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di-(2-ethylhexyl)-phthalate
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Chunxiao Zhou1* and Yuan Li1,2*

1Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University,
Suzhou, China, 2The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public
Health, Nanjing Medical University, Nanjing, China
Objectives: Hepatic osteodystrophy (HOD) is an important public health issue

that severely affects human health. The pathogenesis of HOD is complex, and

exposure to environmental pollutants plays an important role. Di-(2-ethylhexyl)

phthalate (DEHP) is a persistent environmental endocrine toxicant that is present

in many products, and the liver is an important target organ for its toxic effects.

Our research aimed to investigate the effects of DEHP on HOD, and to reveal the

underlying mechanisms and the potential key preventive approaches.

Methods: The daily intake EDI of DEHP and bone density indicators for men and

women from 2009 to 2018 were screened and organized from the NHANES

database to reveal the population correlation between EDI and BMD; C57BL/6

female and male mice were selected to construct an animal model of DEHP

induced HOD, exploring the fuchtions and mechanisms of DEHP on

osteoporosis; the novel small molecule inhibitor imICA was used to inhibit the

process of DEHP induced osteoporosis, further exploring the targeted inhibition

pathway of DEHP induced HOD.

Results: Male and female populations were exposed to a relatively lower

concentration of DEHP, and that only the male population exhibited a

negative correlation between DEHP exposure and bone mineral density. An

in vivo study confirmed that a low dose of DEHP caused liver lesions, disrupted

liver function, and induced osteoporosis in male but not female C57BL/6Jmice.

Regarding the molecular mechanisms, a low dose of DEHP activated the

hepatic 14-3-3h/nuclear factor kB (NF-kB) positive feedback loop, which in

turn modified the secretory proteome associated with bone differentiation,

leading to HOD. Finally, we revealed that targeting the 14-3-3h/ NF-kB
feedback loop using our novel 14-3-3h inhibitor (imICA) could prevent

DEHP-induced HOD.
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Conclusion: A low dose of DEHP activated the hepatic 14-3-3h/ NF-kB positive

feedback loop, which in turn modified the secretory proteome associated with

bone differentiation and elevated IL-6 and CXCL1 levels, leading to HOD.

Targeted 14-3-3h/NF-kB feedback loop using our novel 14-3-3h inhibitor,

imICA, prevented DEHP-induced HOD.
KEYWORDS
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Introduction

Osteoporosis is a systemic bone disease characterized by a

reduction in bone mass and mineral density as well as macro- and

microstructural alterations in bone tissue. These changes result in

increased bone fragility and fracture susceptibility, which significantly

affects the quality of life of patients (1). Hepatic osteodystrophy

(HOD) is a disorder of altered bone metabolism that occurs in

patients with chronic liver disease, and is characterized by

osteoporosis, bone loss, and osteochondrosis (2). Epidemiological

studies have demonstrated that osteoporosis is a prevalent

complication in patients with chronic liver disease, and nearly 75%

of these patients with chronic liver disease typically exhibit varying

degrees of bone metabolism alterations with the progression of their

hepatic disease (3, 4). HOD is associated with an increased risk of

refractory fractures and has a detrimental effect on long-term patient

prognosis (5). Therefore, HOD have become an important public

health issue that seriously affects people’s health.

The pathogeny of HOD is complex: alcoholic liver disease, non-

alcoholic steatohepatopathy, primary cholestatic hepatopathy, and

viral hepatitis are the classic factors (6). In recent years, the role and

mechanism of hepatotoxin exposure in the initiation and

development of HOD have received increasing attention (7, 8).

Phthalate esters (PAEs) are the main components of plastic

additives (plasticizers and softeners) that are widely used (9). Di-

(2-ethylhexyl) phthalate (DEHP) is the most common PAEs,

accounting for approximately 50% of the plasticizer in polyvinyl

chloride (10). Owing to the non-covalent bond to plastic

components, DEHP can be easily released into the environment

and exposed to humans (11). When entering the liver, DEHP is

hydrolyzed to mono-(2-ethylhexyl) phthalate (MEHP), which then

rapidly degrades into mono-(2-ethyl-5-hydroxyhexyl) phthalate

(MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), and

mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), which are

not only important biomarkers that reflect DEHP exposure but

also play important biological roles, affecting liver function (12–14).

Therefore, the liver is an important target organ DEHP toxicity.

Epidemiological and toxicological studies have indicated that

DEHP exposure affects bone metabolism and promotes

osteoporosis (15, 16). Nevertheless, if these effects caused by DEHP

are induced by HOD, the potential key molecular mechanism and
02
how to carry out precise prevention/control remain largely

uninvestigated. Thus, this study intends to further explore the

molecular mechanisms of DEHP exposure-induced osteoporosis

(with an emphasis on HOD) in population and mouse models, and

to investigate novel potential targeted intervention approaches.
Materials and methods

Estimation of DEHP exposure in population

Phthalate metabolite concentrations in the urine samples were

obtained from the National Health and Nutrition Examination

Survey (NHANES). For the current analysis, we used data in last

10 years (from 2009 to 2018). To restrict the population, we limited

the participants to those with available concentration data of

urinary DEHP metabolites and bone mineral density (BMD,

male, 1.12 ± 0.03, n = 2171; female, 1.01 ± 0.02, n = 2077). Based

on the concentrations of phthalate metabolites in urine and the

classic exposure estimation model, we estimated the total daily

intake (EDI) of DEHP (mg/kg·bw/day) (17).

EDI  ¼  CV� M1
M2

� 1
W

�  1
f

where C is the urinary phthalate metabolite concentration

measured in urine samples (ng/ml), V, the volume of daily urine

excreted (L/day), we assumed a volume of 2.0 L for men and 1.7 L for

women; M1 and M2, the respective molecular weights of parent

phthalate and its metabolite (g/mol), W, body weight (kg), we took

75 kg for men while 60 kg for women; and f, the molar fraction of the

urinary monoester metabolite excreted in relation to the ingested

amount of phthalate, the f were 0.059, 0.23, 0.15, 0.185 for MEHP,

MEHHP, MEOHP and MECPP, respectively (18). For the EDI of

DEHP, we summed the EDI of the abovementioned four metabolites.
Animals and in vivo treatment

All animal protocols and experimental procedures were

approved by the Nanjing Medical University Animal Care and

Use Committee (permit No. IACUC-2209058). Specific pathogen-
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free C57BL/6 male and female mice, aged 6–8 weeks, were

purchased from the Nanjing Medical University Animal Center.

All mice were housed indicidually under standard 12:12 light/dark

conditions, at an ambient temperature of 25°C and fed ad libitum.

DEHP (C24H38O4, >99.0% purity) and corn oil were purchased

from MedChemExpress (Shanghai, China). The novel 14-3-3h
inhibitor, 6-isopropyl-3-(((3-methoxybenzyl) amino)methyl)-1-(4-

methylbenzyl)-1H-indole-2-carboxylic acid (C29H33N2O3, imICA),

was modified and synthesized in our previous study. This chemical

demonstrated very low hepatotoxicity; however, it exhibited an

excellent targeted inhibitory effect on the 14-3-3h protein and its

downstream signal transductions (19, 20). The mice were separated

into NC- and DEHP-treated groups in the presence or absence of

imICA (n = 5). The dosage and frequency of medication

administered is 0.5 mg/kg of DEHP (gavage, daily), 5.0 mg/

kg·BW (dissolved in 10% DMSO) of imICA (gavage, daily). After

12 weeks, all the mice were euthanized by inhalation of carbon

dioxide. They were actively exposed to 100% CO2 at a replacement

rate (VDR/min) between 30% and 70% for 2 min, followed by a

minimum passive exposure of 3 min to ensure that the mice did not

wake up during the passive exposure time. Further examination of

serum and liver tissues was conducted after cervical dislocation.
Liver pathology and liver function

Liver tissues fixed with 4% paraformaldehyde were dehydrated

gradually with ethanol, and paraffin-embedded liver tissue was cut into

4-mm sections with an Ultra-Thin Microtome before hematoxylin

and eosin (H&E), Sirius Red, and Masson staining. Images were

captured using a panoramic-scan digital slice-scanning system

(3DHISTECH Co. Ltd., Budapest, Hungary). Photomicrographs

from five random fields of view using a ×10 objective were taken

from each section, and the ratio of positive areas to the total area was

measured using ImageJ software, as described previously (20). For the

detection of liver function, blood was collected from the abdominal

aorta of the mice and centrifuged at 3,000g for 10 min to collect serum

within 1 h. Levels of alanine aminotransferase (ALT), aspartate

aminotransferase (AST), total cholesterol (CHOL), triglyceride (TG),

high-density lipoprotein (HDL), low-density lipoprotein (LDL), blood

urea nitrogen (BUN), and CREA were analyzed using a 7100

automatic biochemical analyzer (Hitachi, Japan).
Micro-computed tomography analysis

Following euthanasia, the femurs of both legs were fixed in 4%

formalin solution for 24 h, after which they were cleaned with PBS

and subsequently scanned. Micro-CT analysis was performed using

a micro-CT scanner (SkyScan; Bruker, Germany) with a resolution

of 9 mm/pixel. Once the scanning process was complete, the original

image orientation of the femur was corrected using the Data-Viewer

software (Bruker). Subsequently, all scans were rotated by 180° to

correct for the reconstruction. The images obtained following
Frontiers in Immunology 03
correction were selected manually for three-dimensional

reconstruction and analysis of the region of interest (ROI) in the

vicinity of the distal femur and growth plate using the CTAn 1.10

software (Bruker). The metrics included trabecular thickness

(Tb.Th; mm), trabecular number (Tb.N; 1/mm), and structural

pattern factor (SMI).
Cytokine antibody array and
bioinformatics analysis

Cytokines were detected using Mouse Inflammation Array G1

(AAM-INF-G1) manufactured by RayBio (Guangzhou, China)

according to the manufacturer’s instructions. Mouse liver tissues were

lysed with cold RIPA lysis buffer (Beyotime), and protein

concentrations were measured using the bicinchoninic acid assay kit

(BCA, Beyotime). After blocking the array chip, 100 μl of the sample

(tissue protein) was added to each sub-array for incubation. After

overnight incubation at 4°C, the glass chip was cleaned using a Thermo

Scientific Wellwash Versa Chip Washer. Subsequently, the glass chip

was incubated with biotin-conjugated antibodies and then with

fluorescent dye-conjugated streptavidin. An InnoScan 300 Microarray

Scanner (wavelength, 532 nm; resolution, 10 μm; Innopsys, France) was

used to measure the fluorescence, GenePix Pro 6.0 software (Axon,

USA), was used to extract the data, and Cytokine Antibody Array

software (RayBio) was used to analyze the data. Gene Ontology (GO)

and Kyoto Encylopedia of Genes and Genomes (KEGG) enrichment

analysis were conducted to reveal the biological functions and

characteristics via the Database for Annotation, Visualization and

Integrated Discovery database (DAVID).
Quantitative real-time polymerase
chain reaction

Total RNA was isolated using TRIzol reagent (Thermo Fisher,

Shanghai, China) and reverse-transcribed into cDNA using an RT kit

(Takara, Japan). qRT-PCR was performed in triplicate using a Light

Cycler 96 machine (Roche Applied Science, Basel, Switzerland) and

SYBR Green Master Mix (Vazyme Biotech, Nanjing, China). Primers

used are listed in Supplementary Table S2. Fold changes in the

expression of each gene were calculated by the comparative threshold

cycle (Ct) method using the formula 2−(DDCt), as previously

described (21).
Immunohistochemistry

Sections mounted on silanized slides were dewaxed in xylene,

dehydrated in ethanol, boiled in 0.01 M citrate buffer (pH 6.0)

(Beyotime, Nantong, China) for 20 min in a microwave oven, and

incubated with 3% hydrogen peroxide (Thermo Fisher Scientific,

USA) for 5 min. The sections were then incubated in 10% normal

bovine serum albumin (MedChemExpress, USA) for 5 min, followed
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1552150
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hui et al. 10.3389/fimmu.2025.1552150
by incubation with the primary antibody at 4°C overnight. The

antibodies used are listed in Supplementary Table S2. The slides

were then incubated with horseradish peroxidase-conjugated

antibodies at room temperature for another 30 min. The samples

were then visualized using DAPI, dehydrated, cleared, mounted, and

photographed using a panoramic-scan digital slice scanning system

(3DHISTECH). Graphs were analyzed and quantified using Image-

Pro Plus software, as described previously (20).
Statistical analysis

Statistical analysis was performed using SPSS-29 (IBM SPSS

software) or GraphPad Prism (version 9.0.0 for Windows; San

Diego, California, USA). For the dose–response characteristics of

DEHP-induced osteoporosis, restricted cubic splines with five knots

were used to flexibly model the association between phthalate

exposure and BMD. Data analyses and visualizations were

performed using the ggplot2 and rms packages in R version 4.0.5.

Statistical significance was determined using a two-tailed Student’s

t-test, one-way analysis of variance (ANOVA) followed by

Dunnett’s t-test, or two-way analysis of variance followed by

Sidak’s multiple comparison test. Differences were considered

significant when the p-value was <0.05.
Frontiers in Immunology 04
Results

Description of the exposure and dose–
response relationship between DEHP and
BMD in population from 2009 to 2018

First, we calculated the EDI based on the concentrations of the

four phthalate metabolites in the urine (Supplementary Table S1).

Here, among the five consecutive survey cycles (2009/2010 to

2017/2018), the urinary concentrations of MEHP, MECPP,

MEHHP, MEOHP, and the EDI of DEHP decreased in a time-

dependent manner in both male and female populations

(Figure 1A). We further investigated the relationship between

DEHP exposure and BMD and found that only the male

population exhibited a negative correlation between DEHP

exposure and BMD (Figure 1B). Interestingly, the fitting curve

also showed that the dose–response characteristics exhibited a

negative correlation trend only in the male population;

nevertheless, for the female population, the dose–response

characteristics exhibited parabolic-like dose-dependent curves

(Figure 1C). Collectively, these results indicated that a low dose

of DEHP was associated with a reduction in BMD and that there

were sex differences in such effects.
FIGURE 1

Description of the exposure and dose-response relationship between DEHP and BMD in population from 2009 to 2018. (A) Male/female population
exposed to DEHP from 2009 to 2018. Data was shown as mean ± SD, and a two-tailed Student’s t-test was used for between two group
comparison (for male and female) (B) Relationship between DEHP exposure and BMD. Data correlation was analyzed by regression correlation
analysis. (C) The dose–response curves of DEHP exposure levels and BMD in male and female populations.
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Construction an in vivo model of low dose
DEHP-induced HOD

C57BL/6J mice were divided into NC- and DEHP-treated

groups for 12 weeks. As shown in Figures 2A, B, there was no

significant difference in weight gain between male and female mice.

Visualization of the skeleton through CT revealed that bone mineral

density (BMD), Tb.N, SMI, and Tb.Th were not significantly

different in DEHP-treated female mice. However, all of the above

BMD related index indices were remarkably changed in male mice

in the DEHP-treated group (Figures 2C, D). Collectively, these
Frontiers in Immunology 05
results revealed that low-dose DEHP exposure caused osteoporosis

in male mice, which preliminarily validated the conclusions

obtained from statistical analysis at the population level.
Effects of DEHP on liver pathology and
liver function in mice

Compared with female mice, DEHP-treated male mice showed

a significant elevation in the liver coefficient compared to the NC

group (Figure 3A). The serum levels of AST, CHOL, and TG were
FIGURE 2

Construction an in vivo model of low dose DEHP induced HOD. (A, B) Body weight. Data was shown as mean±SD, n = 5, and a two-way analysis of
variance followed by Sidak’s multiple comparisons test were used for comparisons. (C, D) 2D image, 3D bone structure reconstruction, and analysis of bone
density index based on Micro-CT. Data was shown as mean± SD, n = 5, and a two-tailed Student’s t-test was used for between two group comparisons.
ns, not significant.
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also significantly elevated in male mice but not in female mice after

DEHP treatment (Figure 3B). In male mice, the liver tissue showed

hepatocellular edema in the DEHP-treated group (Figure 3C). In

addition, massive collagen deposition (as determined by Masson

and Sirius Red staining) was observed only in DEHP-treated male

mice (Figures 3D, E). It has been found that, compared to male

mice, the bone metabolism balance in female mice is more easily

disrupted (22). Indeed, in female C57BL/6 mice, relatively longer-

term (29 weeks) DEHP exposure could directly promote

adipogenic differentiation and suppress osteogenic differentiation

of bone marrow mesenchymal stem cells (15). However, in the

present study, the BMD decreases and microstructure disorder of

femurs were not observed in female mice, suggesting a time-

dependent effect of DEHP on bone marrow mesenchymal stem

cells. Liver–bone communication plays a crucial role in the

pathogenesis and development of osteoporosis (23, 24). Only

DEHP-treated male C57BL/6J mice exhibited both liver damage

and osteoporosis. Therefore, we speculated that low-dose DEHP

exposure caused liver damage and dysfunction, which might lead

to or at least be involved in DEHP-induced osteoporosis in

male mice.
Frontiers in Immunology 06
DEHP activated a 14-3-3h/NF-kB feedback
loop in male mice

Our research group had found through long-term studies that 14-

3-3hwas a “switch-like” factor in the development and progression of

chronic hepatic disease and hepatocellular carcinoma (21, 25, 26).

Moreover, our recent study revealed that 14-3-3h plays a key role in

the initiation and development of hepatic fibrosis by modulating the

secretory proteome (20). However, the functions and mechanisms of

14-3-3h in DEHP-induced liver lesions, functional disorders, and

osteoporosis remain largely unknown. Therefore, we first determined

the effects of DEHP on the expression of 14-3-3h. Interestingly,
exposure to a low dose of DEHP significantly increased the

expression of 14-3-3h in male mice but not in female mice

(Figures 4A–C, Supplementary Figure S1). Studies have revealed

that estrogen plays a key protective role in the development of

various chronic liver diseases by blocking NF-kB activation (27,

28). Our previous study revealed that NF-kB signaling can

transcriptionally activate 14-3-3h. Meanwhile, the activation of NF-

kB can also be constitutively maintained by 14-3-3h, which is a

positive feedback loop between NF-kB and 14-3-3h (29). Therefore,
FIGURE 3

Effects of DEHP on liver pathology and liver function in mice. (A) Liver gross morphology and liver coefficient. (B) Levels of serum ALT, AST, CHOL,
TG, LDL, and HDL. (C) Liver sections were stained with H&E. (D, E) Masson and Sirius Red staining and quantitative analysis of liver sections. Data was
shown as mean ± SD, n = 5, and a two-tailed Student’s t-test was used for between two group comparison. ns, not significant.
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we hypothesized that the sex disparity in DEHP-elevated 14-3-3hwas

due to sex differences in NF-kB activity. Here, the expression of

nuclear- or phosphorylated-NF-kB also remarkably elevated only in

DEHP-treated male mice (Figures 4D–F, Supplementary Figure S1).

Collectively, these results indicated that, owing to gender differences,

DEHP activated a hepatic 14-3-3h/NF-kB feedback loop only in male

mice. We further hypothesized that this feedback loop might in turn

induce HOD by modifying the secretory proteome associated with

bone differentiation.
Frontiers in Immunology 07
DEHP modified the secretory proteome
associated with bone differentiation in
male mice

To verify this hypothesis, we extracted liver tissue proteins and

conducted high-throughput detection using the Mouse Cytokine

Antibody Array. Here, a total of 21 proteins (including 16

upregulated and five downregulated) were significantly altered in

the DEHP vs. NC comparison group (Figure 5A). Then, GO and
FIGURE 4

DEHP activated a 14-3-3h/NF-kB feedback loop in male mice. (A) Triplicate qPCR and (B, C) IHC analysis of 14-3-3h expression in liver sections.
(D) Triplicate qPCR and (E, F) IHC analysis of NF-kB expression in liver sections. Data was shown as mean ± SD, n = 5, and a two-tailed Student’s t-
test was used for between two group comparisons. ns, not significant.
FIGURE 5

DEHP modified the secretory proteome associated with bone differentiation in male mice. (A) Volcanic map of the differentially expressed proteins. (B) GO
and (C) KEGG analyses based on the differentially expressed proteins. (D) Differentially expressed proteins in DEHP vs. NC compared group. (E, F) IHC
analysis of IL-6 and CXCL1 in liver sections (mean± SD, n=5), and a two-tailed Student’s t-test was used for between two group comparisons.
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KEGG functional enrichment analysis of the changed proteins were

performed. Immune response, inflammatory response, neutrophil

chemotaxis, positive regulation (PR) of ERK1 and ERK2 cascade, and

PR of cell migration were the top five important biological processes,

while the cytokine–cytokine receptor interaction, viral protein

interaction with cytokine and cytokine receptor, chemokine

signaling pathway, IL-17 signaling pathway, and hematopoietic cell

lineage were the top five important pathways (Figures 5B, C). We

further revealed potential key secretory factors that possibly induce

HOD. Via searching relevant literature, we chose the interleukin-6
Frontiers in Immunology 08
(IL-6) and C-X-Cmotif chemokine ligand 1 (CXCL1, listed as the top

five changed proteins) for further investigation. IL-6 and CXCL1 are

two important factors transcriptional regulated by NF-kB (30, 31).

The signal intensities of IL-6 and CXCL1 were significantly higher in

the DEHP-treated group (Figure 5D). Our data also confirmed that

compared with NC, DEHP treatment markedly elevated the

expression of IL-6 and CXCL1 (Figures 5E, F, Supplementary

Figure S1). These findings suggest that DEHP may improve the

expression of IL-6 and CXCL1 via the 14-3-3h/NF-kB feedback loop.

Based on the abovementioned findings and on the fact that IL-6 and
FIGURE 6

Effects of DEHP and/or imICA on 14-3-3h, NF-kB, IL-6, and CXCL2 in male mice. (A) Body weight. Data was shown as mean ± SD, n = 5, and a two-
way analysis of variance followed by Sidak’s multiple comparisons test were used for comparisons. (B) Triplicate qPCR analysis of 14-3-3h, NF-kB,
IL-6, and CXCL1 in liver sections. (C–F) IHC analysis of 14-3-3h, NF-kB, IL-6, and CXCL1 in liver sections. Data was shown as mean ± SD, n = 5, and
an ANOVA followed by Dunnett’s t-test was used for comparisons. ns, not significant.
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CXCL1 play important roles in inflammatory liver injury and in

inducing osteoporosis (32, 33), we further hypothesized that targeted

inhibition of the 14-3-3h/NF-kB feedback loop could prevent DEHP-

induced liver lesions, functional disorders, and HOD.
Targeted inhibition of 14-3-3h by imICA
prevented DEHP-modified secretion of IL-
6 and CXCL1, and reversed the DEHP-
caused liver lesions, functional disorders,
and HOD in male mice

Our previous study revealed that high expression of 14-3-3

protein is necessary for sustained activation of NF-kB (34).

Therefore, targeted inhibition of 14-3-3h is an effective approach

to block the 14-3-3h/NF-kB feedback loop. Chemical imICA was

modified and synthesized in our latest study. This chemical

exhibited an excellent targeted inhibitory effect on the 14-3-3h
protein (19). Here, male C57BL/6J mice were treated by 0.0 mg/kg

or 0.5 mg/kg DEHP in the presence or absence of 0.0 mg/kg or 5.0

mg/kg imICA for 12 weeks. As shown in Figure 6A, there was no

significant difference in the weight gain between the groups.
Frontiers in Immunology 09
However, imICA treatment markedly decreased the expression of

14-3-3h, nuclear NF-kB, IL-6, and CXCL1 (Figures 6B–F).

Compared with the NC group, DEHP significantly elevated the

liver coefficient and the serum levels of AST, CHOL, and TG;

however, these effects were attenuated by treatment with imICA

(Figures 7A, B). Meanwhile, imICA also markedly blocked DEHP-

induced hepatocellular edema, steatosis, and depositions of lipids

and collagen (Figures 7C–E). Finally, by visualizing the skeleton

through CT, we found that imICA reversed DEHP-induced

osteoporosis (Figure 8). Collectively, these results indicate that

targeted inhibition of 14-3-3h/NF-kB by imICA prevented

DEHP-elevated IL-6 and CXCL1, leading to the reversal of

DEHP-induced HOD in male mice.
Discussion

Di-(2-ethylhexyl) phthalate (DEHP) is a common plasticizer

widely used in many consumer products including toys, food

wrapping, and medical devices (35). People of all age groups may

be exposed to DEHP in various ways, including dermal contact,

ingestion, inhalation, and medical injection (36). The level of DEHP
FIGURE 7

Effects of DEHP and/or imICA on liver pathology and liver function in male mice. (A) Liver gross morphology and liver coefficient. (B) Levels of serum
ALT, AST, CHOL, TG, LDL, and HDL. (C) Liver sections were stained with H&E. (D, E) Masson and Sirius Red staining and quantitative analysis of liver
sections. Data was shown as mean ± SD, n = 5, and an ANOVA followed by Dunnett’s t test was used for comparisons. ns, not significant.
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exposure in different populations is influenced by factors such as

age, sex, occupation, and lifestyle. For the general population, the

estimated daily exposure to DEHP through non-dietary routes is

between 3 mg/kg/day and 30 mg/kg/day (37). Children tend to have

higher concentrations of DEHP than adults because of higher food

intake and frequent hand-to-mouth contact (38). Pregnant women

and newborns are particularly sensitive to DEHP, and low-dose

exposure during pregnancy may result in neurodevelopmental

disorders and reproductive abnormalities in the offspring (39).

Occupationally exposed populations have significantly higher

exposure levels than the general population owing to long-term

exposure to DEHP-containing materials (40). Long-term exposure

to DEHP can cause damage to multiple organs. Long-term intake of

DEHP has potential effects on human myocardial contractility, and

its metabolite MEHP leads to negative inotropic effects on the

human myocardium, which may have toxic effects on the human
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heart. At the same time, infants with multiple system failure will be

the group with the greatest risk of MEHP cardiotoxicity (41). In

addition, long-term exposure to DEHP can lead to the development

of obesity, lipid metabolism disorders, insulin resistance and type 2

diabetes (42, 43). Therefore, DEHP contamination is a major public

health concern.

This study utilized the NHANES database to gather data on

DEHP metabolites from 2009 to 2018, enabling the calculation of

the EDI of DEHP and taking 95% of the total population every

two years for statistical analysis (44, 45). The average EDI of

DEHP was 5,000 ng/kg from the NHANES database in 2017–

2018, based on the equivalent dose ratios for humans and mice

according to body surface area, then applying a 10-fold safety

factor, we finally deduced a dose of 0.5 mg/kg in mice. Therefore,

we selected 0.5 mg/kg DEHP for long-term treatment of

the mice.
FIGURE 8

Effects of DEHP and/or imICA on BMD, Tb.N, SMI, and Tb.Th in male mice. (A, B) 2D image, 3D bone structure reconstruction, and analysis of bone
density index based on Micro-CT. Data was shown as mean ± SD, n = 5, and an ANOVA followed by Dunnett’s t test was used for comparisons.
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Studies have indicated the existence of sex-based differences in

skeletal phenotypes; females exhibited lower bone mass and higher

osteoclast counts, and the kinetics of in vitro osteoclastogenesis

were also faster in females (46). Previous research has demonstrated

that DEHP exerts a detrimental effect on bone health by impeding

osteogenic differentiation of bone marrow mesenchymal stem cells

(15). In the present study, micro-CT analysis indicated that oral

exposure of female C57BL/6J mice to DEHP (0.5 mg/kg) for 12

weeks did not result in pathological changes associated with

osteoporosis. However, the same dose of DEHP led to a reduction

in BMD, significant bone trabecular loss, and structural damage in

male mice. Therefore, we hypothesized that there is a specific

pathway for osteoporosis induced by low doses of DEHP.

Almost all patients with chronic liver disease experience

changes in their bone metabolism. Liver–bone communication

plays a crucial role in the pathogenesis and development of

primary osteoporosis (23, 24). It has been well documented that

there are multiple regulatory mechanisms that maintain

equilibrium between the liver and bone. When liver damage

occurs, bone metabolism becomes abnormal owing to an

imbalance of osteoblasts and osteoclasts (1). After injecting CCl4
into mice to induce liver injury, the synthesis of 25-OH vitamin D

produced in the liver decreased while TGF b increased, leading to a

decrease in BMD (47). The liver is an important organ for

metabolism and one of the primary target organs for the toxic

effects of DEHP (48). Epidemiological investigations have

demonstrated a significant correlation between urinary DEHP

levels and indicators of liver injury (49). DEHP can inhibit liver

detoxification enzymes, leading to liver dysfunction and

accelerating the progression of chronic liver injury (50). In the

present study, a low dose of DEHP caused liver lesions and
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disrupted liver function, which might lead to HOD only in male

mice, indicating a sex difference in such effects.

Estrogen has been shown to slow the onset of all types of

chronic liver disease by inhibiting the transformation of quiescent

hepatic stellate cells to myofibroblasts in injured livers by reducing

lipid peroxidation, tissue inhibitor of metalloproteinases-1, and

deposition of type I and type III protofibrillar-forming collagens

(51). This may be a significant factor contributing to the absence of

osteoporosis symptoms in female mice following DEHP treatment.

Therefore, it could be concluded that estrogen deficiency

exacerbated the development of HOD in men.

14-3-3 proteins are a family of phosphoserine/threonine

regulatory proteins that are involved in promoting the

progression of several biological processes (52, 53). In the past

few years, we proposed that the 14-3-3h isoform is a key

characteristic neoplastic factor in HCC (25). Through the

phosphorylated-modification of the proteome, 14-3-3h dominated

the growth, angiogenesis, cancer stem cell-like properties, multi-

drug resistance, and several other decisive processes (21, 34). The

NF-kB canonical pathway has been shown to play a role in a variety

of diseases by regulating inflammation, apoptosis, and other

physiological processes. Increasing evidence has shown that the

NF-kB canonical pathway is involved in the pathogenesis of liver

disease via transcriptional regulation of a variety of target genes,

such as interleukin 6 (IL-6), or by activating additional cell signaling

pathways, such as signal transducer and activator of transcription 3

(STAT3) (54, 55). Our previous study also confirmed that the NF-

kB/IL-6/STAT3 positive feedback loop plays a crucial role in

inflammation and pro-survival and might be an essential link

between inflammation and cancer (31). Our previous study

revealed a positive feedback loop between NF-kB and 14-3-3h
FIGURE 9

A sketch map summarizing the conclusions, innovations, and potential preventive significance of our present study.
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(29) and that 14-3-3h modulates the secretory proteome in human

liver cell lines (20). Collectively, these findings indicate that the 14-

3-3h/NF-kB positive feedback loop-mediated hepatic paracrine

effect might be involved in DEHP-induced HOD.

Epidemiological investigations have demonstrated a positive

correlation between the expression of IL-6-related genes and the

development of osteoporosis (56). Additionally, elevated IL-6 levels

in ovariectomized female mice resulted in the enhanced

differentiation of bone marrow cells into osteoclasts. Conversely,

IL-6 deficiency preserves bone mass and prevents alterations in

bone turnover (57, 58). Similarly, reports have demonstrated a

correlation between elevated serum levels of CXCL1 and reduced

BMD, indicating a negative correlation between CXCL1 and bone

mass (59). Indeed, excess CXCL1 derived from bone marrow

adipocytes promotes osteoclast maturation and accelerates skeletal

osteolysis (60). Importantly, CXCL1 is an important transcription

factor regulated by NF-kB (30, 31). Collectively, these findings

suggest that DEHP might improve the hepatic levels of IL-6 and

CXCL1 via the 14-3-3h/NF-kB feedback loop, leading to

HOD induction.

The chemical imICA was modified and synthesized in our latest

study. Based on the serum biochemical test results for the liver and

kidneys, we observed no significant differences in serum ALT, AST,

blood urea nitrogen (BUN), and CREA levels between the imICA-

treated group and the control group. This indicated that imICA had

relatively minor hepatotoxic and nephrotoxic effects in the mice

(Figure 7B, Supplementary Figure S2). In addition, it exhibited an

excellent targeted inhibitory effect on 14-3-3h protein as well as its

downstream signal transduction (19). ImICA significantly inhibits

the development and progression of hepatic fibrosis and

hepatocellular carcinoma mediated by 14-3-3h overexpression by

targeting the regulation of the 14-3-3h protein-signaling pathway

(19, 20). The present study revealed that imICA could also block

DEHP-induced liver lesions, functional disorders, and HOD in

male mice.
Conclusions

In recent years, male and female populations have been exposed

to a relatively low concentration of DEHP, but only the male

population exhibited a negative correlation between DEHP

exposure and BMD. In male mice, a low dose of DEHP activated

the hepatic 14-3-3h/NF-kB positive feedback loop, which in turn

modified the secretory proteome associated with bone differentiation

and elevated IL-6 and CXCL1 levels, leading to HOD. Targeted 14-3-

3h/NF-kB feedback loop using our novel 14-3-3h inhibitor, imICA,

prevented DEHP-induced HOD (Figure 9).
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