess the correlation between the MPI score and

patient survival time. The R package timeROC was used to generate

the ROC curve and evaluate the prognostic performance of the risk

model. Additionally, the correlation between the MPI score groups

and clinical characteristics—including age, gender, tumor grade,

TNM stage, and smoking/drinking status—was examined.

The same method was applied to calculate the MPI score in the

additional validation dataset. Samples were grouped based on the

optimal threshold, and the prognostic performance of the high- and

low-MPI score groups was assessed.

We used the Wilcoxon rank-sum test to analyze the association

between PCA subtypes and MPI scores. The ESTIMATE method

was applied to calculate the ImmuneScore of TCGA-PAAD

samples. Spearman rank correlation was used to assess the

correlation between MPI score and tumor purity, immune score,

and stemness index. Additionally, the Wilcoxon rank-sum test was

performed to compare differences in tumor purity, immune score,

and stemness index between MPI score groups. The same test was

used to examine differences in immune checkpoint (ICB) and

Human Leukocyte Antigen (HLA) family expression levels

between MPI score groups, while Spearman rank correlation was

used to assess the linear correlation between MPI score and the

expression levels of immune checkpoint and HLA family genes.
Correlation analysis between MPI score
groups and function

We downloaded the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway set and GO function from MSigDB

(V7.4) (https://www.gsea-msigdb.org/gsea/msigdb/), including

gene sets for Biological Process (BP), Cellular Component (CC),

and Molecular Function (MF) secondary annotation classes. PAAD

samples were grouped based on MPI score, and differential

expression analysis was performed using the R package DESeq2

to obtain log2FC values related to MPI score grouping. These values

were used as an ordered list of gene sets. The R package

clusterProfiler was employed to conduct GSEA for the KEGG

pathway and GO functional gene sets, respectively, and the R
frontiersin.org
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package EnhancedVolcano was used to generate a volcano map of

the GSEA results.

We downloaded immune infiltration levels for TCGA-PAAD

samples from the Tumor Immune Estimation Resource (TIMER)

data resource (http://cistrome.dfci.harvard.edu/TIMER/). These

immune infiltration levels were calculated using the TIMER, Cell-

type Identification By Estimating Relative Subsets Of RNA

Transcripts (CIBERSORT), A Gene Signature-Based Deconvolution

Algorithm for Cell Types in Bulk Tissue (xCell), and Estimating the

Proportion of Immune and Cancer cells (EPIC) methods. The

Wilcoxon rank-sum test was used to assess the correlation between

MPI score groups and immune infiltration levels.

Based on the MPI score, the top 30 genes with the highest

mutation frequency were identified using the MAfTools package in

R. An oncoplot was generated incorporating clinical information

such as diabetes mellitus, history of chronic pancreatitis, cancer

location (pancreatic head or tail, etc.), grade, stage, drinking status,

smoking status, gender, age, and radiotherapy. The MAfTools

package in R was also used to analyze the co-mutation patterns of

the most frequently mutated gene to generate a lollipop plot of TP53

mutations in high- and low-MPI score groups. Additionally, the

WordCloud2 package in R was used to visualize gene distributions

in high- and low-MPI score groups.

Based on the KEGG pathway set downloaded from the MSigDB

(V7.4) database, KEGG pathways related to tumor metabolism were

selected and categorized as metabolic pathways. The log2FC values

associated with the MPI Sscore group were used as an ordered gene

set list. The clusterProfiler package in R was used to perform GSEA

on metabolic pathways, and a dot plot of the GSEA results

was generated.

The immunotherapy Tumor Immune Dysfunction and Exclusion

(TIDE) scores for the TCGA-PAAD dataset and validation sets

PACA-AU, GSE62452, and GSE21501 were predicted using the

TIDE service platform (http://tide.dfci.harvard.edu/). Wilcoxon

rank-sum test and Spearman rank correlation were used to assess

the association between the MPI score and TIDE across

multiple datasets.
Cell culture and incubation

The BxPC-3 cell lines were purchased from the American Type

Culture Collection (ATCC, Gaithersburg, MD, USA). The cells were

cultured in RPMI-1640 (Gibco, Grand Island, NY, USA) medium

supplemented with 10% fetal bovine serum (FBS, Hycline, Life

Sciences, Shanghai, China), 100 U/ml penicillin (Beyotime,

Shanghai, China), and streptomycin (Gibco, Grand Island, NY,

USA). All cells were maintained in a humidified incubator with 5%

CO2 at 37°C (Thermo Scientific, Waltham, Massachusetts, USA).

BxPC-3 cells were transfected with double-stranded small-

interfering RNA (siRNA) in a six-well plate using Lipofectamine 2000

reagent (RiboBio, Guangzhou, China), following the manufacturer’s

protocol. The siRNAs targeting anillin (si-ANLN) and the control were

obtained from Sangon Biotech (Shanghai, China). The BxPC-3 cells

were harvested after at least 24 h of transfection and incubation for
Frontiers in Immunology 05
downstream experimental analysis. Single siRNA oligonucleotides

targeting human ANLN (siRNA1: 5′-GCU ACA UUC UGU UCC

CAA ATT-3′; siRNA2: 5′-CCA GAC CUC UGC UUU CAA ATT-3′)
and a negative control siRNA were diluted in siRNA transfection

medium (31985-070, Life Technologies, Waltham, Massachusetts,

United States) and mixed with siRNA Transfection Reagent

(13778150, Life Technologies) in RPMI-1640 medium, according to

the manufacturer’s instructions.

BxPC-3 Cells were collected by scraping them into an SDS sample

buffer supplemented with a mixture of protease inhibitors and

PhosSTOP Phosphatase Inhibitors (Roche, Pleasanton, CA, USA).

Western blotting was performed following standard procedures. The

PVDF membranes were blocked and then incubated with primary

antibodies against the following targets: ANLN (CL0303, Thermo

Fisher Scientific, USA), E-cadherin (1:1,000, No. 3195, CST, Danvers,

Massachusetts, USA), N-cadherin (1:1,000, No. 13116, CST),

vimentin (1:1,000, No. 5741, CST), Snail (1:1,000, No. 3879, CST),

TGF-b (1:1,000, No. 3711, CST), LDHA (1:1,000, PA5-27406, CST),

MMP-2 (1:1,000, No. 40994, CST), MMP-9 (1:1,000, No. 3852, CST),

P50 (1:1,000, No. 3035, CST), P65 (1:1,000, No. 4764, CST), VEGFA

(1:1,000, No. 50661, CST), and GAPDH primary antibody (1:1,000,

No. 5174, CST). A goat antirabbit IgG conjugated with HRP (1:3,000,

ab205718, Abcam, Cambridge, United Kingdom) was used as the

secondary antibody. Finally, the bands were visualized using the ECL-

plus™ Western blotting chemiluminescence detection kit (BD

Biosciences, Franklin Lakes, New Jersey, USA).

In the BxPC-3 cell invasion assay, 200 ml of serum-free medium

containing 2 × 104 transfected BxPC-3 cells was seeded into each

hydrogel-coated upper chamber of Transwell inserts (hydrogel

purchased from JetLife, China), while each lower chamber was

filled with 800 ml of medium. After incubation for 12 h at 37°C,

noninvading cells in the upper chamber were removed using cotton

swabs. Subsequently, cells that had invaded through the Matrigel-

coated filters were fixed with 4% paraformaldehyde for 15 min and

stained with 0.1% crystal violet. The invaded cells on the underside

of the filters were quantified using a microscope across five random

fields, with the entire procedure being replicated three times. The

migration assay followed the same procedure as the invasion assay,

except that the upper chambers lacked the Matrigel coating

(BD Biosciences).

Utilizing an EdU assay kit (Ribobio), the EdU incorporation

assay was conducted according to the manufacturer’s guidelines. An

overview of the procedure is as follows: initially, 2 × 104 cells were

plated per well on coverslips in 24-well plates and left to settle

overnight. Subsequent to a 48-h incubation with MDL-800 (at 0

[DMSO vehicle only], 10, or 25 mM), the cells were exposed to an

EdU-containing medium (50 mM final concentration) and

incubated for an additional 2 h at 37°C. The cells were then fixed

using 4% formaldehyde for 30 min, followed by permeabilization

with 0.5% Triton X-100 for 10 min. An Apollo reaction cocktail was

applied for 30 min at ambient temperature. To stain the DNA,

Hoechst was used for 30 min, and the images were captured using a

fluorescence microscope (Nikon Inverted Research Microscope

ECLIPSE Ti, Tokyo, Japan) at ×20 magnification, with five

random fields per well. Image analysis was performed using
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ImageJ software. The EdU incorporation rate was quantified as the

percentage of EdU-positive cells relative to the total cell count in

each visual field.
Results

The pan-cancer gene analysis to identify
specific metabolic changes of PAAD

We obtained the interaction network between metabolism and

genes from known studies, comprising 30,446 edges, and identified

4,112 MPI genes. Through pan-cancer analysis, 346 PAAD tumor-

specific metabolism-related genes were identified (Supplementary

Table S1). Based on the expression levels of these genes, principal

component analysis was performed across 14 pan-cancer types,

showing the first two principal components, PC1 and PC2. PAAD

samples formed distinct clusters, clearly separating from other
Frontiers in Immunology 06
tissue types (Figure 1A). Next, Cox prognostic analysis was

conducted across 14 cancer types, revealing a higher number of

prognostic genes across all cancer types. GSEA enrichment analysis

of the PAAD-specific metabolism-related gene sets showed that

these genes exhibited the most significant enrichment in PAAD

tumor types (Figure 1B).

Principal component analysis based on the expression levels of

PAAD-specific metabolism-related genes identified two principal

components, PC1 and PC2. Samples were classified into two PCA

subtypes based on the equation PC1 = 3PC2, with sample sizes of 63

and 113, respectively (Figure 1C). Survival analysis revealed a

significant difference between the two PCA subtypes (p = 0.0038,

Figure 1D). In addition, significant differences in HRD score and

TMB were observed between the two PCA subtypes (Figure 1E).

In addition, in the independent validation datasets PACA-AU,

GSE62452, and GSE215O1, we classified samples into two groups

based on PC1 = 3PC2 for PCA analysis. Significant differences in

patient survival between the two PCA subtypes were observed in the
FIGURE 1

PCA and survival analysis. (A) Principal component analysis of the 14 tumor types in TCGA and the control normal tissues, with different colors
indicating different tumor types. (B) Green: −log10P, the significance level of PAAD-specific metabolic genes in GSEA analysis of prognostic gene
sets across 14 tumor types in TCGA. Blue: log2TNG, the prognosis-related gene set number (TNG, total number of the prognosis genes). (C) PCA of
the expression levels of PAAD-specific metabolic genes (MIPros) in PAAD tumor tissues. (D) Survival analysis of PCA subtype groups. (E) Box plot of
PCA subtypes and clinical features, including age, tumor weight, HRD score, and TMB. PCA analysis of PAAD-specific metabolic genes (MIPros) and
survival of PCA subtypes in independent validation datasets: (F) PACA-AU, (G) GSE62452, and (H) GSE21501.
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PACA-AU and GSE62452 datasets (Figures 1F, G). In the

GSE21501 dataset, although the survival difference between the

two PCA subtypes did not reach the significance threshold, a trend

toward divergence was observed (Figure 1H).
Identification of MPI-related genes among
PCA subtypes and validation of
external data

We performed differential expression analysis on the PCA

subtypes of TCGA-PAAD and identified 2,165 differentially

expressed genes (DEGs) (Supplementary Table S2). The

expression levels of the top 50 genes in the two PCA subtypes

were visualized, revealing significant differences between them

(Figure 2A). In addition, most of these genes exhibited consistent

differential expression patterns in the independent validation

datasets (PACA-AU, GSE62452, GSE21501) (Figure 2B). Based

on the STRING protein interaction network, we constructed the

PPI network of the top 50 differentially expressed genes (Figure 2C;

Supplementary Table S3).
Identification of key modules related to
PCA subtypes using WGCNA

We used the R package WGCNA to perform weighted

correlation network analysis (WGCNA) on genes with the top

50% expression level fluctuation in the sample. The weighted gene

network was constructed by calculating the Person correlation

coefficient between gene pairs, and the soft threshold was

determined through power calculation of the correlation values.

Based on the distribution diagram of the soft threshold and average
Frontiers in Immunology 07
connectivity, we selected power = 7 (Figure 3A). A hierarchical

clustering tree was then constructed using correlation coefficients

between genes, where different gene modules are represented by

distinct branches and colors. In this study, genes were classified into

20 modules, with the number of genes in each module shown in

Figures 3B, C.

Based on the weighted correlation coefficients, genes were

grouped into modules according to their expression patterns. When

incorporating the PCA subtype as a clinical feature, correlation

analysis revealed that the Black module exhibited a strong positive

correlation with the PCA subtype (R2 = 0.53, p = 2.0E−14) and was

also correlated with OS status (R2 = 0.25, p = 9.0E−04; Figure 3D).

Therefore, the Black module was selected for downstream analysis in

this study.
Construction of MPI score model based on
MPI-related and key module genes

An intersection was taken between the genes contained in the

identified key module Black and the differentially expressed genes of

the PCA subtype (Figure 4A). Using a univariate Cox regression

model, the prognostic factors were identified with a threshold of ≤

0.5 (Supplementary Table S4), and redundant factors were removed

through LASSO-logistic regression to further refine the selection of

prognostic factors. The results indicated that the model achieved

optimal efficiency when it included nine prognostic factors.

Therefore, we selected these nine factors for subsequent analysis:

ANLN, PKMYT1, HMGA1, CEP55, FAM83A, FOSLl, GJB5,

KRT6A, and ANXA8 (Figures 4B, C).

Cox regression analysis confirmed that all nine prognostic

factors were associated with increased risk factors (HR ≥ 1, p ≤

0.05; Figure 4C). To evaluate the collective impact of these
FIGURE 2

Differential expression and PPI. (A) Differentially expressed genes were identified based on PCA subtypes. Red indicates C1, and blue indicates C2,
based on FC values. (B) Differential expression of the top 50 differentially expressed genes among PCA subtypes in TCGA-PAAD and independent
validation datasets (PACA-AU, GSE62452, GSE21501). (C) Large dark green dots represent differentially expressed genes in PCA subtypes, while small
orange dots indicate genes that are linked to them in the PPI network.
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prognostic factors on patient survival, a prognostic score model was

constructed based on their expression levels and Cox regression

coefficients. The MPI score for each sample was then

calculated (Figure 4D).

To assess the prognostic efficacy of the MPI score model,

samples were divided into two groups based on the median MPI

score. A significant difference in survival OS was observed between

groups (Figure 4E). Additionally, independent validation datasets

(PACA-AU, GSE62452, and GSE21501) were analyzed to confirm

the prognostic accuracy of the MPI score model. KM survival curves

demonstrated a significant difference in survival time between

patients with high- and low-MPI scores (Figures 4F–H). These

findings are consistent with results from the TCGA-PAAD dataset.

In addition, the prognostic efficacy of the MPI score model was

assessed in TCGA dataset and independent validation datasets
Frontiers in Immunology 08
PACA-AU, GSE62452, and GSE21501. Univariate Cox regression

analysis identified the MPI score as a significant risk factor for

patient survival (Figure 4I). After adjusting for clinical factors such

as age, gender, and tumor grade, multivariate Cox regression

analysis confirmed that the MPI score remained an independent

prognostic factor across these datasets (Figure 4J). Specifically, in

the TCGA-PAAD dataset, multivariate Cox regression analysis

demonstrated that the MPI score was an independent prognostic

factor (HR = 1.04 [95% CI, 1.01–1.1]; p = 0.002; Figure 4K).

Additionally, ROC curve analysis at different time points

indicated strong prognostic performance of the model

(Figure 4L). The C-index was also evaluated for the MPI score

alone, clinical factors alone, and their combination. Notably, the

combined MPI score and clinical factor model exhibited the highest

C-index across datasets (Figure 4M).
FIGURE 3

WGCNA analysis of gene expression levels in PAAD samples. (A) Distribution diagram of the soft threshold and average connectivity. The horizontal
axis represents the soft threshold (power), while the vertical axis represents the evaluation parameter of the scale-free network. The higher the
value, the more the network conforms to the scale-free feature. (B) The hierarchical clustering tree shows each module. Different colors represent
genes grouped into different modules, while gray represents genes not classified into modules. (C, D) Association analysis of module genes with
clinical phenotype data. Red indicates a greater positive correlation, while blue indicates a greater negative correlation.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1555287
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Song et al. 10.3389/fimmu.2025.1555287
Correlation analysis between MPI score
and clinical characteristics

Statistical tests were conducted to examine the correlation

between MPI scores and various clinical characteristics in TCGA-

PAAD samples. No significant difference in MPI scores was observed
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across patients with different TNM stages, smoking/drinking status,

gender, and age (Supplementary Figure S1). However, significant

differences were found in relation to tumor grade, chronic pancreatic

disease status, and TP53 and KRAS mutation status (Figure 5A).

We grouped PAAD samples based on the median MPI score.

Using log2FC values of differentially expressed genes as an ordered
FIGURE 4

(A) Intersection of differentially expressed genes in PCA subtype and Black key module genes in WGCNA analysis. (B) The path diagram of LASSO regression illustrates
how the coefficients of factors in the model change with varying l values. (C) The l value of the model was determined by 10-fold cross-validation, ultimately
selecting nine prognostic factors. Patients were stratified into high- and low-MPI groups based on the median MPI score. (D) Cox proportional hazards model analysis
assessed the prognostic efficacy of the nine prognostic factors. Hazard ratios (HRs) and corresponding confidence intervals indicate each factor’s independent impact
on patient survival, with HRs greater than 1 signifying increased risk and HRs less than 1 suggesting a protective effect. This analysis highlights the robust prognostic
value of the MPI score relative to other factors. (E), Survival analysis of high- and low-MPI score groups in the MPI score model constructed using TCGA-PAAD data.
(F–H) KM curves validate the prognostic efficacy of the MPI score model in independent datasets PACA-AU, GSE62452, and GSE21501. (I) Univariate Cox regression
analysis in TCGA dataset and independent validation datasets. (J)Multivariate Cox regression analysis adjusting for clinical factors such as age, gender, and tumor
grade. (K)Multivariate Cox regression analysis in TCGA dataset, adjusted for clinical factors including age, gender, and tumor grade. (L) ROC curve analysis of the MPI
score model’s AUC values at different survival times in TCGA dataset and independent validation datasets. (M) C-index of different models in TCGA dataset and
independent validation dataset. **p ≤ 0.01.
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gene set, GSEA analysis was performed for GO biological processes

and KEGG pathways. The results were visualized using a volcano

p l o t ( F i gu r e 5B ) . Fo r e x amp l e , t h e GO BP t e rm

MEIOTIC_CELL_CYCLE was significantly enriched in the high-

MPI score group (Figure 5B), whereas the KEGG pathway

NEUROACTIVE LIGAND_RECEPTOR_INTERACTION was

significantly enriched in the low-MPI score group (Figure 5B).

We analyzed the distribution of MPI scores across different PCA

subtypes and found that C2 patients had significantly higher MPI

scores than C1 patients (p = 1.8E−08; Figure 5C). Additionally, the

MPI score showed a significant positive correlation with both tumor

purity and the stemness index, with notable differences observed
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between high- and low-MPI score groups (Figures 5D, E). Moreover,

a significant negative correlation was found between MPI score and

immune score, with significant differences between high- and low-

MPI score groups (Figure 5F).

We explored the distribution of ICB and HLA family gene

expression levels in groups with low- and high-MPI scores. For

ICB expression levels, no significant differences were found between

patients in the high- and low-MPI score groups (Figure 5G).

However, certain HLA family genes exhibited significant differences

in expression (Figure 5H). Additionally, linear correlation analysis

showed a significant positive correlation between the MPI score and

both ICB factors and HLA family gene expression levels (Figure 5I).
FIGURE 5

(A) Box plot distribution of MPI scores in TCGA dataset across different clinical feature groups. Statistical significance level was determined using the
Wilcoxon rank-sum test for comparisons between two groups and the Kruskal–Wallis test for comparisons among multiple groups. (B) GSEA was
used to analyze the functional enrichment of MPI score groups, including BP, CC, MF, and KEGG pathways. The horizontal axis represents the
normalized enrich score (NES), where values less than 0 indicate enrichment in the low-MPI score group, while values greater than 0 indicate
enrichment in the high-MPI score group. The dotted line indicates FDR = 0.05. (C) Box plot of MPI scores across PCA subtypes. (D–F) Correlation
analyses between MPI scores and immune scores, dryness index, and tumor purity. The Wilcoxon rank-sum test was used to determine the
significance level of box plots, while Spearman rank correlation was applied to scatter plots. (G) Box plot depicting MPI score groups and ICB factor
expression levels. (H) Box plot showing MPI score groups and HLA family gene expression levels. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ns, not
significant. (I) Correlation analysis between MPI scores and ICB factor and HLA family gene expression.
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Correlation between immune landscape
and genomic mutations in MPI
score groups

We downloaded different methods, including TIMER,

CIBERSORT, xCell, and EPIC from the TIMER2.0 database, to

calculate the immune infiltration levels in TCGA-PAAD samples

and construct the immune landscape. Wilcoxon rank-sum test was

applied to examine the correlation between MPI score groups and

immune infiltration levels. Some immune cells exhibited

significantly different levels of infiltration between high- and low-

MPI score samples (Figure 6A). Furthermore, using FPKM

expression profile data, we calculated infiltration scores for 22

immune cell types with the R package CIBERSORT, revealing

significant differences between the high- and low-MPI score

groups (Figure 6C).

In addition, we used the R package MAfTools to identify the top

30 genes with the highest mutation frequencies and examined their

distribution in the high- and low-MPI score groups (Figures 6B, D).
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Fisher’s exact test was then applied to assess differences in mutation

frequencies between the two groups, identifying 16 genes with

significantly different variation frequencies in the high-MPI score

group (Supplementary Table S5). For example, TP53 mutations were

more prevalent in the low-MPI score group (p = 1.67E−06, Figures 6B,

D). For all mutations, we found a significant positive correlation with

the MPI score (Figure 6E), with the total number of mutations being

significantly higher in the high-MPI score group (Figure 6E). Similar

trends were observed for both nonsynonymous and synonymous

mutations (Figure 6E). In addition, TMB was significantly elevated in

the high-MPI score group (Figure 6E), further indicating a positive

correlation with the MPI score (Figure 6E).

Based on the mutation frequencies ranked from highest to

lowest, we selected the top 200 mutated genes. Univariate Cox

regression analysis was then performed on mutation status,

identifying 21 mutated genes associated with prognosis

(Figure 6F). In addition, co-mutation analysis of the top 30 high-

frequency mutated genes revealed significant co-mutation patterns

in certain genes (Figure 6G).
FIGURE 6

(A) Heat map of MPI score groups and immune cell infiltration levels, including TIMER, CIBERSORT, xCell, and EPIC. (B) Genomic mutation profiles
of the high- and low-MPI score groups, displaying the top 30 mutated genes ranked by mutation frequency. (C) Box plot of MPI scores and
CIBERSORT-based immune cell infiltration levels. Statistical significance levels were determined using the Wilcoxon rank-sum test. (D) Variation
frequency of the top mutated genes in the high- and low-MPI score groups, with letter size representing mutation frequency. Mutation sites of the
TP53 gene in high- and low-MPI score groups. (E) Correlation between MPI scores and total mutation counts, nonsynonymous mutation counts,
number of synonymous mutations, and tumor mutation burden (TMB). (F) Cox regression analysis of mutation status and overall survival (OS) time in
genes with high mutation frequencies. (G) Co-mutation analysis of the top mutated genes in PAAD. In this plot, green indicates a statistically
significant co-occurrence of mutations, suggesting potential cooperative effects in tumor progression or modulation of the immune
microenvironment, whereas brown indicates mutual exclusivity, indicating alternative oncogenic pathways. *p < 0.05. **p ≤ 0.01; ***p ≤ 0.001; ns,
not significant.
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GSEA analysis of tumor metabolism-related pathways showed

consistent results across TCGA-PAAD dataset and validation sets

RACA-AU and GSE62452 (Supplementary Figure S2). Notably, the

Folate_biosynthesis and Glycosaminoglycan_biosynthesis_keratan_
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sulfate pathways were significantly enriched in high-MPI score

samples across all three datasets, while the Fatty_acid_

metabolism pathway was significantly enriched in the low-MPI

score samples.
FIGURE 7

Drug sensitivity predicted by Ridge regression in the high- and low-MPI score groups of PAAD samples is shown in the bar chart. Red indicates that
the drug is more electrically sensitive in the high-MPI score group, while blue indicates higher sensitivity in the low-MPI score group. The screening
conditions were |Dlog2(IC50) ≥ 0.1, FDR ≤ 0.05. (B, C) Spearman correlation between MPI score and TIDE prediction score in TCGA samples, with
box plot representation. (D, E) Spearman correlation between MPI score and TIDE prediction score, along with box plot representation in the
PACA-AU dataset. (F, G) Spearman correlation between MPI score and TIDE prediction score, with box plot representation in the GSE62452 dataset.
(H, I) Spearman correlation between MPI score and TIDE prediction score, with box plot representation in the GSE21501 dataset. (J) Survival analysis
of immunotherapy-treated samples in the IMvigor 210 cohort, comparing high- and low-MPI score groups. (K) Proportion of immunotherapy
response in high- and low-MPI score groups. (L) Correlation between response/nonresponse and MPI score was assessed using the Wilcoxon
rank-sum test.
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Evaluation and analysis of drug response
and immunotherapy effect of MPI score

In addition, pharmacogenomic data from GDSC were

downloaded, and ridge regression was applied to predict drug

sensitivity in patients based on cell line expression data and drug

response information (Supplementary Table S6). The correlation

between high- and low-MPI score groups and drug response

patterns was also explored (Supplementary Table S7). We found

that for some anticancer drugs, patients with high-MPI scores were

more sensitive to drug response, such as afatinib (Figure 7A). On

the contrary, for etoposide, doxorubicin, and gemcitabine, patients

with low-MPI scores were more sensitive to drug response

(Figure 7A; Supplementary Table S7).

We predicted TIDE scores for immunotherapy in TCGA-

PAAD dataset and validation sets PACA-AU, GSE62452, and

GSE21501 (Supplementary Tables S8-S11). The correlation

between the MPI score and the TIDE score was also analyzed,

revealing a positive correlation in the three validation datasets

(Figures 7B, D, F). For example, GSE62452 showed the strongest

positive correlation (R2 = 0.43, p = 2.4E−04, Figure 7F).

Additionally, patients in the high-MPI score group had

significantly higher TIDE scores across all three datasets

(Figures 7C, E, G). However, in GSE21501, the correlation did

not reach statistical significance (Figures 7H, I).

In order to explore whether the MPI score can be used

as an immunotherapy response marker, the R package IMvigor210

CoreBiologies was used to extract a set of transcriptomic and clinical

data from patients treated with the PD-L1 blocker atezolizumab for

validation analysis. A high-MPI score was found to be associated with

better posttreatment outcomes (p = 0.012, Figure 7J). Additionally, the

proportion of patients responding to atezolizumab (CR/PR) was

similar between the high- and low-MPI score groups (high-MPI

score: 22.5%; low-MPI score: 23.1%; Figures 7K, I).
Tumor-promoting role of anillin in vitro

Furthermore, we investigated the functional significance of

anillin (ANLN) in BxPC-3 cells in vitro. We generated anillin

knockdown (siRNA1 and siRNA2) human BxPC-3 cells and used

Western blotting analysis to confirm knockdown efficiency

(Figure 8A). The EMT process is widely recognized as a critical

factor in cancer progression (33). Therefore, we assessed the levels

of proteins associated with EMT (Figure 8A). The findings revealed

an increase in E-cadherin and a decrease in N-cadherin, Vimentin,

Snail, and TGF-b in anillin-knockdown BxPC-3 cells, suggesting

that anillin may play an important role in facilitating the EMT

process. To examine the effect of anillin on proliferation, we

conducted the EdU pulse labeling, which revealed a significant

reduction in anillin proliferative capacity in anillin-knockdown cells

(p < 0.001) (Figure 8B). Next, Transwell assays were conducted to

assess migratory and invasive capabilities (p < 0.001) (Figure 8C),

showing significantly diminished migration and invasion in anillin

knockdown BxPC-3 cells. Moreover, tube formation assays were
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performed to evaluate the impact of anillin on angiogenesis, which

was remarkably reduced in anillin knockdown cells (p < 0.001)

(Figure 8D). Collectively, these findings suggest that anillin plays a

crucial role in promoting multiple aspects of tumor progression,

including EMT, migration, invasion, and angiogenesis.
Discussion

In recent years, the incidence of PAAD in China has been

increasing year by year. The 5-year survival rate of PAAD is less

than 9%, and 80% of patients are diagnosed at an unresectable stage.

At present, PAAD frequently develops resistance to conventional

treatments such as chemotherapy and radiotherapy, leading to

rapid disease progression and poor prognosis. Although surgery

remains the only potential curative treatment for PAAD, it is also

associated with a high risk of local or distant recurrence (33, 34).

Therefore, identifying new therapeutic targets has become an

urgent priority.

Metabolic reprogramming is a hallmark of malignancy. In some

cases, reprogrammed metabolic activity can be used to diagnose,

monitor, and treat cancer. The characteristics of low oxygen and

nutrient deficiency in the tumor microenvironment will lead to the

establishment of metabolic competition between tumor cells and

immune cells, and the accumulation of toxic metabolites will have a

negative impact on the immune response (35–37). Additionally, the

high metabolic activity and adaptability of tumor cells further change

the metabolic characteristics of the tumor microenvironment,

exerting metabolic pressure on infiltrating immune cells and

promoting immune suppression and escape. Therefore, the

interplay between the metabolic reprogramming of PAAD cells and

tumor microenvironment is critical.

At present, specific tumor markers for PAAD have been

studied. For example, pentraxin 3 (PTX3) is a sensitive and

specific biomarker with an AUC of 91%, distinguishing PAAD

from other cancers. PTX3 levels also fluctuate in response to drugs

targeting cancer and stroma, and these changes can be easily

measured in blood to monitor treatment effects (38, 39).

However, whether PTX3 can serve as a biomarker for early

detection in clinical practice remains to be determined. Therefore,

we aim to identify multiple associations and markers for long-term

prognosis and treatment prediction in PAAD.

In this study, pan-cancer analysis identified 346 PAAD-specific

metabolic genes and patient samples were classified into two PCA

subtypes using PCA analysis. These subtypes were correlated with

patient survival time, HRD score, and TMB (40–42). Based on the

differential expression analysis of the PCA subtypes and identified

key module genes, we screened nine prognostic genes: ANLN,

PKMYT1, HMGA1, CEP55, FAM83A, FOSL1, GJB5, KRT6A,

and ANXA8. The MPI score prognostic evaluation system was

constructed using these genes. At the protein expression level, we

presented the heatmap distribution of the expression levels of the

top 50 genes in the two PCA subtypes and plotted the PPI network

of the top 50 differentially expressed genes. Unlike conventional

prognostic models such as TNM staging or immune scores, the
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MPI score integrates metabolic reprogramming with immune

landscape analysis, providing a more comprehensive and

dynamic assessment of PAAD prognosis. While TNM staging

remains essential for tumor classification, it does not account for

the metabolic and immune complexities that significantly affect

patient outcomes (43, 44). The MPI model, on the other hand,

offers superior predictive value by incorporating tumor

metabolism, immune infiltration, and drug sensitivity, thus

guiding more personalized therapeutic strategies. Furthermore,

the MPI score shows strong correlations with immune response

markers and can predict immunotherapy outcomes, making it a

promising tool for clinical decision-making.

GSEA analysis of the identified tumor metabolism-related

pathways in TCGA and independent validation sets showed

consistent enrichment of these pathways. Genomic analysis
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revealed a significant correlation between MPI score and PCA

subtype, tumor purity, stemness index, and immune score. To

detect in vivo drug sensitivity, we explored the correlation

between the MPI score groups and drug response patterns.

Notably, patients with higher MPI scores were found to be more

responsive to certain cancer drugs (45–47). TIDE score predictions

in TCGA database and three independent validation sets showed a

positive correlation between the MPI score and TIDE score,

suggesting that the MPI score may serve as a response marker for

immunotherapy. To further validate this, we analyzed

transcriptomic and clinical data from a group of patients treated

with the PD-L1 blocker atezolizumab. The results showed that

patients with high-MPI scores had better prognoses, confirming

that the MPI score is a potential marker for PAAD immunotherapy

response. The observed association between high-MPI scores and
FIGURE 8

Anillin promotes epithelial-mesenchymal transition (EMT), proliferation, migration, invasion, and angiogenesis in BxPC-3 cells. (A) Western blot
analysis confirming the knockdown efficiency of anillin (ANLN) in BxPC-3 cells transfected with siRNA1 and siRNA2. Knockdown of anillin resulted in
increased E-cadherin levels and decreased expression of N-cadherin, Vimentin, Snail, and TGF-b, indicating inhibition of the EMT process. (A) EdU
incorporation assay showing a significant reduction in proliferation in anillin-knockdown BxPC-3 cells compared to the control group (p < 0.001).
(C) Transwell migration and invasion assays demonstrating a marked decrease in the migratory and invasive capabilities of anillin-knockdown BxPC-
3 cells (p < 0.001). (D) Tube formation assay revealing a significant reduction in angiogenic potential following anillin knockdown (p < 0.001). All
experiments were performed in triplicate, and statistical significance was determined using appropriate tests (p < 0.001). ***p < 0.001
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elevated PD-L1 expression suggests that patients in the high-MPI

group may benefit from immune checkpoint inhibitor (ICI)

therapies. Supporting this, our validation analysis demonstrated

that PAAD patients with high-MPI scores who received PD-L1

blockers (e.g., atezolizumab) had improved prognoses. These

findings imply that MPI could be a useful biomarker for guiding

patient stratification for immunotherapy, although further clinical

studies are warranted to confirm its predictive value.

Tumor metabolic remodeling is fundamental to the occurrence

and progression of pancreatic cancer, serving as a cornerstone of its

biological activities. Such metabolic remodeling by finding

metabolic intervention targets to inhibit energy acquisition and

biosynthesis has emerged as a new direction in pancreatic cancer

research. Given its robust association with both metabolic

reprogramming and the immune microenvironment, the MPI

score could be integrated into clinical workflows to stratify PAAD

patients. For instance, the MPI score may help identify patients who

are more likely to benefit from targeted therapies or

immunotherapies, thereby guiding personalized treatment

decisions and optimizing therapeutic outcomes. The MPI score

system presented in this study serves as an independent prognostic

factor influencing patient survival and effectively reflects immune

infiltration levels, anticancer drug sensitivity, and immunotherapy

response in pancreatic cancer patients. It is a promising clinical

marker for investigating the role and therapeutic impact of

metabolic reprogramming in pancreatic cancer.
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