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Non-tuberculous mycobacteria (NTM) are widespread environmental pathogens

that can lead to significant disease burden, particularly in immunocompromised

individuals, but also in those with a normal immune system. The global incidence

of NTM is increasing rapidly, with Mycobacterium avium complex (MAC) being

one of the most common types. The immunopathogenesis of the MAC involves a

complex interaction between the bacteria and the host immune system. MAC

survives and replicates within macrophages by preventing the fusion of

phagosomes and lysosomes. The mycobacteria can neutralize reactive oxygen

and nitrogen species produced by themacrophages through their own enzymes.

Additionally, MAC modulates cytokine production, allowing it to suppress or

regulate the immune response. Diagnosing MAC infections can be challenging,

and the effectiveness of available treatments may be limited due to MAC’s

unpredictable resistance to various antimycobacterial drugs in different

regions. Treating MAC infection requires a collaborative approach involving

different healthcare professionals and ensuring patient compliance. This review

aims to shed light on the complexities of MAC infection treatment, discussing the

challenges of MAC infection diagnosis, pharmacological considerations, such as

drug regimens, drug monitoring, drug interactions, and the crucial role of a

multidisciplinary healthcare team in achieving the best possible treatment

outcomes for patients.
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1 Introduction

The number of non-tuberculous mycobacteria (NTM)

infections is increasing worldwide. Unlike tuberculosis, which is

caused by Mycobacterium tuberculosis and requires mandatory

reporting, NTM infection reporting is not mandatory. This makes

it difficult to determine the incidence and prevalence of the different

species. NTM are typically found in soil and water and do

not include the M. tuberculosis, Mycobacterium leprae, and

Mycobacterium lepromatosis. The Runyon classification system

(Figure 1), which categorizes NTM based on colony appearance,

growth rate in media, and pigment production (1–3), is the most

widely used classification method, and currently, >200 NTM species

have been identified based on genomic criteria (1, 2). M.

avium, a slow-growing mycobacterium, is associated with

Mycobacterium avium complex (MAC) infections that can cause

chronic pulmonary disease, disseminated disease, as well as

lymphadenitis (1).

Recently, NTM infection is becoming more prevalent in the

United States, Europe, and other developed countries in the Western

world (1). In 22 studies conducted between 1946 and 2014, it was

discovered that there was an 81% decrease in tuberculosis cases, while

NTM increased by 94% across different regions (4). NTM diseases are

increasingly being recognized as causes of opportunistic infections in

individuals with severe immune deficiencies, as well as those with

congenital or acquired lung conditions, and in healthcare settings (4).
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The challenges in determining the true incidence and shifting

epidemiology continue as we move away from the era of

uncontrolled human immunodeficiency virus (HIV). However, we

are still seeing an increased in NTM diagnosed in an aging and

increasingly immunocompromised population. The incidence and

prevalence of NTM infections in individuals with HIV/acquired

immunodeficiency syndrome (AIDS) vary based on geographic

location, the level of immunosuppression, and access to

antiretroviral therapy (ART) (5). Before the widespread use of

ART, NTM infections, especially MAC infection, were significant

causes of morbidity among HIV/AIDS patients. In the pre-ART era,

the incidence of disseminated MAC infection in HIV patients with

CD4 counts below 50 cells/ml was estimated to be between 20% and

40% annually (6). Since the advent of ART, the incidence of NTM

infections has significantly decreased. Current studies indicate that

the incidence of disseminated MAC infection in HIV patients

receiving ART is now less than 1% annually (7). In terms of

prevalence, during the pre-ART era, the prevalence of disseminated

NTM (primarily MAC infection) among advanced HIV/AIDS

patients with CD4 counts below 50 cells/ml was reported to be

between 10% and 30%. Although the prevalence of NTM infections

has dramatically declined in the ART era, localized NTM infections

(such as pulmonary NTM) continue to be a concern, particularly in

regions with high environmental exposure to NTM (8, 9).

Additionally, there has been a noted rise in NTM infections

among individuals who are not immunocompromised and do not
FIGURE 1

The non-tuberculosis mycobacteria Runyon classification system.
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have preexisting lung diseases. One study found that 18% of MAC

pulmonary infections were in people without predisposing

conditions, which is consistent with other literature on this topic

(10, 11). Another study revealed that this group accounted for 20%

of all clinical NTM infections, and they tended to experience

delayed diagnosis and high recurrence rates (12).

While many individuals exposed to NTM show no symptoms,

certain NTM species, such asM. avium, can lead to severe infections

in both immunocompromised and immunocompetent individuals.

While high-risk populations, including those with chronic lung

disease, HIV/AIDS, anti-interferon-gamma antibody-associated

adult-onset immunodeficiency syndrome (AIGAs-AOID), and

immunosuppression, are more susceptible to localized or

disseminated NTM infections, NTM infections are not limited to

these populations (1, 13–17). NTM infections pose significant

treatment challenges due to antibiotic resistance.

This review discusses the processes of NTM infection, mainly

focusing on MAC and its immunopathogenesis, virulence factors,

and host interactions while highlighting the commonalities

regarding clinical presentation spectrums in particular

populations. Drug resistance mechanisms and potential future

therapeutic options are also discussed. Understanding this

underrecognized global threat is crucial as it may lead to

critical illness.
2 Immunopathogenesis and immune
response to Mycobacterium
avium complex

The prevalence of MAC infection in the immunocompromised

hosts is high, particularly in skin and soft tissue infections when

compared to mycobacteremia, tenosynovitis, and lymphadenopathy

(18). This suggests that the host’s immunity is generally protective

against MAC in the general population, unless there is a breakdown in

barriers or a suitable environment for MAC accumulation and growth.

However, the role of MAC and its impact on patients varies

significantly depending on the immune status of the host. Notably,

in immunocompetent individuals, MAC infections are rare and

typically present as localized pulmonary disease. This is especially

true for those with pre-existing lung conditions, such as chronic

obstructive pulmonary disease (COPD) or bronchiectasis. The

infection is usually slow-growing and chronic, with symptoms

including cough, fatigue, weight loss, and fever. Disseminated MAC

infections are uncommon in immunocompetent hosts (5). In contrast,

MAC can cause severe and disseminated disease in immunosuppressed

patients. This is particularly the case for individuals with advanced

HIV/AIDS (with a CD4 count of less than 50 cells/ml), those
undergoing chemotherapy, or organ transplant recipients. In these

patients, MAC often spread beyond the lungs and may involve the

bloodstream, lymph nodes, bone marrow, liver, and other organs. This

condition is referred to as disseminated MAC infection. Before the

introduction of ART, disseminated MAC infection was a leading cause

of morbidity and mortality in this population (6, 19).
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2.1 Cellular and innate immune response

Due to NTM infection being less virulent than tuberculosis,

several host defense defects are usually presented in the host,

including ciliary dysfunction, lung structural changes, pulmonary

clearance defects, poor secretion clearance, and immune

suppression (20). Unlike tuberculosis, NTM is an environmental

microbe found in various reservoirs such as garden soils, water

sources, and shower heads (21), and it also colonizes the human

respiratory tract (22). However, innate and adaptive immune

responses against NTM are different to those against M.

tuberculosis because NTM presents different pathogen-associated

molecular patterns (PAMPs), which are recognized by pathogen-

recognition receptors at the plasma membrane of macrophages

(23). The CD4 Th1 and myeloid cells, including macrophages,

dendritic cells, and neutrophils, play a crucial role in the initial

recognition, phagocytosis, and controls of mycobacterial infection

and chronic disease (23). In the alveoli and airways, alveolar

macrophages are the first-line innate immune cells that detect

airborne (bioaerosol) microbes. In contrast, lung interstitial

macrophages act at the vasculature and lung interstitial levels,

mainly on hematogenous spreading organisms (24).

Once M. avium enters the lungs, the alveolar macrophages are

the first immune cells to respond. They interact with MAC through

fibronectin receptors and complement pathways (25). The

membrane of M. avium has a high affinity for the fibronectin

receptor on macrophages, specifically binding to its mannosyl and

fucosyl moieties (26). Alveolar macrophages utilize various

pathways to enhance the apparent phagocytic activities, such as

phagocytosis by primary phagosomes, which ultimately damage the

bacilli through toxic oxygen metabolites, acidification, and

neutrophil defensins (27, 28), as well as binding to complement

and mannose receptors, surfactant molecules, dendritic cell-specific

intracellular adhesion molecule-3-grabbing nonintegrin, and Toll-

like receptors (TLR) (29). TLR2 recognizes 19-kDa mycobacterial

lipoproteins and glycolipids, whereas TLR2/1 and TLR2/6

heterodimers respond to triacylated and diacylated lipoproteins,

respectively. Moreover, heat shock protein 60/65 and mycobacterial

unmethylated CpG DNA are sensed by TLR4 and TLR9,

respectively (22). Activated macrophages then secrete interleukin

(IL)-12, which activates the secretion of interferon (IFN)-g (the IL-
12/IFN-g axis [an innate and adaptive immunity cross talk]) and IL-

17 (from T helper [Th] 17 cells, which also functions as an

antimycobacterial cytokine by enhancing IFN-g-mediated Th1

responses) by natural killer and Th1 cells (30). Innate immunity

and Th1 seem to be the primary anti-NTM responses; further

studies are needed because host vulnerability and evasion

mechanism studies are very few compared to those on anti-M.

tuberculosis responses. As an antigen presenting cells, macrophages

also defend against MAC by presenting it to T lymphocytes,

recruiting and cloning specific T lymphocytes, and training

immunologic memory T cell expansion.

However, MAC can survive intracellularly in macrophages and

proliferate in their vacuoles. This is achieved by inhibiting the
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fusion of phagosomes with lysosomes, creating a more anaerobic

environment for their growth, and inducing MAC genes for

duplication. Additionally, MAC inhibits host macrophage

function and lymphocyte proliferation, and induces macrophage

apoptosis by down-regulating the Bcl-2 gene product, which

functions as an apoptosis inhibitor (31, 32). The dynamic cellular

immune responses lead to the formation of granulomas, where

clusters are surrounded by mononuclear inflammatory cells and

epithelioid histiocytes (33). Notably, the release of cytolytic

enzymes and other cytotoxic proteins causes necrosis and

encapsulating fibrosis in either affected area or adjacent

tissue (33, 34).

The cytokine network plays a crucial role in the immune

response against MAC, working closely with macrophages and

involving T lymphocytes, natural killer (NK) cells, interleukin-12,

tumor necrosis factor (TNF)-a, and IFN-g. Activated macrophages

respond by producing IL-12, which in turn activates T lymphocytes

and NK cells (35). NK cells respond to MAC-infected cells by

secreting TNF-a and IFN-g. This leads to the activation of

neutrophils and other macrophages, producing superoxide and

nitric oxide, and increasing the expression of certain molecules

(36). Activated macrophages also decrease lysosomal pH, increase

intracellular concentration of antimycobacterial agents, and provide

positive feedback signals to enhance the mycobactericidal effect

(37). Patients with defects in these molecular receptors or related

cytokine genes are more susceptible to MAC (38). For example,

those with Mendelian susceptibility to mycobacterial diseases

(MSMD) have a narrow vulnerability to certain mycobacteria,

with recurrent infections characterized by the presence of

neutralizing auto-antibodies (39). Furthermore, the use of IFN-a
inhibitors in the treatment of rheumatoid arthritis can disrupt the

immune response to MAC, likely by inhibiting the macrophage
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killing ability to MAC and neutralizing circulating IFN-a levels (40,

41). This interruption significantly increases the risk of NTM

infection in patients receiving TNF-a blocker treatments (42). IL-

12 stimulates T lymphocytes and NK cells to produce IFN-g and

IFN-a, and it is also stimulated by IFN-g and IFN-a. On the other

hand, IL-10 down-regulates the inflammatory response, which

makes the host more susceptible to MAC (43, 44) (Figure 2).

Identifying this novel target would be a future perspective for

elucidating a critical pathway for controlling MAC. Indeed,

targeting to IL-12 and IFN-g/IFN-a feedback loop could involve

enhancing IL-12 signaling to boost IFN-g production, developing

agonists or mimetics of IL-12 or IFN-g to strengthen the host’s

antimicrobial response, and lastly, identifying and blocking negative

regulators of this pathway that may be exploited by MAC to evade

immunity (43, 44). Meanwhile, targeting IL-10 could involve

developing IL-10 antagonists or blocking its receptor (IL-10R) to

reduce its immunosuppressive effects, identifying downstream

signaling molecules of IL-10 that could be modulated to restore a

balanced immune response, and exploring the role of IL-10-

producing regulatory T cells (Tregs) and their contribution to

MAC susceptibility (43, 44). However, currently, there is no solid

evidence of a suspected target molecule or specific immune

deficiency that has been established for advanced treatment.

Interestingly, a recent study from Seto and colleagues (45)

demonstrates that while tuberculosis and MAC granulomas share

some common features, such as the formation of granulomatous

structures, they differ significantly in their molecular and cellular

profiles. A strong Th1-driven immune response, active bacterial

replication, and caseous necrosis characterize tuberculosis

granulomas. In contrast, MAC granulomas exhibit a more

subdued immune response, chronic inflammation, and a tendency

towards fibrosis. These differences are reflected in their proteomic
FIGURE 2

The immune responses against non-tuberculous mycobacteria. Created with BioRender.com.
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profiles, metabolic pathways, and histopathological features. The

tuberculosis granulomas often exhibit caseous necrosis, surrounded

by a rim of epithelioid macrophages, giant cells, and lymphocytes.

The granulomas are well-organized and tightly packed, reflecting a

strong immune response, whereas the MAC granulomas tend to be

less organized, with fewer giant cells and more diffuse

inflammation. In addition, the lesions are more likely to be

fibrotic and less necrotic, with a higher presence of foamy

macrophages (45).
2.2 Immune escape of Mycobacterium
avium complex

The cell wall properties of mycobacteria prevent the

acidification of phagocytosis and enhance biofilm formation,

enabling these pathogens to escape detection by the human

immune system (46, 47). However, the mechanisms responsible

for biofilm formation by mycobacteria, which helps them survive

antimycobacterial agents, are not yet fully understood. Additionally,

MAC inhibits the production of inflammatory cytokines, which

helps them evade the host’s immune response and facilitates

colonization. Glycopeptidolipids (GPLs) are a class of glycolipids

produced and expressed in different forms with production of

highly antigenic, typeable serovar-specific GPLs in members of

MAC. Smooth-domed colony types induce greater production of

inflammatory cytokines, while the smooth-transparent colonial

types trigger a weaker host response, producing fewer

cytokines (48).
2.3 Host susceptibility

2.3.1 Exploring the relationship between body
morphotype and preexisting nodular
bronchiectasis and fibrocavitary chronic
lung diseases

The body morphotype is a predisposing factor for developing

chronic lung disease, which in turn increases the risk of developing

pulmonary MAC infection, including nodular bronchiectasis

disease (NB type) and fibrocavitary disease (FC type). Some

patients exhibit common body composition features such as

scoliosis, pectus excavatum, mitral valve prolapse, and joint

hypermobility. These conditions may be linked to genetic factors

associated with MAC infection, although the exact mechanism by

which this body morphotype predisposes to MAC infection is

unclear. One proposed mechanism involves multigene mutations,

including heterozygosity for the cystic fibrosis transmembrane

conductance regulator (CFTR) gene mutation, as well as certain

connective tissue disorders that contribute to MAC infection, such

as Marfan syndrome (49–51) , congenital contractual

arachnodactyly (52), and complete TYK2 deficiency in hyper-IgE

syndrome (53).

In fibrocavitary chronic lung disease, MAC infection is often

challenging to distinguish from tuberculosis. This is mainly because
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it tends to affect the upper lobes of the lungs in elderly, male, and

heavy-smoking individuals. It can also present with symptoms and

radiographic changes that are similar to tuberculosis. On the other

hand, MAC infection in nodular/bronchiectatic chronic lung

disease is typically found in non-smoking women over the age of

50 without a preexisting history of the underlying pulmonary

disease. However, bronchiectasis is invariably present at the time

of MAC infection diagnosis (54).

2.3.2 Immune defects
The reason for developing MAC infection in hosts with

immune defects is still a topic of debate. One study found that

IFN-g, TNF-a, and IL-12 may help protect against MAC, while IL-

10 could have an immunosuppressive effect on MAC (55). This is

consistent with another study that showed a reduced IFN-g
response to mitogen stimulation in patients with pulmonary

MAC infection (56). The dysfunction of T cells has also been

demonstrated in the development of MAC infection. More

recently, it has been suggested that concurrent innate and

adaptive dysregulation may play a role in either the development

or persistence of MAC infection. While T-cell exhaustion appears to

be a significant factor contributing to MAC infection, excessive

upregulation of proinflammatory pathways also enhances MAC’s

persistence (57).

2.3.3 Genetic predisposition
Recent data suggests that aside from environmental factors,

genetic predisposition may play a significant role in the

susceptibility to pulmonary NTM infection. Two key genes, the

cystic fibrosis transmembrane regulator (CFTR) and the TTK

protein kinase gene, have been identified as potential explanations

(58–60). Specifically, genetic linkage analysis has shown a

connection between chromosome 6q12-q16 and the gene TTK,

indicating its involvement in susceptibility to pulmonary MAC

infection through its role in host DNA damage repair and cell

survival (59).

Mutations in the CFTR gene, which encodes a protein that

functions as a chloride channel in epithelial cells, are responsible for

cystic fibrosis and are more commonly found in Southern countries

than in Asia (61). In a study of 300 Japanese pulmonary MAC

infection cases, an association was found between pulmonary MAC

and three CFTR gene variations (TG repeat, polyT, and M470V),

specifically with the ISV8-T5 allele (61). Additionally, a genome-wide

association study (GWAS) using whole genome data from cystic

fibrosis patients discovered that the CHP2 region on chromosome 16,

which is related to MAC infection, is associated with severe cystic

fibrosis (62). Another GWAS on 1,066 patients with pulmonaryMAC

revealed a disease susceptibility SNP (rs109592) on chromosome 16,

which was significantly less common in pulmonary MAC cases (odds

ratio 0.54, p = 1.6 x 10-13) (63). This SNP is located in the intronic

region of CHP2, which controls pH through a sodium-hydrogen ion

exchanger expressed in epithelial cells (64), indicating the potential

importance of airway epithelial cells in pulmonary MAC.

Familial clustering of MAC infection is another theory related

to genetic predisposition. Kuwabara and colleagues (65)
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documented a series of cases where siblings had pulmonary MAC

disease. Their Restriction Fragment Length Polymorphism (RFLP)

analysis using insertion sequencing as a probe showed that the

bacteria detected in sibling cases were distinct strains. This

corresponds to the idea that there may be immunological

impairment in the host’s immune defense mechanism. In a report

from the United States, the National Institutes of Health (NIH)

found 120 cases of pulmonary NTM infection in six families, where

a parent and child or siblings had the disease. Five of these families

had three or more cases of pulmonary MAC infection within the

same family, suggesting the presence of a disease susceptibility

gene (66).

Accordingly, to this evidence, it suggests that pulmonary MAC

infection is likely a complex disease involving combinations of

variants across gene categories, as well as environmental factors that

increase susceptibility to infection. This seems to be particularly

true for individuals with bronchiectasis and cystic fibrosis.

Understanding this genetic overlap may be crucial for identifying

the disease susceptibility genes and pathogenesis of MAC infection

in the future.
2.4 Gut–lung axis and pulmonary non-
tuberculous mycobacteria

The immune responses against NTM and/or the treatments

may influence the host’s inflammatory responses, especially

macrophages, and interact with other microorganisms (bacteria,

fungi, and viruses) within the lung microbiome (67). For example,

during active NTM infection, activated macrophages might

aggressively kill bacteria, especially less virulent bacteria, thereby

selectively elevating the levels of some bacteria, especially the more

pathogenic ones. Indeed, Proteobacteria (mainly Gram-negative)

are elevated in the lung microbiota of patients with NTM (24).

Notably, virota alterations after bacterial population changes might

be because of differences in bacteriophages since viruses are

intracellular organisms, and changes in viruses in host cells

because of changes in bacteria are less likely (68). During NTM

infection, the lung microbiota is altered by host immune responses

as well as by the communication between NTM and other microbes

(referred to as “microbial crosstalk or microbe–microbe

interaction”). Crosstalk can occur within the bacterial kingdom

(bacteria–bacteria interaction) or with non-bacterial microbes

(fungi and viruses), i.e., interkingdom crosstalk (69). Microbial

crosstalk might be because of bacterial competition in nutrient-

limited contexts or the secretion of some molecules (70).

Interestingly, in addition to altering the lung microbiota, NTM

may also change gut microbiota, for example through immune

response activation. Moreover, through a two-way communication

referred to as the “gut–lung axis”, gut microbiota changes might

also affect lung NTM (69). Although NTM might be localized in

specific organs, it might alter the gut microbiota because activated

macrophages circulate through all organs, including the gut. Indeed,

systemic macrophage depletion using liposomal clodronate alters

gut microbiota (71). However, gut microbiota also affects lung NTM
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because some small gut microbe metabolites, such as arginine,

activate lung immunity, thereby reducing NTM burden (72).

Indeed, the translocation of gut microbiota-produced small

molecules and/or small molecules from the digestion of gut

contents, is an underlying mechanism of the crosstalk between

the lungs and other organs (73). Thus, administering arginine or

arginine production-enhancing probiotics might be beneficial for

NTM treatment (72). Hence, a better understanding of the gut–lung

axis might improve our understanding of NTM pathogenesis and

identify new therapeutic modalities.
2.5 Experimental animal models for
MAC infection

Animal models play a crucial role in studying the pathogenesis

of MAC infection and in testing new therapies. Commonly used

models include mice, zebrafish, rabbits, and non-human primates.

Recent studies involving mouse models have offered valuable

insights into MAC infection pathogenesis, immune responses,

and potential therapeutic strategies.

Mice are particularly useful for examining the immune response

to MAC infection, especially in immunocompromised hosts that

mimic human conditions, such as HIV/AIDS or other states of

immunosuppression. MAC infection in mice typically affects the

lungs, liver, and spleen, with granuloma formation being a

significant feature of the host immune response (74). Research

has shown that T-cell-mediated immunity, especially through Th1

responses (involving cytokines like IFN-g and TNF-a), is essential
for controlling MAC infections. Mice deficient in IFN-g or TNF-a
are more susceptible to widespread MAC disease. Interestingly,

macrophages have a dual role in both controlling and disseminating

MAC infection, as the mycobacteria can survive and replicate

within these cells (74, 75).

In terms of genetic susceptibility, certain mouse strains, such as

C57BL/6 and BALB/c, have been utilized to study the genetic factors

influencing MAC infection. For instance, C57BL/6 mice are more

resistant to MAC due to their robust Th1 responses, whereas

BALB/c mice are more susceptible (76, 77). Additionally,

polymorphisms in the Nramp1 (Slc11a1) gene have been shown

to influence susceptibility to MAC in mice, similar to their effects in

humans (76, 77).

Chronic MAC infection models in mice have been developed to

investigate long-term immune responses and the emergence of drug

resistance (78). These models indicate that persistent infection leads

to chronic inflammation and tissue damage, reflecting the situation

seen in human cases (79). Recent studies have also highlighted the

use of mouse models to test the effectiveness of various antibiotics,

such as clarithromycin, azithromycin, and ethambutol, as well as

immunomodulatory agents like IFN-g against MAC (80).

Combination therapy has proven to be more effective than using

a single agent, as it reduces bacterial load and prevents relapse.

Moreover, host-directed therapies (HDTs) targeting immune

pathways (e.g., autophagy, cytokine modulation) are being

explored as adjuncts to antibiotics (81).
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While mouse models have significantly contributed to our

understanding of MAC infection pathogenesis, immune

responses, and therapeutic strategies, there are notable limitations

(82). One major issue is the difference in immune responses

between mice and humans, which must be considered when

applying these findings to clinical settings (82). Zebrafish are

becoming increasingly popular for studying MAC infection due

to their transparent embryos, which allow for real-time imaging of

host-pathogen interactions (83). Additionally, rabbits develop

granulomatous lesions that resemble those seen in humans,

making them valuable for researching pulmonary MAC disease

(84). Primates also closely mimic humanMAC disease, but their use

is less common due to ethical concerns and high costs (85).
3 Clinical manifestations of non-
tuberculous mycobacteria infections

NTM infections have a diverse range of clinical manifestations

(9, 12), which depend on the transmission route (Figure 3). Most

cases are characterized by an insidious onset, are asymptomatic, and

tend to follow a chronic course. Diagnosis is based on a

combination of radiologic, pathologic, and microbiological

examinations, including culture and isolation methods, or

genomic analyses to confirm bacterial presence. Of note, MAC is

typically found primarily in pulmonary MAC infection, followed by

disseminated in HIV/AIDS, cutaneous, and lymphadenitis.
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3.1 Diagnostic criteria for non-tuberculous
mycobacteria infections

The distinction between colonization and disease in the context of

NTM is critical for appropriate clinical management. NTM

colonization refers to the isolation of NTM from respiratory

specimens (e.g., sputum or bronchoalveolar lavage) in the absence of

clinical symptoms, radiographic changes, or histopathologic evidence

of tissue invasion, often representing environmental contamination or

transient presence in individuals with underlying lung conditions such

as COPD or bronchiectasis. In contrast, NTM disease is diagnosed

when there is evidence of tissue invasion, clinical symptoms (e.g.,

chronic cough, sputum production, weight loss, or fatigue), and

radiographic abnormalities (e.g., nodules, cavitation, or multifocal

bronchiectasis), supported by microbiological criteria such as positive

cultures from at least two separate sputum samples or one bronchial

wash/lavage, or histopathologic findings of granulomatous

inflammation or acid-fast bacilli on biopsy. The American Thoracic

Society/Infectious Diseases Society of America (ATS/IDSA) guidelines

emphasize the importance of integrating clinical, radiographic, and

microbiological data to differentiate colonization from disease,

particularly in high-risk populations such as those with structural

lung disease or immunosuppression, as NTM species like

Mycobacterium avium complex and M. abscessus are more likely to

cause disease (5, 86).

Various societies have developed criteria for NTM diagnosis,

including the American Thoracic Society (ATS), the European
FIGURE 3

Clinical signs of the common presentations of infections with various non-tuberculosis mycobacterial species. Created with BioRender.com.
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Society of Clinical Microbiology and Infectious Disease (ESCMID),

the European Respiratory Society (ERS), and the Infectious

Diseases Society of America (IDSA). The main aim of these

criteria, which were developed in 2007 (5) and were still in use in

2020 (86), is to exclude environmental-derived NTM, particularly

when using non-sterile testing techniques. NTM diagnosis requires

that the following criteria are met and other possible diseases are

excluded (5, 86):
Fron
1. NTM-compatible symptoms, such as respiratory tract

symptoms, unexplained weight loss, and fever.

2. Radiology results that match the presence of nodular or

cavity opacities based on chest radiography, or the presence

of bronchiectasis and multiple small nodules based on a

chest computed tomography scan (Figures 4A, B).

3. At least two NTM samples demonstrating the presence of

the same NTM pathogen based on mycobacterial culture,

or at least one bronchial alveolar fluid.
Additionally, the presence of granulomatous inflammation or

acid-fast bacilli staining based on lung tissue pathology, and the

presence of lung tissue or bronchial alveolar fluid NTM can help

diagnose NTM.
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Unlike pulmonary NTM, diagnosing aesthetic procedure-

associated NTM requires a history of a dermatological procedure

within three months before skin lesion appearance and the

following criteria to be met:
1. No skin and soft tissue infection (SSTI) bacteria isolation

from at least two biopsies at different times.

2. No antibiotic response within two weeks.

3. Presence of SSTI signs, including induration, furuncle,

cutaneous abscess, and a deep draining tract.

4. Presence of immunosuppression risk factors, such as

diabetes mell itus, transplantation, or being on

immunosuppressive drugs (87).
Moreover, cutaneous MAC infection should be considered in

patients with cellulitis who do not respond to antibiotics, especially

in individuals with persistent nodules and ulcers, and in

immunosuppressed patients showing signs of widespread

MAC infection.

MAC initially consisted of two species, M. avium and M.

intracellulare. Over time, other terms were used to refer to these

species, such as MAI (M. avium–intracellulare), or to encompass

other related mycobacteria, like MAIS (M. avium–intracellulare–
FIGURE 4

Investigations of Mycobacterium avium complex. (A) Chest radiography shows interstitial infiltration at right middle lung field and (B) computed
tomography demonstrates centrilobular with tree-in-bud appearance and multiple pulmonary nodules along with cylindrical bronchiectasis. The
growing colonies of M. avium subspecies avium ATCC 25921 on (C) Middlebrook 7H10 medium and (D) Löwenstein–Jensen medium that grew at
35 C for 3 weeks.
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scrofulaceum) and MAIX (M. avium–M. intracellulare cluster X,

referring to unnamed mycobacteria not belonging to any of the

former taxa) (88). However, before the genetic-based taxonomy of

the 1990s, using only cultural and biochemical tests was not enough

to differentiate the MAC members accurately. Therefore, the

identification of MAC organisms in publications from those years

is questionable. Based on phenotypic and genotypic tests

confirming the close relatedness of different MAC organisms, the

MAC has been shown to contain a wide variety of environmental

and animal-associated organisms with varying degrees of

pathogenicity, host preference, and environmental distribution.

As a result, the complex now includes nine species of slow-

growing mycobacteria, including M. avium (Subsp. avium

[MAA], Subsp. hominissuis [MAH], Subsp. paratuberculosis

[MAP], and Subsp. silvaticum [MAS]), M. intracellulare, M.

colombiense, M. chimaera, M. marseillense, M. timonense, M.

bouchedurhonense, M. vulneris, M. arosiense, M. indicus pranii,

M. yongonense, and, a further subset of isolates of undetermined

classification known as “MAC-others” as well as it should be

noted that M. scrofulaceum, which belongs to the MAIS

(M. avium-intracellulare- scrofulaceum) complex, is no longer

grouped in MAC (89).

The identification of mycobacterial species is crucial for NTM

treatment. Unfortunately, most commercial tests nowadays cannot

identify the species within the complex. Because of limited NTM

identification resources, it is essential that physicians

comprehensively understand the fundamental aspects of laboratory

tests and their treatment limitations. Microscopic examination after

staining and culture using specific media are the cornerstones of the

identification of mycobacteria but is relatively insensitive. In general,

the gold standard for NTM isolation and diagnosis is culture in solid

media, such as Middlebrook 7H10 agar (Figure 4C) or Löwenstein–

Jensen agar (Figure 4D), or liquid media, such as using the BD

BACTECMGIT 960 system (5, 90, 91). However, for optimal growth,

various subspecies require unique temperatures. For instance,

Mycobacterium haemophilum and Mycobacterium marinum require

28–30°C, whereas Mycobacterium xenopi requires 42°C. On the

contrary, MAC grows well in both 7H10 agar and MGIT broth. It

does not show clustering or cording in broth. On agar, it typically

produces small, flat, translucent, smooth colonies that occasionally

exhibit a pale-yellow color. These colonymorphologies differ fromM.

tuberculosis, which typically shows cording in broth and appear as

rough, buff-colored colonies on agar. Moreover, the molecular

technique for MAC diagnosis uses nucleic acid testing (Gen-Probe

AccuProbes), which can identify MAC within 24-48 hours from

culture, showing approximately 79% accuracy (92).

As recommended by the Clinical and Laboratory Standards

Institutes (CLSI) M24S guidelines (93–95), broth microdilution is

the antimicrobial susceptibility testing (AST) gold standard.

Sensitire RAPMYCOI and SLOMYCOI plates (Thermo Fischer

Scientific, Cleveland, OH, USA) are used for RGM and slow-

growing mycobacteria (SGM), respectively (96, 97). However,

because standard methods require high levels of expertise, several

molecular techniques have replaced these gold standards. They
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include the Anyplex MTB/NTM real-time detection system

(Seegene, Seoul, South Korea) (98), which uses real-time

polymerase chain reaction and the INNO-LiPA Mycobacteria v2

(Fujirebio, Tokyo, Japan) (99) and the Genotype Mycobacteria CM,

AS, NTM-DR (Hain Lifescience, Nehren, Germany) systems (100–

102), which use PCR and reverse DNA hybridization

methods (Table 1).

AST is crucial for the management of MAC infections. MAC

testing is typically done using antimycobacterial agents like

macrolides, with clarithromycin being preferred over

azithromycin because it dissolves at high concentrations.

However, the minimum inhibitory concentration (MIC) of other

drugs, including ethambutol, rifampicin, and rifabutin, do not

correlate with clinical outcomes (95, 103). The value of expanded

in vitro susceptibility testing for macrolide-resistant MAC isolates

has yet to be demonstrated. Acquired MAC resistance to macrolides

and amikacin is caused by 23S rRNA (rrl) and 16S rRNA (rrs)

mutations, respectively (104, 105). Therefore, if the clinical

condition does not improve and persistent MAC is detected after

treatment, AST should be repeated. In cases of disseminated and

chronic lung disease, repeat AST is recommended three and six

months after treatment, respectively (5).

Currently, broth microdilution based on the American Type

Culture Collection strain and CLSI M24S protocols is the

recommended AST method. Sensitire RAPMYCOI and

SLOMYCOI (Thermo Fischer Scientific, Cleveland, OH, USA),

which are used for RGM and SGM, respectively (96, 97), use

different antimycobacterial agents and dosages (Table 2). These

tests are critical for the identification of the most effective treatment

option and ensuring successful patient outcomes.

In general, M. avium complex AST, identification for

susceptibility tests requires careful interpretation. Although it is

recommended that test results be interpreted on day 7 of testing,

interpretation should be delayed until day 10 or 14 of testing in case

growth is insufficient. On the other hand, for insidious NTM, such as

Mycobacterium marinum and Mycobacterium Kansassii,

interpretation should be done after 7–14 days, whereas for

Mycobacterium xenopi and Mycobacterium malmoense, 3–4 weeks

are required. RGM results should be interpreted 18 hours after testing

and cases without growth in the positive control should be given

more inoculation time and interpreted on days 3–5. The test must be

repeated if there is no growth. Moreover, to detect inducible

macrolide resistance, the interpretation of clarithromycin’s MIC

should be done on day 14. Additionally, in RGM cases that lack

the erm gene or have a non-functional erm gene, such asM. abscessus

subsp. massiliense, M. chelonae, Mycobacteroides immunogenum, the

Mycobacterium mucogenicum group, Mycobacterium peregrinum,

and Mycobacterium senegalense, clarithromycin susceptibility can

be interpreted on days 3–5 of the test without additional

interpretation on day 14.

The occurrence of either contamination or false-positive NTM

cultures represents a critical diagnostic challenge, particularly in

patients with extended hospitalization periods. Prolonged hospital

stays increase the risk of environmental exposure to NTM,
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TABLE 1 Summary of NTM test properties and species identification performance (91, 96–102).

Genotypic methods Phenotypic
methods

Anyplex MTB/NTM
real-time detection
(Seegene, Seoul,
South Korea)

INNO-LiPA
Mycobacteria v2

(Fujirebio,
Tokyo, Japan)

Genotype Mycobacteria CM, AS,
NTM-DR (Hain Lifescience,

Nehren, Germany)

Solid and
liquid
media

Duration 2–3 days 3–7 days 3–7 days 2–8 weeks

Sensitivity ++ + + ++++

Identification methods 16S rRNA gene 16S–23S rRNA spacer region 23S rRNA gene N/A

Mycobacterium spp. + + +

M. tuberculosis complex + + +

Rapid
growing mycobacteria

N/A

M. abscessus complex + + CM, NTM-DR

susp. abscessus – + NTM-DR

susp. bolletii – + NTM-DR

susp. massillense – + NTM-DR

M. chelonae complex + + CM, NTM-DR

M. fortuitum complex + + CM

Slow growing mycobacteria

M. avium complex + + CM, NTM-DR

M. avium + + CM, NTM-DR

M. intracellulare + + CM, NTM-DR

M. chimaera – + NTM-DR

M. genavense + +AS

M. gordonae + + CM

M. haemophilum + + AS

M. kansasii + + CM, AS

M. malmoense + + CM

M. marinum + + CM

M. scrofulaceum + + CM

M. simiae + + AS

M. szulgai – + CM, AS

M. terrae complex – –

M. ulcerans + + CM, AS

M. xenopi + + CM

Other NTM N/A M. celatum M. asiaticum AS

M. smegmatis M. celatum AS

M. gastri AS

M. goodii AS

M. heckeshornense AS

(Continued)
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commonly found in hospital water systems, medical devices, and

disinfectants. These organisms can contaminate clinical specimens

during collection, handling, or processing, leading to misleading

positive culture results. False-positive NTM cultures can also arise

from laboratory errors, such as cross-contamination between

samples or misinterpretation of culture findings, especially when

NTM are present as colonizers rather than true pathogens (5, 106).

This issue is particularly problematic in immunocompromised

patients or those with underlying lung diseases, where

distinguishing between contamination, colonization, and actual

infection is crucial for appropriate clinical management.

Misinterpretation of NTM culture results can lead to unnecessary

antimicrobial therapy, which is often prolonged and associated with

significant side effects and increased healthcare costs. Therefore,

clinicians and microbiologists must exercise caution in interpreting

NTM cultures, particularly in the context of prolonged

hospitalization, and consider corroborative evidence such as

clinical symptoms, radiographic findings, and repeat sampling to

confirm the diagnosis (5, 106).

Because AST is crucial in determining antimycobacterial drug

effectiveness, AST results interpretation and reporting are of

paramount significance. The CLSI M24S sets the breakpoint

values for various NTM, including MAC, Mycobacterium

kansasii, and other SGM. MIC results should be reported in MIC

units (mg/ml) and susceptibility tests should be reported using the S

(susceptible), I (intermediate), and R (resistant) categories (95)

(Table 3). For some medications, only MICs should be reported,

and not breakpoint values. These guidelines ensure consistent and

accurate reporting of AST results and guide informed clinical

decisions about antimycobacterial agent use.

Regarding wild-type MAC, it is critical to conduct a macrolide

susceptibility test because of potential resistance development

within 2–3 months after monotherapy or combination
Frontiers in Immunology 11
treatments, particularly at the 23S rRNA V-domain. If the test

results are intermediate or indicate resistance, a confirmation test

and species identification should be performed.

CLSI recommends repeating RGM susceptibility tests,

especially if the result does not indicate resistance (95). For

instance, if amikacin’s MIC against the M. abscessus complex is

≥64 mg/ml, a confirmation test must be done. Furthermore, the M.

fortuitum, Mycobacterium mucogenicum, and Mycobacterium

smegmatis groups should demonstrate imipenem susceptibility

and the test must be repeated if the MIC exceeds 8 mg/ml and the

results must be reported within three days. Moreover, imipenem

susceptibility cannot be generalized to ertapenem and meropenem

even if they belong to the same class (95). Similarly, susceptibility to

tobramycin, which is often used forM. chelonae treatment, must be

tested if the MIC is >4 mg/ml and the test should be repeated along

with species identification based on rpoB testing. In summary, a

comprehensive understanding of the timing and interpretation of

susceptibility testing is fundamental for accurate mycobacterial

diagnosis and effective treatment. For informed decisions, the

clinicians must gather all pertinent data and interpret them based

on clinical signs.
3.2 Non-tuberculous mycobacteria
infection treatment challenges

Treatment of NTM infections is a long-term process that

warrants the consideration of potential side effects. Additionally,

other factors that affect treatment must be considered (17, 107)

(Table 4). However, the long-term clinical effects of the treatment

are unknown, and recent studies have not established a correlation

between early treatment and a favorable prognosis (108, 109). Thus,

for patients who exhibit mild symptoms or intermittent
TABLE 1 Continued

Genotypic methods Phenotypic
methods

Anyplex MTB/NTM
real-time detection
(Seegene, Seoul,
South Korea)

INNO-LiPA
Mycobacteria v2

(Fujirebio,
Tokyo, Japan)

Genotype Mycobacteria CM, AS,
NTM-DR (Hain Lifescience,

Nehren, Germany)

Solid and
liquid
media

M. interjectum CM

M. intermedium AS

M. lentiflavum AS

M. mucogenicum AS

M. phlei AS

M. shimoidei AS

M. smegmatis AS

Antimycobacterial agent
sensitivity tests

Unable Unable Detection of erm(41) and rrl mutations for
macrolides and aminoglycosides resistance,
respectively, (NTM-DR, Hain Lifescience)

Minimum
inhibitory
concentration
(MIC)
+refers to the sensitivity of testing from sputum.
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presentation with subtle radiographic changes, it is reasonable to

defer treatment. The need to balance disease progression with

treatment-related toxicity and drug resistance development must

be considered carefully. Importantly, decision-making should be

shared with patients and their families, and patients should be

informed about the treatment’s risks, including its success rates and

adverse reactions. Ultimately, the decision on whether to proceed

with the treatment lies with the patient and their family.

Unless treatment initiation benefits outweigh the risks of

treatment withholding, treatments of NTM infection typically

involve a period of watchful waiting. For instance, treatment may

be necessary if a sputum smear reveals acid-fast bacilli or if cavity

lung disease is detected (86), owing to the cavity disease is

destructive and associated with more rapid progression.

Regarding smear-negative nodular bronchiectatic disease, the

decision to treat or choose observation depends on the patient’s

clinical presentation and status. Observation is suitable for those

with mild MAC or other medical issues that outweigh the morbidity
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from MAC infection. However, the development of a new cavity or

worsening nodularity are signs that treatment should be initiated

since the disease is progressing. Other treatment-necessitating

factors include disease progression, preexisting lung diseases,

immune system status, and the presence of high-virulence

pathogenic strains. These factors represent the three aspects of

disease progression, i.e., the host, pathogen, and transmission (or

radiographic phenotype) (Table 4).

Optimal treatments of NTM infection require a combination of

non-pharmacological and pharmacologic interventions, or at the

very least, a preliminary non-pharmacological approach to carefully

monitor its effects before initiating pharmacotherapy. The ATS and

ERS recommend a treatment strategy that involves a holistic

intervention underscored by thorough patient evaluation and

individualized therapies, including exercise regimens, patient

education, and behavioral changes aiming to improve physical

and mental health, promote long-term patient compliance, and

encourage the adoption of health-promoting behavior (110).
TABLE 2 Recommended antimycobacterial agent concentrations for use in AST (93, 95–97).

Antimycobacterial
agent

Recommended antimycobacterial agent concentration (mg/ml)

RAPMYCOI RAPMYCO2 SLOWMYCOI SLOWMYCO2

Amikacin 1-64 1-256 1-64 1-256

Amoxicillin/clavulanic
acid (2:1)

2-1-64/32 – – –

Cefepime 1-32 – – –

Cefoxitin 4-128 1-128 – –

Ceftriaxone 4-64 – – –

Ciprofloxacin 0.12-4 0.12-4 0.12-16 0.12-8

Clarithromycin 0.06-16 0.06-16 0.06-64 0.06-64

Clofazimine – 0.03-4 – 0.015-4

Doxycycline 0.12-16 0.12-8 0.12-16 0.12-8

Imipenem 2-64 0.008-32 – –

Linezolid 1-32 1-32 1-64 1-32

Minocycline 1-8 – – 0.06-8

Moxifloxacin 0.25-8 0.015-4 0.12-8 0.015-4

Tigecycline 0.015-4 0.03-2 –

Tobramycin 1-16 0.12-16 – –

TMP/SMX 0.25-8 0.25-4 0.12-8 0.25-4

Isoniazid – – 0.25-8 –

Rifampin – – 0.12-8 0.004-4

Rifabutin – – 0.25-8 0.12-4

Ethambutol – – 0.5-16 –

Ethionamide – – 0.3-20 –

Streptomycin – – 0.5-64 0.5-32
TMP/SMX, Trimethoprim.
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3.3 Principal Mycobacterium avium
complex management

The primary approach to managing MAC infection involves

using three types of antibacterial regimens that are effective against

the specific sensitivities of the pathogen, instead of using two or
Frontiers in Immunology 13
fewer drugs, unless patients are intolerant to three drug regimens.

As an alternative, a two-drug regimen, such as a combination of

macrolide and ethambutol, is considered reasonable. Macrolides,

which have exhibited a high treatment success rate when combined

with ethambutol and drugs of the rifamycin group, such as rifabutin

or rifampicin, are the most crucial medications for MAC infection
TABLE 3 Breakpoint recommendations in terms of SGM and RGM based on CLSI M24S 2023.

Mycobacterial group Antimycobacterial
agent

Minimal inhibitory concentration (mg/ml)

Susceptible Intermediate Resistant

Rapid growing mycobacteria Amikacin ≤16 32 ≥64

Cefoxitin ≤16 32–64 ≥128

Ciprofloxacina ≤1 2 ≥4

Clarithromycinb ≤2 4 ≥8

Doxycyclinec ≤1 2–4 ≥8

Imipenem ≤4 8–16 ≥32

Linezolid ≤8 16 ≥32

Meropenem ≤4 8–16 ≥32

Moxifloxacin ≤1 2 ≥4

Tobramycin ≤2 4 ≥8

TMP/SMX ≤2/38 ≥4/76

Slow growing mycobacteria

M. avium complex First-line

Amikacin (intravenous) ≤64 32 ≥64

Amikacin (liposomal, inhaled) ≤64 ≥128

Clarithromycina ≤8 16 ≥32

Second-line

Linezolidd ≤8 16 ≥32

Moxifloxacind ≤1 2 ≥4

M. kansasii First-line

Clarithromycinb ≤8 16 ≥32

Rifampin ≤1 ≥2

Second-line

Amikacin (intravenous) ≤16 32 ≥64

Ciprofloxacin ≤1 2 ≥4

Doxycycline/ minocycline ≤1 2–4 ≥8

Linezolid ≤8 16 ≥32

Moxifloxacin ≤1 2 ≥4

Rifabutin ≤2 ≥4

TMP/SMX ≤2/38 ≥4/76
aEquivalent to the levofloxacin susceptibility test.
bEquivalent to other in macrolides (azithromycin, roxithromycin) susceptibility tests.
cEquivalent to the minocycline susceptibility test.
dNo in vivo data on the efficacy of M. avium complex treatment.
TMP/SMX, trimethoprim/sulfamethoxazole.
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treatment (111, 112). Ethambutol is essential for increasing

pathogen elimination efficacy and preventing macrolide

resistance. This drug combination was recommended as the first-

line regimen by the ATS/ERS/ESCMID/IDSA association in 2020

(86) and the BTS association in 2017 (106). In cases of severe or

disseminated infection, aminoglycoside co-administration is

advisable, and it is essential to test for macrolide and

aminoglycoside susceptibility before treatment. Typically, MAC

infection treatment plans depend on disease severity and AST

results (Figure 5).

Macrolides, ethambutol, and rifamycin are important groups of

antimicrobial drugs and are often used to treat bacterial infections

(15, 86, 106, 113). Macrolides should always be considered in cases

with antimicrobial drug sensitivity. Azithromycin is particularly

useful because it has lower interaction with rifampicin, lower pill

burden, fewer adverse reactions, and can be administered once

daily. However, studies indicate that in patients with disseminated

MAC infection, clarithromycin is more effective than azithromycin

in clearing circulating pathogens (114). Of note, the treatment of

disseminated MAC infection in patients with AIDS is complicated

by the drug interactions between rifampicin, a cornerstone of MAC

infection therapy, and antiretroviral (ARV) agents. Rifampicin is a

potent inducer of cytochrome P450 (CYP) enzymes, particularly

CYP3A4, which metabolizes many ARVs, leading to reduced

plasma concentrations and potential treatment failure (115). For

example, rifampicin significantly decreases the levels of protease

inhibitors (PIs) such as lopinavir, atazanavir, and darunavir, which
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are substrates of CYP3A4. Coadministration of rifampicin with

these PIs can reduce their area under the curve (AUC) by up to 75-

95%, necessitating dose adjustments or alternative regimens (116).

Similarly, non-nucleoside reverse transcriptase inhibitors

(NNRTIs) like efavirenz and nevirapine are also affected, though

efavirenz may be used with rifampicin with a dose increase to 800

mg daily to counteract the induction effect (117). In contrast,

rifampicin has a lesser impact on integrase strand transfer

inhibitors (INSTIs) such as dolutegravir and raltegravir, making

them preferable in rifampicin-containing regimens, though

dolutegravir may require twice-daily dosing to maintain

therapeutic levels (118).

To mitigate these interactions, rifabutin, a rifamycin with

weaker CYP3A4 induction, is often substituted for rifampicin.

Rifabutin has fewer interactions with ARVs, though dose

adjustments are still required when used with PIs. For instance,

rifabutin doses must be reduced to 150 mg every other day when

coadministered with ritonavir-boosted PIs to avoid toxicity (119).

Despite these challenges, the concurrent management of MAC

infection and HIV infection requires careful selection of ARVs,

therapeutic drug monitoring, and close clinical follow-up to ensure

both infections are adequately controlled while minimizing adverse

effects and drug interactions.

For non-severe lung infections that do not involve cavities or

emphysematous characteristics, a thrice-weekly treatment regimen

can be administered in combination with ethambutol and rifamycin

(rifampicin or rifabutin), for example, azithromycin (500 mg three
TABLE 4 Factors to be considered during shared decision-making before treatment and on withholding antimycobacterial treatments.
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times per week) PLUS rifampicin (600 mg three times per week)

PLUS ethambutol (25 mg/kg three times per week). However, a

once-daily regimen is recommended for cases with severe lung

infection or disseminated infection (86, 113), for example,

azithromycin (250 to 500 mg daily) PLUS rifampicin (600 mg

daily) PLUS ethambutol (15 mg/kg daily).

In the case of mild severity of MAC infection, it is

recommended to start treatment with a low initial dose while

closely monitoring for any adverse reactions to prevent non-

adherence. It’s worth noting that if azithromycin is intolerable,

clarithromycin (1000 mg three times per week) can be used as an

alternative. A lower dose of clarithromycin (500 mg once daily)

should be considered in patients with a reduced renal function.

Similarly, for individuals experiencing rifampicin-related

hepatotoxicity, rifabutin (300 mg three times per week) is

suggested. Although rifabutin demonstrates greater in vitro

activity against MAC than rifampicin, it is uncertain if this holds

true in clinical in vivo. In addition, parenteral aminoglycosides

(amikacin or streptomycin, 10-15 mg/kg three times per week) can

also be considered for severe lung infections or disseminated

infections. They are typically used for 2–4 weeks in combination

with other major drug groups and can be administered once daily or

thrice weekly via injection. Aminoglycosides are also used in

macrolide-resistant cases (15, 86, 106, 113). In persons with

reduced kidney function, which is defined as having an estimated

glomerular filtration rate of less than 60 mL/min/1.73 m2,

recommending caution use of aminoglycosides. As an alternative,

it is suggested to use amikacin liposome inhalation suspension at

dosing of 590 mg once daily. However, in situations where resources
Frontiers in Immunology 15
are limited, inhaled parenteral amikacin can be used as a potential

alternative. The typical dosage for this is 250 to 500 mg per day, to

be administered three to seven days per week for the entire duration

of treatment.

If one of the first-line drugs (macrolides, ethambutol, or

rifamycin) is unavailable, three alternative drugs can be considered.

The first choice, clofazimine, has a sensitivity of >90% in vitro and

exhibits an additive effect when combined with amikacin (86, 113,

120, 121). Subsequently, moxifloxacin, levofloxacin, and linezolid can

be considered in that order. However, their clinical outcomes remain

controversial although they exhibit high sensitivity in vitro (86, 111,

113). Additionally, quinolone or linezolid have minimal activity, and

certain combinations (i.e., quinolone plus macrolide) do not prevent

macrolide resistance. Although bedaquiline is also an option, it

should only be used when alternative drugs are unavailable because

of limited clinical data and it should not be combined with rifampicin

(113, 120, 122). Notably, the interaction between bedaquiline and

rifampicin can be complex due to rifampicin’s potent induction of

cytochrome P450 (CYP) enzymes, particularly CYP3A4. Bedaquiline

is metabolized primarily by CYP3A4, and when co-administered with

rifampicin, the induced metabolism can significantly reduce

bedaquiline’s plasma concentrations, potentially compromising its

efficacy (123). Studies have shown that rifampicin can decrease

bedaquiline exposure by up to 50%, necessitating careful

consideration of dosing strategies or alternative regimens to avoid

subtherapeutic levels of bedaquiline (124). This interaction

underscores the importance of monitoring and potentially

adjusting treatment protocols when these drugs are used together

in MAC infection therapy.
FIGURE 5

Flowchart of treatment for M. avium complex (MAC) steps (26, 49). MAB: M. abscessus subsp. Abscessus, MBO: M. abscessus subsp. Bolletii, MMA:
M. abscessus subsp. Massillense. aRecommended for use as the first-line drug as still susceptible over 90% along with additive effects with amikacin.
bThis drug is preserved only for cases that lack alternative drugs and it cannot be combined with rifampicin. cThis treatment is exclusively reserved
for cases in which pneumonia does not respond to any other alternative medication.
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An intermittent regimen is recommended for the initial

treatment of non-cavitary bronchiectatic disease. However, if

patients have severe MAC infection or cavitary disease, or have

not responded to previous regimens, intermittent medication

dosing may not be sufficient. In such cases, it is recommended to

switch to a daily regimen if sputum cultures remain positive after six

months of intermittent treatment (125). Treatment failure is

considered for such patients and adding amikacin liposomal

inhalation suspension (ALIS) is recommended (86). However,

some patients may show clinical and radiographic improvement

but still have persistent positive sputum culture for MAC. In such

cases, continuing with a macrolide-based treatment plan along with

the addition of ALIS 590 mg once daily for the entire duration of

MAC infection treatment and switching to a daily administration

regimen is still considered effective. Additionally, the role of surgical

treatment is evaluated for patients with localized disease,

particularly those with upper lobe cavitary disease and patients

with macrolide-resistant MAC pulmonary disease. It is suggested

that patients receive intravenous amikacin three times per week for

6-8 weeks before surgery and four weeks after surgery.

The treatment duration is determined based on chest radiology

and microbiologic test results during follow-up. Although it is

usually recommended to continue treatment for a year after a

negative microbiological test (86), there is limited treatment

duration data from patients with extrapulmonary and

disseminated disease. In cases with immunosuppression from

anti-interferon gamma, it is suggested to continue treatment for

2–4 years, along with evidence of improved clinical symptoms, no

detected lymphadenopathy, no new infiltration in chest radiology,

and negative microbiological tests. To prevent re-infection in

patients with HIV and disseminate MAC infection, continuous

treatment is recommended. Treatment can be stopped once there is

improvement, and the patient has completed at least one year of

treatment. CD4 levels should also be monitored for at least six

months after treatment, and they should be >100 cells/mm3 (126).

Notably, when considering other medicines that increase regimen

efficiency, it is crucial to account for the relevant treatment phase.

Although in vitro AST is not always feasible, regular AST or MIC

testing is recommended before treatment initiation. For tailored

regimens, it is also essential to consider comorbidities, treatment

duration, and long-term adverse effects (86). The summary of the

studies related to antimicrobials used for treating MAC infection is

shown in Table 5.
3.4 Monitoring drug–drug interactions

The use of medications for pre-existing conditions like diabetes

mellitus, hypertension, hyperlipidemia, coronary artery disease, and

hyperuricemia, is necessary during treatment for MAC infection.

However, such medications can often interact with the

antimycobacterial drugs used to treat NTM. These interactions

can occur through various mechanisms, including competition for
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the cytochrome P450 (CYP) isoenzyme and P-glycoprotein,

diminished absorption because of absorption competition with

divalent ions, and the increased toxicity of combined medications.

Notably, the extent of interaction depends on drug concentration,

duration of administration, and the affinity of the drug and its

metabolites. Critically, the prescription of CYP-based medications

along with antimycobacterial drugs should be carefully considered

and monitored. Generally, CYP inducers increase CYP substrate

metabolism, thereby decreasing circulating substrate levels, while

CYP inhibitors have the opposite effect.

Treatment for MAC infection can also lead to cardiovascular

complications. Antimycobacterial drugs, including fluoroquinolones,

macrolides, clofazimine, and bedaquiline are known to prolong the

QTc interval and must be monitored closely to avoid arrhythmia-

associated electrolyte and mineral imbalances, such as hypokalemia

and hypomagnesemia (138), especially when used with loop diuretic or

thiazides. Individuals who are co-administered trimethoprim/

sulfamethoxazole should be made aware of its combination with

potassium-sparing diuretics, such as spironolactone, angiotensin-

converting enzyme inhibitors, angiotensin II-receptor blockers, and

selective mineralocorticoid receptor antagonists (eplerenone and

finerenone). Furthermore, if patients with diabetes mellitus take

fluoroquinolone and oral hypoglycemic agents, they should be

monitored for hypoglycemia because of fluoroquinolone’s ability to

increase insulin release by blocking adenosine triphosphate-sensitive

potassium channels in pancreatic b-cells (139). During treatment for

MAC infection, several drug–drug interactions can cause severe organ

injury. For example, the combined use of rifamycins, macrolides, and/

or bedaquiline can cause hepatotoxicity (140), while combining

trimethoprim/sulfamethoxazole with aminoglycosides can elevate the

risk of acute kidney injury, as well as the risk of acute interstitial

nephritis, which is caused by trimethoprim/sulfamethoxazole alone. In

cases with liver and/or renal injury, antimycobacterial drug

administration must be adjusted according to the daily dose.

Drug-drug interactions between medications used for MAC

infection treatment and HIV infection treatment are a critical

consideration due to the overlapping metabolic pathways and

potential for adverse effects. For instance, rifabutin, a common

MAC infection treatment, interacts with HIV protease inhibitors

(PIs) like ritonavir, as ritonavir inhibits cytochrome P450 3A4

(CYP3A4), leading to increased rifabutin levels and a higher risk

of toxicity (141). Similarly, clarithromycin, another MAC antibiotic,

can increase concentrations of HIV non-nucleoside reverse

transcriptase inhibitors (NNRTIs) like efavirenz due to CYP3A4

inhibition, potentially exacerbating CNS side effects (142).

Conversely, azithromycin, often preferred over clarithromycin in

HIV patients, has fewer CYP3A4 interactions but may still prolong

the QT interval when combined with certain antiretrovirals like

rilpivirine (126). Ethambutol, another MAC drug, generally has

minimal interactions with antiretrovirals but may require dose

adjustments when combined with nephrotoxic drugs like

tenofovir disoproxil fumarate (TDF) due to additive renal toxicity

(5). Lastly, fluconazole, sometimes used for MAC prophylaxis, can
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TABLE 5 Summary of the clinical studies in alternative agents for Mycobacterium avium complex (MAC) treatments.

Drugs Regimen Study Population Primary Outcomes Adverse effects Comments Author,
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Day 84 in the ALIS-
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adverse events).

Amikacin
liposomal
inhalation
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open-label
randomized
trial
(CONVERT), n
= 336 (ALIS +
GBT, n = 224;
GBT-alone, n
= 112)

ALIS 590 mg once
daily was added to
standard guideline-
based therapy (GBT) in
adults with amikacin-
susceptible MAC lung
disease and MAC-
positive sputum
cultures despite at least
6 months of stable
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participants). Notably,
most had underlying
bronchiectasis (62.5%),
chronic obstructive
pulmonary disease
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both (11.9%).
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negative sputum
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cause) HCRU
(hospitalization,
length of stay,
emergency
department visits,
and outpatient

Respiratory-related
hospitalizations decreased
to 19.3% (p < 0.01) and
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office visits) were
compared 12
months pre- and
post-ALIS initiation

Bedaquiline
(BDQ)

BDQ 400 mg/day
for 2 weeks then
200 mg ≥ 6
months
PLUS
ethambutol,
rifampin (or
rifabutin), and
streptomycin
or PLUS
ethambutol,
azithromycin
(clarithromycin),
amikacin,
rifabutin,
and streptomycin.

Case series, n
= 6

Nodular bronchiectasis
(n = 2), cavitary lung
disease (n = 4)
Macrolide
susceptibility: resistance
(n = 2), susceptible (n
= 4)

Culture conversion
and
symptom
improvement

Three had symptom
improvement by six months
and three had some
improvement in semi-
quantitative sputum culture.

Common side effects
included nausea, arth
anorexia and subject

BDQ 400 mg/day
for 2 weeks then
200 mg ≥ 6
months
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ethambutol,
rifampin (or
rifabutin), and
streptomycin
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amikacin,
ethambutol, and
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(clarithromycin),
amikacin,
rifabutin,
and streptomycin.

Case series, n
= 7

Fibrous nodular and
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nodular bronchiectasis
and cavitary (n = 2),
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susceptibility: resistance
(n = 3), susceptible (n
= 4)

Culture conversion After 6 months of
treatment, 71% of
participants (five of seven)
had a microbiologic
response, but all relapsed.

BDQ 400 mg/day
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200 mg thrice
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MAC
pulmonary disease.

Gil et al., 2021 (135).
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weekly
PLUS clofazimine
100 mg once daily
+ Clarithromycin
500 mg twice
daily +
ethambutol 1200
mg once daily

F508del CFTR
gene mutation.

improvement)
measured by
12 months

stopped and a bilobectomy
was performed.

Azithromycin,
rifabutin, and
ciprofloxacin were
initiated
(ethambutol was
excluded because
of color
blindness) PLUS
tigecycline and
linezolid, and,
then, BDQ 18
months was
initiated along
with tedizolid

Case study, n
= 1

Co-infection of MAC
and HIV infection

Symptom
improvement

Culture positivity at 12
months but symptom
improvement at 18 months

No side-effect

Linezolid Median linezolid
therapy duration
after the initial
drug start was
21.4 weeks (range
1–201 weeks).
79% took 600 mg
once daily, 12%
took 300 mg once
daily, and 5%
took 600 mg
twice daily.

Retrospective
cohort study
conducted at
six NTM
treatment
centers in
North America
included 102
participants.
Notably, 54%
had pulmonary
bronchiectasis,
and 16%
had COPD.

Common pathogens
included
Mycobacterium
abscessus (44%), MAC
(33%), and
Mycobacterium
chelonae (14%).

Tolerability
of linezolid

Linezolid is well tolerated at
a dosage of 600 mg/day.
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increase concentrations of HIV integrase strand transfer inhibitors

(INSTIs) like dolutegravir by inhibiting CYP3A4 and UGT1A1,

necessitating close monitoring (143). These examples underscore

the importance of careful management and monitoring when co-

administering MAC and HIV treatments to minimize

adverse outcomes.
3.5 Multidisciplinary health personnel
care team

The adoption of a multidisciplinary team approach is considered

a critical factor for successful treatment for NTM. The team should be

made up of several healthcare professionals, including

pulmonologists, infectious disease physicians, intensivists,

radiologists, microbiologists, respiratory therapy-specialized

physical therapists, primary care physicians, and pathologists (144).

Social workers, nutritionists, clinical pharmacists, and family support

are also essential members of the team. Social workers play vital roles

in assisting patients to cope with psychosocial and financial concerns

(128), while clinical pharmacists provide thorough information on

antimycobacterial dosing, drug interactions, and adverse events. For

long-term treatments, therapeutic drug monitoring is becoming

increasingly necessary to ensure optimal therapeutic levels and

prevent unexpected adverse drug reactions. A multidisciplinary

approach has numerous benefits, including excellent clinical

outcomes and the prospect of future research for disease control

and efficient treatment strategies. It is also worth noting that

collaborative approaches ensure patient compliance and improve

the provision of quality care services. Therefore, for successful NTM

infection management, healthcare providers should embrace

multidisciplinary team approaches as the standard of care.
3.6 Perspectives on non-tuberculous
mycobacteria infection

Although NTM virulence is relatively less than that of M.

tuberculosis infection, as indicated by typical self-limiting disease,

anti-NTB host immune responses induce lung injury, which might

advance the disease or cause its insidious progression. NTM can

normally be found in the airways of <1% of healthy hosts.

However, NTM might interact with other bacteria in the host’s

microenvironment, and changes in NTB numbers might affect

other bacteria and vice versa. Interestingly, non-NTM pulmonary

microbiota populations might affect treatment outcomes. Moreover,

the intestines, which have high levels of microorganisms, have several

mechanisms of communication with other organs, including the

lungs (referred to as the “gut–lung axis”), which might affect lung

treatment outcomes, and the intestines have an easier sample

collection procedure (via feces) when compared with lungs

(bronchoalveolar lavage). Based on the microbial signature of the

lungs and gut, interventions that alter both microbiota might be a

future treatment for NTM strategy as part of personalized or

designer medicine.
T
A
B
LE

5
C
o
n
ti
n
u
e
d

D
ru
g
s

R
e
g
im

e
n

St
u
d
y

d
e
si
g
n

P
o
p
u
la
ti
o
n

P
ri
m
ar
y

e
n
d
p
o
in
t

O
u
tc
o
m
e
s

A
d
ve

rs
e
e
ff
e
ct
s

C
o
m
m
e
n
ts

A
u
th
o
r,

Y
e
ar

[R
e
fe
re
n
ce

s]

ba
se
d
th
re
e

dr
ug

re
gi
m
en

sp
ut
um

co
nv
er
si
on

w
as

91
da
ys

(I
Q
R
,4

5
to

19
0
da
ys
).

R
ifa
m
pi
n
ca
n
re
du

ce
th
e

se
ru
m

co
nc
en
tr
at
io
n
of

m
ox
ifl
ox
ac
in
.H

ow
ev
er
,

co
m
bi
ni
ng

qu
in
ol
on

es
w
it
h
m
ac
ro
lid

es
in
cr
ea
se
s
th
e
ri
sk

of
de
ve
lo
pi
ng

m
ac
ro
lid

e
re
si
st
an
ce
.

A
LI
S,
am

ik
ac
in

lip
os
om

al
in
ha
la
ti
on

su
sp
en
si
on

;B
D
Q
,b
ed
aq
ui
lin

e;
C
O
P
D
,c
hr
on

ic
pu

lm
on

ar
y
ob

st
ru
ct
iv
e
di
se
as
e;
G
B
T
,g
ui
de
lin

e-
ba
se
d
th
er
ap
y;
H
IV

,h
um

an
im

m
un

od
efi
ci
en
cy

vi
ru
s;
H
R
C
U
,h
ea
lth

ca
re

re
so
ur
ce

ut
ili
za
ti
on

;I
Q
R
,i
nt
er
qu

ar
ti
le
ra
ng
e;
M
IC
,m

in
im

um
in
hi
bi
to
ry

co
nc
en
tr
at
io
n;

N
T
M
,n

on
-t
ub

er
cu
lo
us

m
yc
ob

ac
te
ri
um

;S
G
R
Q
,S
t.
G
eo
rg
e’
s
R
es
pi
ra
to
ry

Q
ue
st
io
nn

ai
re
.

frontiersin.org

https://doi.org/10.3389/fimmu.2025.1554544
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chancharoenthana et al. 10.3389/fimmu.2025.1554544
4 Conclusions

NTM infection diagnosis and treatment require a combination

of scientific and artistic approaches. NTM’s insidious onset and

predominantly asymptomatic features in the early disease stages can

pose challenges to timely detection and diagnosis. Thus, individuals

with preexisting risk factors, including older individuals, those with

bronchiectasis, and those with immunosuppression warrant greater

attention. Moreover, a comprehensive understanding of the

underlying pathogenesis and potential complications can prevent

unfavorable outcomes and improve prognosis. Recent evidence has

linked gut pathogen homeostasis imbalance to disease progression.

Effective NTM management is often based on the interpretation of

susceptibility breakpoints and a multidisciplinary approach, which

is imperative for ensuring holistic, patient-centric care that fosters

good compliance with long-term treatment.
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