
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Immunol.
Sec. Cancer Immunity and Immunotherapy
Volume 16 - 2025 | doi: 10.3389/fimmu.2025.1554231
This article is part of the Research Topic Ubiquitination in Tumor Pathogenesis and Progression and its Therapeutic Potential View all articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Background: Acute lymphoblastic leukemia (ALL) is a hematological malignancy with high survival rates in children; however, certain high-risk subtypes pose significant challenges due to poor prognosis and frequent relapse. Ubiquitination, a post-translational modification critical for protein regulation, has been implicated in various cancer processes, yet its role in ALL remains poorly understood.Methods: Using the TARGET database, we identified molecular subtypes of ALL through consensus clustering based on ubiquitination-related genes (URGs). A nine-gene prognostic model was constructed using LASSO and Cox regression analyses. The immunological landscape variations between high- and low-risk groups were assessed using immune cell infiltration analysis and functional enrichment studies. FBXO8 was further explored through functional experiments in vitro and in vivo.Results: Four ALL subtypes with distinct survival outcomes were identified, with Cluster D representing the high-risk group. Patients were divided into high- and low-risk groups using the nine-gene predictive model, and FBXO8 was found to be a significant protective factor. According to immune landscape analysis, high-risk groups had an immunosuppressive microenvironment that was correlated with FBXO8 expression and marked by an increase in regulatory T cells and M2 macrophage infiltration. In vitro, functional experiments demonstrated that FBXO8 knockdown markedly reduced cell proliferation and increased apoptosis in ALL cells. In vitro functional assays, FBXO8 knockdown notably enhanced cell proliferation and suppressed apoptosis in ALL cells. In FBXO8-knockdown mouse models, in vivo investigations demonstrated increased tumor growth, reduced apoptosis, and diminished survival rates.Conclusion: This work identifies FBXO8 as a crucial therapeutic target and prognostic biomarker for ALL. Knockdown of FBXO8 led to the suppression of apoptosis and increased tumor growth, suggesting potential therapeutic applications. These results highlight the need for more investigation into ubiquitination-related pathways and offer important new insights into high-risk ALL.
Keywords: Acute Lymphoblastic Leukemia, Ubiquitination, FBXO8, Prognostic model, immune microenvironment
Received: 01 Jan 2025; Accepted: 02 Apr 2025.
Copyright: © 2025 Xian, Chen, Yu, Yao, Zhang and Ye. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Zhitao Ye, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.