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Background: Neuroendocrine prostate cancer (NEPC) is a highly aggressive

malignancy with few effective treatment options. The identification of reliable

biomarkers for NEPC is essential for early detection and intervention.

Methods: We combined single-cell and bulk transcriptome analysis to identify

novel markers of NEPC. InferCNV to assess copy number variations and

leveraging consensus non-negative matrix factorization (cNMF) to characterize

transcriptional programs. Pseudotime analysis was used to decipher prostate

cancer (PCa) progression differentiation trajectory. BayesPrism integrates single-

cell results and TCGA-PRAD sequencing information to further study prognostic

features. Immunohistochemistry (IHC) was performed to validate the elevated

expression of ASCL1 and WDFY4 in NEPC.

Results: We identified five distinct expression programs of PCa malignant

epithelial cells, where Module 3 presented NEPC expression patterns, with

activation of DNA replication and cell cycle pathways and classical NEPC

marker expression. Patients with high Module 3 proportion correlated to poor

clinical outcomes, advanced Gleason scores, and higher T stages. Pseudotime

analysis highlighted key trajectory-dependent genes involved in the transition to

NEPC, where expression of ASCL1 and WDFY4 elevated with progressing to

NEPC cell fate, which were further confirmed by IHC analysis, indicating that

WDFY4 and ASCL1 might be novel potential markers for distinguishing NEPC.

Conclusions: Combined single-cell and bulk analysis, we highlight the cellular

heterogeneity and transcriptional programs, validated novel biomarkers of NEPC.

Providing a foundation for early prediction of NEPC and management.
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Introduction

Castration-resistant prostate cancer (CRPC) poses a significant

challenge in the management of advanced prostate cancer (PCa), as it

is characterized by tumor progression despite androgen deprivation

therapy (ADT) (1). Approximately 10-20% of patients with PCa

progress to CRPC, with median survival rates for these patients

ranging from 9 to 30 months (2). This stage of PCa is often associated

with limited therapeutic options and poor clinical outcomes (3).

NCCN guidelines for CRPC recommend treatments including

abiraterone, enzalutamide, apalutamide, darolutamide, or docetaxel

(4). Although the range of available treatment options is gradually

expanding and patient survival is improving, CRPC remains a highly

lethal malignancy overall. Despite significant advances in

understanding the molecular mechanisms underlying PCa, the

factors driving CRPC progression and the associated drug

resistance are still not fully elucidated. A more comprehensive

understanding of the molecular basis and cellular heterogeneity of

CRPC is essential for identifying novel therapeutic targets and

enhancing patient prognosis (5).

The prevalence of neuroendocrine prostate cancer (NEPC) is

anticipated to rise as patients undergo multiple therapies (1).

Neuroendocrine tumor cells can be histologically distinguished

from other cell types within the complex PCa microenvironment

or using the circulating tumor DNA (ctDNA) (6); however, their

scarcity, particularly in the early stages of the disease, often leads to

the misdiagnosis of early-stage NEPC (7). Currently, the diagnosis

of NEPC primarily relies on the immunohistochemical analysis of

several biomarkers—specifically, androgen receptor (AR)

negativity, elevated MKI67 expression, and positivity for

neuroendocrine markers such as chromogranin A (CHGA),

synaptophysin (SYP), enolase 2 (ENO2), and neural cell adhesion

molecule 1 (NCAM1). Nevertheless, the heterogeneous expression

of these proteins in NEPC tumor cells significantly compromises

their diagnostic sensitivity (8, 9).

The emergence of next-generation sequencing technologies has

facilitated a comprehensive exploration of the molecular

characteristics associated with NEPC. Key factors contributing to

NEPC have been identified, particularly mutations in FOXA1 and

SPOP found in primary prostate cancer (PCa), lineage plasticity

resulting from RB1 loss and TP53 dysfunction, as well as the

activation of the polycomb repressive complex 2 (PRC2),

including components such as EZH2, in advanced PCa cases (10).

Furthermore, these investigations have revealed over ten gene sets

associated with NEPC, collectively encompassing thousands of

differentially expressed genes (DEGs). However, these genomic

assessments exhibit significant variability, which can be attributed

to several factors: a) the research is primarily based on a small

cohort of NEPC cases (11); b) the gene expression profiles of CRPC-

adenocarcinoma closely resemble those of NEPC (7); and c) the

gene sets largely rely on transcriptomic data obtained from a diverse

array of tumors rather than being exclusively derived from NEPC

tumor cells (12). Consequently, there is an urgent need to establish

sensitive and specific biomarkers for NEPC to enhance both

fundamental research and clinical applications (13).
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In this study, we analyzed the distinct transcriptional patterns

observed in primary and castration-resistant prostate cancer,

illustrating their developmental trajectories. During the

progression from primary prostate cancer to castration-resistant

prostate cancer, the expression levels of certain genes progressively

increased, suggesting their potential as biomarkers for castration-

resistant prostate cancer and warranting further investigation.
Materials and methods

Data acquisition

The single-cell transcriptomic data were sourced from the

PRJNA699369 database, associated with the published study (14).

This study identified a small population of cells within primary

prostate cancer that exhibit CRPC characteristics even prior to

hormonal therapy. These cells, inherently possess castration resistance

rather than developing it as an adaptive response to hormonal therapy,

are linked to biochemical recurrence and distant metastasis. Data

integration across samples was performed using the R package Seurat

(version 4.3.0), which was utilized to construct Seurat objects and

annotate grouping information for each sample (15). Clinical profiles

and corresponding gene expression data were obtained from The

Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/),

employing the R package TCGAbiolinks (version 2.22.0) to

retrieve TCGA-PRAD data (16). Gene expression levels across all

three groups were expressed in transcripts per million (TPM).

Messenger RNAs with a TPM value below 1 in over 90% of

samples were considered background noise and were excluded

from further analysis. The primary endpoint of this study was

progression-free survival (PFS) (17).
Processing of single-cell
transcriptomics data

Raw data preprocessing was performed using the Seurat

package, which involved excluding cells with fewer than 200 or

more than 2500 detected transcripts, as well as those with

mitochondrial gene percentages exceeding 10%. To address cell

cycle effects on single-cell transcriptomic data, the CellCycleScoring

function in Seurat was used for cell cycle scoring. The

NormalizeData function, using the LogNormalize method, was

applied for logarithmic transformation and normalization. Highly

variable genes were identified using the FindVariableFeatures

function with the variance stabilizing transformation (vst)

method, retaining the top 2000 genes with the highest variability.

Batch effects between samples were subsequently removed using the

ScaleData function. Following data preprocessing, dimensionality

reduction was performed to facilitate further analysis of high-

dimensional single-cell transcriptomic data. Principal component

analysis (PCA), the most widely adopted method for this purpose,

was applied using the RunPCA function in Seurat, retaining the top

50 principal components. Next, the FindNeighbors function was
frontiersin.org
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employed to identify K-nearest neighbor (KNN) relationships

among cells, and cell clustering was implemented using the

Louvain method via the FindClusters function. Annotation of cell

clusters was manually conducted based on established signature

markers (14, 18, 19).
Identification of tumor cells by
InferCNV analysis

The formation of polyploid or aneuploid cells is a pathological

hallmark of malignancy, characterized by copy number variations

(CNV). The inferCNV (https://github.com/broadinstitute/

inferCNV) was utilized to analyze copy number variations

(CNVs) in scRNA-seq data. InferCNV facilitates the visualization

of CNVs in cells based on single-cell RNA-Seq expression data. The

initial CNV estimates are derived by analyzing the genes, including

their chromosomal locations, and averaging their relative

expression values (20, 21). Cell types were initially classified using

the Seurat package, after which InferCNV was applied to calculate

CNVs across all autosomes for each cell type. For the 10× Genomics

single-cell data, a cutoff value of 0.1 was utilized.
Uncovering diverse gene expression
patterns among malignant cells in PCa

To uncover transcriptional programs in malignant epithelial cells,

we utilized consensus Non-Negative Matrix Factorization (cNMF)

through the cNMF module from the omicverse package (version

1.6.4) (22). This unsupervised methodology decomposed gene

expression data into metagenes that represent various transcriptional

states. Prior to the analysis, we preprocessed the gene expression data to

concentrate on genes exhibiting high variability amongmalignant cells.

Subsequently, we performed cNMF, determining the optimal number

of factors (k) through an iterative method that maximized the

cophenetic correlation coefficient, thereby ensuring a robust and

biologically relevant factorization. The resulting metagenes signify

transcriptional states characteristic of malignant epithelial cells,

facilitating further investigation into their potential functional

implications in tumor biology.
Trajectory inference analysis

To investigate cellular differentiation trajectories, we conducted

pseudotime analysis using the Monocle2 package (version 2.22.0)

(23). Monocle2 enables the reconstruction of lineage trajectories

based on single-cell gene expression data. The gene expression

matrix was initially preprocessed by filtering out low-quality cells

and genes, followed by normalization and variance stabilization.

Highly variable genes were selected to ensure robust trajectory

inference. Monocle2 was then used to order cells along a

pseudotime axis based on their transcriptional profiles, applying
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the DDRTree method for dimensionality reduction and trajectory

construction. This approach facilitates the identification of

branching points, which represent potential cellular decision-

making events during differentiation.
Enrichment analysis

To further uncover the different biological functions of these

genes patterns, enrichment analysis was conducted, and annotated

based on GO, KEGG, WiKipathways databases. In addition, we also

conducted GSEA. All of the enrichment analysis performed on

scRNA data were used SCP pipeline(https://github.com/zhanghao-

njmu/SCP).
BayesPrism deconvolution analysis

To deconvolute bulk RNA sequencing data into distinct cell

types, BayesPrism algorithm was conducted. BayesPrism act as a

framework driven by models that probabilistically aims to

distinguish bulk gene expression data through the use of

reference single-cell RNA sequencing datasets. This approach

incorporates a Bayesian model that efficiently reduces the noise

found in batch expression data, while also tackling the fundamental

uncertainty associated with single-cell reference datasets (24).
IHC analysis

Prostate tissues from patients (including 2 cases of primary PCa

and 2 cases of NEPC) who underwent radical prostatectomy in the

Department of Urology at the First Affiliated Hospital of Anhui

Medical University were selected for this analysis. We conducted

IHC staining to evaluate the expression of NSE (NSE Polyclonal

antibody, Cat# 10149-1-AP, RRID: AB_2099180, Proteintech,

USA), CHGA (Chromogranin A Polyclonal antibody, Cat#

23342-1-AP, RRID: AB_2879259, Proteintech, USA), ASCL1

(ASCL1 Polyclonal antibody, Cat# 23751-1-AP, RRID:

AB_2935459, Proteintech, USA) and WDFY4 (WDFY4

Polyclonal antibody, Cat# 17558-1-AP, RRID: AB_2288447,

Proteintech, USA). Detailed IHC procedures could refer to our

prior studies (20, 21). Tumor samples were gathered and preserved

in a 4% formaldehyde solution for 24 hours. Subsequently, these

samples were embedded in paraffin and sectioned into

approximately 5 mm thick slices. The tumor sections underwent

deparaffinization and rehydration, followed by the inhibition of

endogenous peroxidase activity and antigen retrieval. After that, a

5% BSA solution was applied to the tumor sections to minimize

non-specific binding for 30 minutes, after which they were

incubated with primary antibodies overnight (dilution ratio

1:200). Following incubation with goat anti-rabbit IgG-HRP

(1:200, GB23303, Servicebio, China) as the secondary antibody

for one hour, the tumor sections were visualized using a DAB kit.
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Statistical analysis

Statistical analysis, data processing, and visualization were

conducted using R software (version 4.2.2) and Python (version

3.9). Group differences were evaluated with Kruskal-Wallis and

Wilcoxon tests, while the Chi-square test was employed to compare

clinical characteristics across groups. Two-tailed p-values were

calculated with significance set at p < 0.05.
Results

Cell population characterization of
prostate cancer samples

After removing batch effects (Figure 1A), we identified seven

clusters (Figure 1B), which were subsequently annotated into three

primary cell populations (Figure 1C). The expression of marker

genes for canonical epithelial, stromal, and immune markers was

examined. Key markers, including EPCAM, KRT19, and CLDN4,

were found to be enriched in epithelial cells; PECAM1 and VWF

were enriched in stromal cells; and CD3, CD8A, and CD4 were

prominent in immune cell populations. A dot plot illustrating

marker gene expression across these cell types confirmed distinct

expression patterns (Figures 1D, E). Furthermore, differentially

expressed genes among the three clusters were identified

(Figure 1F). Mean expression values across the three cell types

indicated higher levels of KRT19 and EPCAM in epithelial

cells, PECAM1 and VWF in stromal cells, and CD3D, CD8A,

and CD4 in immune cells, thereby supporting robust annotation.

Moderate positive correlations were observed between epithelial

and stromal cells, while immune cells exhibited distinct expression

patterns with lower correlations to either epithelial or stromal

populations (Figure 1G). The proportion of each cell type

across prostate cancer samples was quantified (Figure 1H), and

the tissue preference of each cluster was assessed using Ro/e

scores (Figure 1I).
Five distinct expression patterns of
malignant epithelial cells were identified

InferCNV was applied to assess CNVs across genomic regions

in malignant and non-malignant cells. The heatmap (Figure 2A)

illustrates CNV patterns, with red indicating amplifications and

blue indicating deletions. The top panel corresponds to reference

(non-malignant) cells, while the bottom panel represents observed

malignant cells, revealing distinct chromosomal alterations across

multiple genomic regions. A scatter plot of CNV correlation versus

CNV score (Figure 2B) was used to classify cells into malignant,

non-malignant, and other groups.

To identify transcriptional programs in malignant epithelial

cells, we employed cNMF. A consensus heatmap (Figure 2C)

visualizes the Euclidean distance between transcriptional

programs, revealing distinct clusters of cells based on gene
Frontiers in Immunology 04
expression profiles. The stability and error rate of the cNMF

model were evaluated across different component numbers

(Figure 2D), with the optimal number of components selected

based on high stability and low error rates. Six malignant

programs were initially identified (Figure 2E). Due to the limited

cell count in Module 6, it was excluded from further analyses,

resulting in five key transcriptional programs. The proportions of

these modules differed significantly across samples. Module 2

represents a cell population specific to primary prostate cancer,

while Module 3 is CRPC. Modules 1, 4, and 5 are present in both

groups, potentially representing pre-existing latent CRPC

cells (Figure 2F).
Functional enrichment and gene
module characterization

We examined the expression patterns of representative genes

within the five transcriptional programs and their associated

biological functions and pathways (Figure 3A). As the results

showed, Modules 1 and 2 were enriched in pathways associated

with stress responses to metal ions, detoxification of inorganic

compounds, mineral absorption, and copper homeostasis. Module

3 demonstrated a strong correlation with DNA-templated DNA

replication, chromosome segregation, and cell cycle pathways.

Module 4 exhibited significant enrichment in the epidermal

growth factor receptor (EGFR) signaling pathway, the ERBB

pathway, endocytosis, and cell-substrate adhesion. Module 5

revealed activation in response to temperature, protein folding,

and pathways related to unfolded protein responses. The GSEA

enrichment analysis further corroborated these findings.

In the GO enrichment analysis (Figure 3B), modules 1 and 2

demonstrated enrichment in pathways central to oxidative stress

responses, transmembrane metal ion transport, regulation of

systemic homeostasis, and cellular adaptations to arsenic-

containing compounds. Module 3 revealed prominent

associations with DNA repair and chromatin organization,

underscoring its role in safeguarding genomic integrity under

conditions of cellular stress. Module 4 was enriched in pathways

such as integrin-mediated signaling and actin cytoskeleton

regulation, highlighting mechanisms that enhance cellular

adhesion, migration, and structural dynamics. Module 5

emphasized the importance of heat shock protein interactions

and proteasomal regulation, essential for mitigating proteotoxic

stress and maintaining protein homeostasis. Collectively, these

pathways il luminate the intricate biological processes

underpinning tumor adaptability and progression, further

emphasizing the multifaceted roles of these modules in the

context of cancer resilience and evolution.

Modules 3, 4, and 5 play critical roles in the development of

CRPC (Figure 3C). Module 3 drives DNA replication and cell cycle

progression, contributing to the rapid proliferation and genomic

instability characteristic of CRPC. Module 4 supports tumor

survival and migration via EGFR signaling and cell adhesion

pathways, enabling tumor adaptation in low-androgen
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environments. Module 5 enhances the tumor’s ability to withstand

therapeutic stress by activating protein folding and stress response

mechanisms, allowing CRPC cells to resist treatment. Together,

these modules are central to CRPC progression, promoting tumor

growth, survival, and adaptation under therapeutic pressure.
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In addition, we enrolled NEPC marker from prior studies (25),

and compared their expression among the five modules. As showed

in Figure 3D, module 3 exhibited the higher and more NEPC

marker expression, such as NF1A, CPE, COTL1, ETS2, indicating

module3 represented a NEPC expression transcriptome program.
FIGURE 1

Cell population characterization in prostate cancer samples. (A) Uniform manifold approximation and projection (UMAP) visualization of 11 prostate
cancer (PCA) samples. (B) UMAP visualization distinguishing three major cell types. (C) UMAP visualization showing seven distinct clusters. (D) UMAP
visualization displaying marker gene expression patterns. (E) Dot plot illustrating marker gene expression across the three cell types. (F) Violin plots
showing mean expression values of differentially expressed genes among the three cell types. (G) Heatmap depicting correlation between epithelial,
stromal, and immune cell populations. (H) Proportion of each cell type across the 11 prostate cancer samples. (I) Ro/e scores indicating tissue
preference distribution for the three cell types across the 11 samples.
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FIGURE 2

Comprehensive analysis of malignant programs. (A) Inferred large-scale copy number variations (CNVs) distinguishing cancer cells (blue) from non-
cancer cells (red). Chromosomal regions are displayed on the x-axis, while tumor and normal cells are represented on the y-axis. (B) Scatter plot of
CNV correlation versus CNV score, categorizing cells into malignant, non-malignant, and other groups. (C) Consensus heatmap illustrating Euclidean
distances between transcriptional programs, highlighting distinct clusters of cells based on gene expression profiles. (D) Evaluation of cNMF model
stability and error rates across different component numbers, selecting an optimal component number based on high stability and low error rate.
(E) UMAP visualization of the six malignant transcriptional programs. (F) Proportion of five transcriptional modules across eight prostate
cancer samples.
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Pseudotime analysis reveals the
differentiation patterns of five malignant
cell types

Trajectory analysis revealed a pattern of differentiation

trajectories that cluster distinct transcriptional patterns in

prostate cancer, modeling the progression from primary PCa to

CRPC and NEPC (Figures 4A-C). The five identified cell types are

categorized into two major fates, with module 3 representing a

unique differentiation endpoint. This trajectory is enriched in

NEPC cells and is devoid of primary PCA cells, suggesting that

these cells may represent the mature NEPC state. Dynamic changes

in gene expression along pseudo-time trajectories underscored the

top 20 trajectory-dependent genes (Figures 4D, E), such as

GXYLT2, EDIL3, MEG3, ASCL1, GRP, and WDFY4. These genes

exhibit a gradual increase as malignant cells transition from a

primary state to a phenotype characteristic of NEPC. These

expression trends reflect the molecular alterations accompanying

the transition from primary disease to castration-resistant disease

and may serve as potential biomarkers of NEPC, warranting

further investigation.

Significant differential expression of key genes between primary

PCA and CRPC was observed (Figure 4F). Compared to primary

cancer samples, genes such as GLYATL2, EDIL3, MEG3, FABP4,

ASCL1, GRP, and WDFY4 were highly upregulated in CRPC, with

statistically significant differences underscoring their potential roles

in driving the castration-resistant phenotype.

Additionally, clustering analysis (Figure 4G) identified

two major clusters, C1 and C2, each representing distinct

transcriptional programs. Cluster C1, primarily associated with

CRPC, exhibited high expression of genes such as GLYATL2,

EDIL3, MEG3, FABP4, and ASCL1. Cluster C2, associated with

primary prostate cancer, expressed genes like MMP13 and POTEC.

This clustering underscores the distinct molecular programs

defining primary and castration-resistant prostate cancer,

suggesting that genes highly expressed in Module 3 could serve as

specific markers for CRPC.

IHC analysis of prostate tissues was performed to validate the

expression of ASCL1 and WDFY4, alongside the established NEPC

markers NSE and CHGA. We analyzed tissue samples from two

cases of NEPC and two cases of primary PCa. In NEPC tissues, all

four markers (ASCL1, WDFY4, NSE, and CHGA) demonstrated

strong expression, whereas their expression was markedly reduced

in primary PCa samples (Figure 4H). These results indicate that

ASCL1 and WDFY4 are specifically upregulated in NEPC

compared to primary PCa.
Module 3 type PCa is associated with
poorer prognosis

Using BayesPrism deconvolution, we estimated the relative

contributions of various cell types in prostate cancer samples via

Bayesian deconvolution, providing high-resolution insights into

cellular composition and distinguishing tumor cells with distinct
Frontiers in Immunology 07
transcriptional programs. Figures 5A, B illustrate the distribution of

Gleason scores and T stages within the TCGA-PRAD cohort.

Survival analysis indicated that a higher proportion of cells in

Module 3 (p < 0.001, HR = 2.1, 95% CI: 1.4~3.16) and Module 5

(p < 0.001, HR = 2.56, 95% CI: 1.7~3.85) was significantly associated

with poorer prognosis (Figure 5C). Patients with elevated levels of

Module 3 had a recurrence risk twice that of patients with low

Module 3 levels, while those with high Module 5 levels had a 2.56-

fold increased recurrence risk compared to patients with low

Module 5 levels.

Additionally, we assessed the proportion of Module 3 across

different clinicopathological stages (Figures 5D, E). The results

showed that Module 3 proportionally increased with rising

Gleason scores (all p < 0.05), and a similar trend was observed

across increasing T stages (all p < 0.05), corroborating previous

findings from earlier analyses.
Discussion

Our comprehensive analysis of prostate cancer samples

provides key insights into cellular heterogeneity and the

malignant transcriptional programs driving CRPC progression.

By applying advanced single-cell techniques, including consensus

non-negative matrix factorization (cNMF) and InferCNV, we

dissected the tumor microenvironment and identified

transcriptional programs associated with distinct prostate cancer

stages, notably CRPC.

Our study identifies key malignant transcriptional programs,

particularly Module 3, as crucial drivers of CRPC progression.

Module 3, defined by the activation of DNA replication and cell

cycle pathways, is specific to CRPC and facilitates rapid cell

proliferation and genomic instability, hallmarks of aggressive

prostate cancer (26, 27). This aligns with findings linking

genomic instability to CRPC via oncogene amplification and loss

of tumor suppressors (28). Targeting these proliferative pathways

may provide new therapeutic avenues to slow tumor growth and

combat treatment resistance.

The pseudotime analysis delineated a trajectory of malignant

differentiation, revealing the bifurcation into CRPC and NEPC

fates. Notably, Module 3 cells occupied a terminal NEPC state

devoid of primary PCa markers, highlighting a unique

differentiation endpoint. These results not only elucidate the

temporal dynamics of prostate cancer progression but also

identify trajectory-dependent genes, such as ASCL1 and WDFY4,

as potential biomarkers for NEPC. The gradual increase of these

genes along the trajectory underscores their critical role in

malignant transformation and their potential as therapeutic targets.

The association between Module 3 and poor prognosis

emphasizes its potential as a prognostic marker for CRPC. Higher

recurrence risk among patients with elevated Module 3 levels,

especially at advanced Gleason scores and T stages, highlights its

clinical importance. Genes such as ASCL1, WDFY4, GLYATL2,

and EDIL3, which are upregulated in CRPC, likely drive the

progression from primary prostate cancer to CRPC (29).
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ASCL1 is a pivotal regulator of neuroendocrine differentiation

and is crucial in driving the transition from prostate

adenocarcinoma to aggressive NEPC, a treatment-resistant

subtype of CRPC. ASCL1 is widely recognized as a marker of

NEPC. Rodarte et al. demonstrated that ASCL1, while dispensable

for the initial formation and growth of PCa, plays an indispensable
Frontiers in Immunology 08
role in its progression to NEPC. Deletion of ASCL1 effectively

abrogates the NEPC transition, instead rerouting the cellular

trajectory toward a basal-like phenotype (30). This transcription

factor supports lineage-specific changes, allowing prostate cancer

cells to adopt neuroendocrine characteristics under therapeutic

pressures (31). Studies have found that ASCL1 plays a crucial role
FIGURE 3

Functional enrichment and gene module characterization. (A) Expression patterns and associated biological functions and pathways of
representative genes across the five transcriptional programs, based on GO, KEGG, and WikiPathways databases. (B) GO enrichment analysis for
Modules 1–5, illustrating the biological processes associated with each module. (C) Enrichment map depicting transcriptional program associations
within castration-resistant prostate cancer (CRPC). (D) Expression of marker genes for neuroendocrine prostate cancer NEPC in Modules 1-5.
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in cell proliferation, particularly in neural progenitor cells and

oligodendrocyte precursor cells. Both overexpression and loss of

ASCL1 can significantly affect cell proliferation behavior (32, 33).

Choo et al. suggested that ASCL1 promotes tumor cell proliferation
Frontiers in Immunology 09
and survival in NEPC by regulating cell cycle-related genes (such as

E2F target genes) and neuroendocrine signaling pathways.

NEO2734 and BET inhibitors suppress neuroendocrine tumor

growth by downregulating ASCL1 expression, thereby inhibiting
FIGURE 4

Pseudotime analysis of differentiation patterns in five malignant cell types. (A–C) Pseudotemporal analysis using Monocle 2 to explore cell
trajectories of prostate cancer (PCa) cells. (D) Top 20 trajectory-dependent genes identified in castration-resistant prostate cancer (CRPC) and
primary PCa. (E) Top 20 trajectory-dependent genes across the five modules. (F) Significant differential expression of marker genes between primary
PCa and CRPC (****P ≤ 0.0001). (G) Clustering analysis showing differential expression of the top 20 marker genes across the five modules.
(H) Immunohistochemical (IHC) analysis of neuroendocrine prostate cancer (NEPC) and PCa tissues highlighting the differential expression of NSE,
CHGA, ASCL1, and WDFY4 between NEPC and primary PCa.
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cell cycle progression (34). This indicates that ASCL1 is not only a

key regulator of neuroendocrine differentiation but also plays a

crucial role in cell cycle regulation.

In contrast, WDFY4 is a less-characterized gene involved

in immune regulation and autophagy (35), and the link between

this gene and NEPC remains to be further investigated. CHGA

and NSE are well-established neuroendocrine markers extensively

studied in the context of NEPC. Their elevated expression levels are
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commonly associated with NEPC, distinguishing it from

typical prostate adenocarcinoma (9). Our findings suggest that

ASCL1 and WDFY4 may drive CRPC progression through

distinct mechanisms. Given ASCL1’s role in neuroendocrine

differentiation, this may indicate a transition to NEPC (30).

Paulo et al. observed the expression of GLYATL2 in PCa cell

lines and identified its regulation by the ETV1 transcription factor

(36). Similarly, Gasca et al. demonstrated a significant association
FIGURE 5

Association of Module 3 with poorer prognosis. (A, B) Distribution of Gleason scores (A) and T stages (B) within the TCGA-PRAD cohort.
(C) Prognostic analysis of the five modules in the TCGA-PRAD cohort, highlighting the impact of Modules 3 and 5 on patient outcomes.
(D, E) Proportion of Module 3 across different Gleason scores (D) and T stages (E).
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between high EDIL3 expression and advanced-grade PCa tumors

(Gleason score 8–10) using human tissue samples (37).

Furthermore, EDIL3 was found to be upregulated in paclitaxel-

resistant PC3 cells, whereas its expression was lower in paclitaxel-

sensitive LNCaP cells, suggesting a role in chemoresistance.

Collectively, these findings validate the upregulation of GLYATL2

and EDIL3 in both human PCa tissues and cellular models.
Conclusion

Our analysis identified distinct cellular subpopulations within

prostate cancer, along with five key transcriptional programs,

notably highlighting Module 3 as closely associated with CRPC.

Pseudotime analysis traced gene expression dynamics underlying

the progression from primary prostate cancer to CRPC. High

expression levels of module 3 were significantly associated with

poorer prognosis, and the newly identified biomarkers ASCL1 and

WDFY4 were validated in IHC analysis. Given that the involvement

of ASCL1 in neuroendocrine differentiation and tumor progression

suggests that it may be a key driver for the emergence of NEPC.

Furthermore, targeting ASCL1 therapy provides an avenue for

future exploration of therapeutic strategies for NEPC.
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