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Respiratory infectious diseases, particularly those caused by respiratory viruses,

have the potential to lead to global pandemics, thereby posing significant threats

to public and human health. Historically, the primary treatment for respiratory

bacterial infections has been antibiotic therapy, while severe cases of respiratory

viral infections have predominantly been managed by controlling inflammatory

cytokine storms. Ferroptosis is a novel form of programmed cell death that is

distinct from apoptosis and autophagy. In recent years, Recent studies have

demonstrated that ferroptosis plays a significant regulatory role in various

respiratory infectious diseases, indicating that targeting ferroptosis may

represent a novel approach for the treatment of these conditions. This article

summarized the toxic mechanisms underlying ferroptosis, its relationship with

respiratory infectious diseases, the mechanisms of action, and current treatment

strategies. Particular attentions were given to the interplay between ferroptosis

and Mycobacterium tuberculosis, Epstein-Barr virus, severe acute respiratory

syndrome coronavirus-2, Pseudomonas aeruginosa, dengue virus, influenza

virus and herpes simplex virus type1infection. A deeper understanding of the

regulatory mechanisms of ferroptosis in respiratory infections will not only

advance our knowledge of infection-related pathophysiology but also provide

a theoretical foundation for the development of novel therapeutic strategies.

Targeting ferroptosis pathways represents a promising therapeutic approach for

respiratory infections, with significant clinical and translational implications.
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1 Introduction

In 2012, Brent Stockwell, Scott Dixon, and colleagues

introduced the concept of iron-dependent regulatory cell death,

termed ferroptosis (1). This oxidative form of cell death is distinct

from apoptosis, non-regulatory necrosis, and necroptosis (regulated

necrosis) (2). Ferroptosis is primarily triggered by the accumulation

of lethal lipid hydroperoxides within cellular membranes,

particularly in the endoplasmic reticulum (ER), due to the failure

of protective mechanisms that prevent excessive lipid peroxidation

(3). Respiratory diseases pose a significant global health burden,

ranking as the third leading cause of mortality in urban areas and

the leading cause of death in rural regions (4, 5). Historically, the

primary treatment for bacterial infections has been antibiotic

therapy. However, the emergence of multiple drug-resistant

strains has posed significant challenges to the effectiveness of such

treatments (6). In contrast, there are limited specific antiviral

medications available; most existing drugs primarily function by

inhibiting viral replication or transmission within the host (7).

Consequently, it is essential to elucidate the mechanisms underlying

respiratory bacterial and viral infectious diseases in order to identify

new insights and develop innovative therapeutic strategies. The

discovery of ferroptosis has significant implications for respiratory

diseases caused by certain viruses and bacteria, offering new avenues

for treatment (8), particularly in targeting host-pathogen

interactions to mitigate disease severity and improve

clinical outcomes.
2 The relationship between ferroptosis
and respiratory infection

2.1 Mycobacterium tuberculosis

M. tuberculosis infection causes tuberculosis (TB), which ranks

among the top ten causes of death worldwide (9). Prior to the

COVID-19 pandemic, it was the leading cause of mortality

attributable to a single infectious pathogen (10). TB is

characterized as a chronic respiratory disease, manifesting a range

of symptoms, including cough, hemoptysis, dyspnea, and chest

pain. We summarized the role and molecular mechanisms of

ferroptosis-related molecules in M. tuberculosis infection to

provide novel insights and research directions for the treatment

of this infection (Figure 1A).
2.1.1 The role of ferroptosis in cell death and
tissue necrosis induced by M. tuberculosis

M. tuberculosis-induced necrotic cell death was associated with

increased levels of intracellular iron and mitochondrial superoxide,

as well as lipid peroxidation (11). Using an in vitro model of M.

tuberculosis-induced macrophage death, researchers observed that

necrosis exhibited classic characteristics associated with ferroptosis.

The necrotic cell death of macrophages infected with M.
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tuberculosis was linked to decreased expression levels of GSH and

Gpx4 (12, 13) (Figure 1A).

Iron chelation or inhibition of lipid peroxidation could prevent

macrophage necrosis induced by M. tuberculosis. Fer-1 is widely

recognized as a potent inhibitor of ferroptosis due to its highly

effective inhibition of lipid peroxidation, partly attributed to its

antioxidant activity (1). Treatment with Fer-1 significantly reduced

lung weight and calculated relative lung mass in infected mice

(Figure 1A). Histological examination confirmed that this

inhibition of lipid peroxidation correlates with a reduction in

granulomatous inflammation.

2.1.2 Gpx4 regulated cell necrosis and host
resistance in M. tuberculosis infection

By comparing tuberculosis patients with healthy individuals, it

was observed a decrease in the levels of Gpx4/GSH and an increase

in lipid peroxidation among TB patients (10, 14).One potential

strategy is to target upstream signaling components that positively

regulate Gpx4 expression and/or activity in glutathione metabolism.

A key component in this process was nuclear factor erythroid 2-

related factor 2 (Nrf2), which not only regulated Gpx4 expression

but also influenced various other antioxidant molecules

(Figure 1A). However, this approach requires extensive clinical

trials for further validation (10, 15–17).

In addition, some antioxidants, including vitamin E, were

shown to inhibit ferroptosis, and studies indicated that adjunctive

use of vitamin E with conventional antibiotic therapy improved TB

treatment outcomes (13, 18). Furthermore, supplementing

selenium was shown to enhance Gpx4 expression and activity,

thereby inhibiting ferroptosis (12). Notably, selenium, as a

nutritional supplement, was demonstrated to improve TB

treatment outcomes (13).

2.1.3 Protein tyrosine phosphatase A promoted
pathogenicity and transmission dependent on
ferrous breakdown

PtpA is an effector secreted by M. tuberculosis. PtpA triggered

ferroptosis, thereby enhancing the pathogenicity and transmission

of M. tuberculosis. It interacted with the host RanGDP through its

Cys 11 site to enter the host cell nucleus. Once inside, nuclear PtpA

promoted the asymmetric dimethylation of histone H3 at arginine 2

(H3 R2 me2a) by targeting protein arginine methyltransferase 6

(PRMT 6), resulting in the inhibition of Gpx4 expression and

ultimately inducing ferroptosis, which facilitates M. tuberculosis

pathogenicity and spread (Figure 1A) (19–21).

2.1.4 BACH 1 promoted the enrichment of genes
related to the inhibition of iron cell proliferation,
leading to tissue necrosis and susceptibility to
M. tuberculosis

The exacerbation of lipid peroxidation is a consequence of

uncontrolled oxidative stress, which is linked to iron deposition and

necrotic cell death (22–24).Bach 1 is a transcription factor that

inhibits a variety of antioxidant genes. Notably, BACH 1 mRNA
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expression is increased in patients who develop active TB following

M. tuberculosis infection. Importantly, it was observed that iron

sepsis-related genes associated with antioxidant properties were

upregulated in various bone marrow cell populations in M.

tuberculosis-infected Bach 1 −/− mice, suggesting a role for Bach

1 in regulating M. tuberculosis-induced necrosis in vivo. Under

conditions of Bach 1 deficiency, complete ablation of cell necrosis

was not observed in either in vivo or in vitro settings, suggesting that

Bach 1 deficiency and its role in cell necrosis coexist.

Nrf2 is the primary upstream regulator of the host antioxidant

response (including GSH metabolism), and inhibiting its repressive

factor Bach might provide an alternative strategy to enhance the

expression of enzymes and their cofactors, which were crucial for

mitigating lipid peroxidation-mediated tissue death (25). Discovering
Frontiers in Immunology 03
and developing other biologically acceptable Bach 1 inhibitors

represented an effective strategy for addressing various diseases,

particularly those where lipid peroxidation-mediated cell necrosis is

recognized as a significant mechanism of pathogenesis (1, 23, 24, 26).
2.2 Epstein–barr virus

EBV is a double-stranded DNA virus that establishes lifelong

latency in the host following primary infection (27). EBV infection has

been closely associated with various B-cell malignancies (28–31).

Among these, the malignancy most strongly associated with EBV

infection has been undifferentiated nasopharyngeal carcinoma (NPC)

(32). Although chemotherapy and radiotherapy are the primary
FIGURE 1

Overview Diagram of Ferroptosis Mechanism in Mycobacterium tuberculosis, EB Virus, and SARS-CoV-2 Infections. (A) The necrosis of macrophages
triggered by M. tuberculosis is closely linked to elevated levels of intracellular iron, increased mitochondrial superoxide, and enhanced lipid
peroxidation. The use of iron chelators or inhibitors of lipid peroxidation effectively averted M. tuberculosis-induced macrophage necrosis. The
nuclear factor (Nrf2) played a role in inhibiting the expression of Bach1 and regulating Gpx4 to mitigate ferroptosis. Additionally, the effector
molecule PtpA secreted by M. tuberculosis promoted ferroptosis, thereby increasing its pathogenicity and ability to spread. (B) This panel outlines
the molecular mechanisms through which EBV infects B cells and nasopharyngeal carcinoma (NPC) cell lines. EBV infection makes B cells reliant on
the activity of SLC7A11 and Gpx4 to resist ferroptosis. In NPC cell lines, EBV infection activates the p62-Keap1-NRF2 pathway, leading to enhanced
Nrf2 activity. This activation further upregulates downstream target genes, such as Gpx4 and xCT, which play a critical role in reducing lipid
peroxidation and inhibiting the accumulation of lipid ROS, thereby preventing ferroptosis. (C) The accessory protein Orf7b of SARS-CoV-2 promotes
ferroptosis through the c-Myc signaling pathway, leading to lung damage. The expression of ferroptosis-related genes ACSL1 and CREB5 in
monocytes may further promote ferroptosis by regulating the inflammatory response. In lung cells infected with SARS-CoV-2, the mRNA levels of
the ferroptosis marker PTGS2 are significantly increased. Additionally, ORF3a is considered a positive regulator of ferroptosis; it binds to Keap1,
enhancing Keap1 stability, promoting the interaction between Keap1 and Nrf2, and thereby accelerating the degradation of Nrf2, which in turn
facilitates ferroptosis.
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treatment modalities for NPC, significant challenges remained due to

chemotherapy resistance. Nevertheless, there had been considerable

advancements in understanding the pathogenesis and exploring

treatment options for the role of ferroptosis EBV infection (33).

2.2.1 EBV infection modulates B cell resistance
to ferroptosis

EBV activated lipid metabolism, transforming B cells into

immortalized lymphoblastic cell lines (LCLs), which served as a

model for post-transplant lymphoproliferative disorders and

promoted lipid peroxidation in primary B cells. Anti-EBV therapy

remains a significant unmet medical need, especially for

immunocompromised patients. Although antiviral drugs

approved for other herpesviruses have been tested for EBV-

associated diseases, their results have been disappointing (31).

Studies showed that dipyridamole (DIP), a drug with good safety

and broad pharmacological properties, effectively inhibited EBV

reactivation in B cell lines (34). Additionally, research found that

different stages of EBV transformation generate varying levels of

lipid-derived reactive oxygen species (ROS) byproducts. In the early

stages of infection (Burkitt-like hyperproliferation phase), EBV

induces lipid metabolism and ROS production, making B cells

dependent on cystine import mediated by SLC7A11 and the

activity of Gpx4 to resist ferroptosis (Figure 1B). Blocking these

pathways, such as using erastin to inhibit SLC7A11 or ML-210 to

inhibit Gpx4, significantly induces cell death (35). This

phenomenon suggested that ferroptosis could be a potential

therapeutic strategy for preventing or treating certain EBV-

associated lymphomas (35).

2.2.2 EBV infection-induced-Gpx4 promoted
chemotherapy resistance in NPC

By suppressing Gpx4 expression, EBV promoted the escape of

ferroptosis and the restoration of redox homeostasis, thereby

contributing to chemotherapy resistance in NPC. EBV infection

led to the upregulation of p62, which subsequently activated Nrf2 in

NPC cell lines through the p62-Keap1- Nrf2 axis. This activation

resulted in the upregulation of downstream effectors xCT and Gpx4,

effectively reducing lipid ROS accumulation in tumor cells and

protecting them from ferroptosis (Figure 1B). Gene knockout of

Gpx4 or treatment with low-dose Gpx4-targeted inhibitors could

significantly diminish chemotherapy resistance in EBV-positive

NPC cell lines, presenting a potential therapeutic target for

treating chemotherapy-resistant tumors (35–37).
2.3 Severe acute respiratory syndrome
coronavirus-2

SARS-CoV-2 was a novel coronavirus identified as the causative

agent of the global epidemic of coronavirus disease 2019 (COVID-19)

(38–41). This virus belonged to the coronavirus family and was a

highly transmissible airborne infectious pathogen (41). COVID-19

primarily presented as a respiratory disease that manifested as acute
Frontiers in Immunology 04
upper and/or lower respiratory syndrome of varying severity.

The most common symptoms included fever, cough, acute lung

injury, septic shock, and acute respiratory distress syndrome (ARDS)

(42, 43). Additionally, various other symptoms had been reported in

COVID-19 patients, such as loss of taste or smell, headache, muscle

or body pain, nausea or vomiting, and diarrhea (44, 45). (The

relationship between SARS-CoV-2 infection and the ferroptosis

mechanism is illustrated in Figure 1C as a schematic diagram).

2.3.1 Identification of iron metabolism related
biomarkers in SARS-CoV-2 induced ischemic
stroke using single-cell RNA sequencing and
multiple bioinformatics methods

The seven main cell types identified in COVID-19 patients,

which are affected peripherally by SARS-CoV-2, include monocytes,

NK cells, platelets, CD34+ pre-B cells, T cells, B cells, and HSC-G-

CSF cells. The ferroptosis-related genes ACSL1 and CREB5 were

predominantly expressed in monocytes, HSC-G-CSF cells, and

CD34+ pre-B cells (46, 47). The esterification of acyl-CoA

synthase long-chain member 4 (ACSL4) allowed polyunsaturated

fatty acids (PUFAs) to disrupt cell membranes during the execution

phase (48). Recently, ACSL1 had been identified as a promoter of

ferroptosis (47) (Figure 1C), withACSL1-induced gallic acid (ESA)

triggered ferroptosis. In contrast to typical ferroptosis inducers such

as the Gpx4 inhibitor ML160 and the FSP1 inhibitor iFSP1, the

ACSL1-dependent ferroptosis induced by ESA shows significant

differences (49). The high expression of five ferroptosis-related

genes (such as ACSL1 and CREB5) in monocytes of COVID-19

patients may affect the inflammatory response, which could further

influence the development of stroke, particularly in strokes

triggered by COVID-19 infection (50, 51).Targeted ferroptosis

may serve as a potential therapeutic approach for managing

excessive inflammation induced by coronavirus infection (52).

2.3.2 SARS-CoV-2 helper protein Orf 7b induced
lung injury through ferroptosis

Diffuse alveolar injury (DAD) was a significant pathological

feature observed in autopsy reports of COVID-19 patients,

characterized by extensive cell death and lung injury indicative of

disease exposure (53–56). Previous study investigated Orf 7b

promoted ferroptosis through the upregulation of c-Myc. Researches

had indicated that c-Myc could inhibit ferroptosis, and it was

established that P53 suppressed c-Myc via a histone deacetylation

mechanism (57–59). Thus, Orf 7b-mediated P53 inhibition might

represent a potential mechanism for c-Myc activation, providing a

foundation for future investigations (Figure 1C).

2.3.3 SARS-CoV-2 ORF3a sensitized cells to
ferroptosis via Keap 1-Nrf2 axis

PTGS2 is a biomarker associated with ferroptosis. In lung cells

infected with SARS-CoV-2, the mRNA level of PTGS2 significantly

increased (60)(Figure 1C). In contrast, the transcription levels of

ferroptosis regulatory factors—such as solute carrier family

7member 11 (SLC7A11), ferritin light chain (FTL), ferritin heavy
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chain 1 (FTH1), NAD(P)H quinone dehydrogenase 1 (NQO1),

heme oxygenase-1 (HO-1), and Gpx4—in lung tissue significantly

decreased following SARS-CoV-2 infection. These findings

indicated a substantial association between SARS-CoV-2 infection

and ferroptosis. Among the seven accessory proteins, cells

overexpressing SARS-CoV-2 ORF3a exhibited the highest levels

of lipid ROS induced by RSL3. Both erastin and RSL3 promoted

significant cell death and increased lipid ROS levels. Evaluating

whether ORF3a expression renders cells sensitive to erastin and

RSL3-induced ferroptosis revealed that the inhibition of cell growth

and lipid ROS formation induced by erastin and RSL3 increased

significantly in a dose-dependent manner. This effect could be

completely reversed by iron-induced apoptosis inhibitors (e.g.,

DFO, Fer-1), but not by apoptosis or necrosis inhibitors. These

results indicated that SARS-CoV-2 ORF3a acted as a positive

regulator of ferroptosis in cells.

Research had identified that the Nrf2- ARE pathway regulated

ferroptosis mediated by ORF3a, with the iron-inhibiting gene

driven by Nrf2 being suppressed in SARS-CoV-2 infected cells,

making them more susceptible to ferroptosis. The Keap1- Nrf2 axis

was known to prevent ferroptosis. ORF3a directly bind to Keap1,

enhancing its stability and promoting the interaction between

Keap1 and Nrf2. This interaction facilitated the degradation of

Nrf2, thereby alleviating the inhibition of ferroptosis (Figure 1C).

Notably, knockdown of Keap1 partially rescued lipid ROS levels in

cells overexpressing ORF3a, thus continuing to prevent iron-

induced apoptosis (61). Two types of ferroptosis inhibitors,

troglitazone and rosiglitazone, had been shown to reduce viral

product ion of coronaviruses , including SARS-CoV-2

(62) (Figure 1C).
2.4 Pseudomonas aeruginosa

P. aeruginosa is an obligate aerobic bacterium capable of

infecting any tissue or organ in the human body, particularly

when the immune system is compromised. Following infection of

the respiratory tract, pneumonia may develop, predominantly in

patients with impaired pulmonary immune function, such as those

with cystic fibrosis or those who have undergone tracheal

intubation. In severe cases, the infection could lead to

complications such as heart failure and emphysema. Currently,

pharmacological therapy is the primary treatment approach in

clinical practice, often requiring prolonged duration (63–66).

Recent studies had demonstrated that ferroptosis played a crucial

regulatory role in P. aeruginosa infections. These findings offered

novel insights for the prevention and treatment of P. aeruginosa

infections in the future (67).

2.4.1 Lipid peroxidation induced by P. aeruginosa
leaded to ferroptosis

Dar et al. reported the expression of lipoxygenase (pLoxA) in P.

aeruginosa, the host’s arachidonic acid phosphatidylethanolamine

was oxidized, triggering ferroptosis in human bronchial epithelial

cells (Figure 2A). Idebenone, an effective antioxidant compound
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and inhibitor of TMEM 16A, had been approved for use in treating

Duchenne muscular dystrophy and Leber hereditary optic

neuropathy (68–71). Furthermore, it could mitigate lipid

peroxidation and cell death in the lungs of cystic fibrosis patients.

Additionally, the direct inhibition of P. aeruginosa-induced cell

death in CF lungs and other forms of bacterial pneumonia by a new

generation of ferroptosis (UAMC-3203) inhibitors might

significantly reduce lung inflammation (72) (Figure 2A).

2.4.2 P. aeruginosa enhanced radiation damage
by inducing ferroptosis

It was found that P. aeruginosa significantly exacerbated the

damage caused by TBI, further confirming that the pLoxA-rich

vesicles secreted by P. aeruginosa triggered ferroptosis in epithelial

cells (66). Additionally, selectively targeting pLoxA might represent

a promising therapeutic strategy aimed at reducing the high

mortality rate associated with TBI combined with P. aeruginosa

infection (73, 74).
2.5 Dengue virus

Dengue fever (DF), a global arthropod-borne viral disease, is

caused by infection with the DENV, primarily transmitted through

mosquito bites (75, 76). DENV infection induced a characteristic

pathology in humans, manifesting as vascular system dysfunction.

However, the pathogenesis of DENV remained incompletely

elucidated, as many viruses exploited host responses to facilitate

their own replication (77). Recent studies had indicated a potential

relationship between iron dysregulation and DENV infection (78).

(Figure 2B illustrates the potential relationship between dengue

virus and ferroptosis).

Li et al. identified and validated nine key genes associated with

iron metabolism and DENV infection (HSPA5, CAV1, HRAS,

PTGS2, JUN, IL6, ATF3, XBP1, and CDKN2A). IL-6, PTGS2,

ATF3, and XBP1 were categorized as markers of ferroptosis and

might signify the presence of ferroptosis during DENV infection.

JUN is regarded as a suppressor gene of ferroptosis, while HRAS,

NRAS, ATF3, and CDKN2A were considered driver genes that

might promote ferroptosis. DENV infection had been shown to

increase IL-6 production, which was associated with the

pathogenesis of severe DENV disease. Reports indicated that IL-6,

a pro-inflammatory cytokine, promoted ferroptosis by inducing

cellular ROS-dependent lipid peroxidation and disrupting iron

homeostasis (Figure 2B). These findings suggested that IL-6

played a crucial role in the pathogenesis of DENV infection by

regulating ferroptosis (79–83).

CDKN2A, also known as ARF, stimulated ROS-induced

ferroptosis in a p53-independent manner. Previous researches

suggested that IL-6, ATF3, XBP1, and CDKN2A were closely

associated with iron dysregulation and viral infection, providing a

foundational basis for our hypothesis that these genes may be

involved in the pathogenesis of DENV infection through the

regulation of host cell iron homeostasis. The potential

relationship between ferroptosis and DENV infection was
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elucidated based on a microarray gene expression dataset from a

public database using bioinformatics analysis of an exojunction cell

culture model (78, 84, 85). This finding provided a basis for further

research on the specific regulatory role of ferroptosis in the

pathogenesis of dengue fever and laid the foundation for the

development of new therapeutic strategies.
2.6 Influenza virus

Influenza virus is classified into three types: A, B, and C. The

acute respiratory infection caused by the influenza virus is known as

influenza. Influenza A and B viruses frequently led to seasonal

epidemics, resulting in localized outbreaks, while influenza A

viruses have the potential to cause a global pandemic. Recent

studies had indicated a significant relationship between influenza

virus infection and ferroptosis (86–89).

Influenza virus infection led to excessive accumulation of

intracellular ROS, and the replication of influenza A virus is

influenced by the REDOX(Reduction-Oxidation) state of the host

cell, including GSH level (90). Increasing evidence suggested a
Frontiers in Immunology 06
correlation between the intracellular replication of influenza virus

and cell iron level (91). The influenza virus induced ferroptosis by

accumulating lipid ROS, depleting GSH, and downregulating Gpx4

expression (Figure 2C). Hemagglutinin (HA) induced ferroptosis

via ferritinophagy, leading to lipid peroxidation and impairing the

MAVS (mitochondrial antiviral signaling)-mediated type I

interferon response, ultimately promoting viral replication (92).

Additionally, Lipstatin-1 inhibited the intracellular replication of

the virus, indicating that the replication of influenza viruses is

reliant on cellular iron levels (14, 89–91).
2.7 Herpes simplex virus type 1

HSV-1 is an enveloped double-stranded DNA virus that

belongs to the genus Herpes Simplex virus within the

Herpesviridae family. It is a ubiquitous and highly contagious

pathogen that primarily infects humans. HSV-1 primarily causes

contact infections through the oral or ocular mucosa, can infiltrate

the nervous system, and establishes latent infections via complex

immune evasion mechanisms (14, 93, 94).
FIGURE 2

Overview Diagram of the Role of Ferroptosis Mechanism in Pseudomonas aeruginosa, Dengue Virus, Influenza Virus, and Herpes Simplex Virus 1
Infections. (A) P. aeruginosa triggered ferroptosis in human bronchial epithelial cells through the secretion of lipoxygenase (pLoxA). Inhibitors of
iron-mediated cell death significantly mitigated cellular apoptosis in the lungs affected by cystic fibrosis and in inflammatory responses associated
with bacterial pneumonia. (B) During DENV infection, IL-6, functioning as a pro-inflammatory cytokine, facilitated ferroptosis through the induction
of ROS-mediated lipid peroxidation and the perturbation of iron homeostasis. Furthermore, there was an upregulation of CDKN2A expression in
HepG2 cell lines infected with DENV. (C) The influenza virus impeded its own replication by increasing the accumulation of lipid peroxidation
metabolites and lipid ROS, along with the depletion of intracellular GSH and the downregulation of Gpx4. Lipstatin-1 had the capacity to inhibit the
intracellular propagation of the virus. (D) HSV-1 precipitated ferroptosis in both cellular and organismal models. HSV-1 augmented the KEAP1-
mediated proteasomal degradation of Nrf2, thereby facilitating ferroptosis. The ferroptosis triggered by HSV-1 infection was typified by iron
accumulation, ROS buildup, GSH depletion, lipid peroxidation, and mitochondrial shrinkage. Additionally, ferroptosis induced by HSV-1 plays a
significant role in the development of viral encephalitis in mice. Inhibition of ferroptosis by Fer-1 alleviates this process.
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The study conducted by Xu et al. demonstrated that HSV-1

could induce ferroptosis in both in vitro and in vivo. Specifically,

HSV-1 enhanced KEAP1-dependent Nrf2 degradation, which

contributed to ferroptosis. (Figure 2D illustrates the potential

relationship between HSV-1 infection and ferroptosis.)

Furthermore, exogenous GSH inhibited HSV-1 replication by

interfering with the later stages of the virus lifecycle, without

affecting cellular metabolism (95).

Findings suggested that HSV-1-induced ferroptosis was crucial to

the neuro-pathogenesis of the virus. Evidence showed that HSV-1

infection led to ferroptosis characterized by iron overload, ROS, GSH

depletion, lipid peroxidation, and mitochondrial contraction in

cultured astrocytes, microglial cells, and mouse brains (Figure 2D).

Additionally, HSV-1 infection promoted the ubiquitination and

degradation of KEAP1-dependent Nrf2, resulting in a significant

decrease in the expression levels of downstream anti-iron deposition

genes, thereby disrupting cellular redox homeostasis and promoting

iron accumulation (1, 96).

The interplay between HSV-1 infection and ferroptosis

provided new insights into the physiological impact of ferroptosis

on the pathogenesis of HSV-1 infection and encephalitis

(Figure 2D). Furthermore, the inhibition of ferroptosis showed

promise as a therapeutic strategy against HSV-1-induced

encephalitis , highlighting its potential as an effective

immunotherapy approach for treating HSV-1 infections and

associated encephalitis (97).
3 Conclusion

Ferroptosis is a type of regulated cell death distinct from

apoptosis and necrosis. It is associated with amino acid

metabol ism, iron metabol ism, l ipid metabol ism, and

mitochondrial activity (2). Ferroptosis is implicated in processes

such as inflammation, oxidative stress, and lipid peroxidation.

Additionally, it is associated with vascular diseases, including

Alzheimer’s disease, stroke, and ischemia-reperfusion injury (98).

Numerous studies had demonstrated a close relationship

between ferroptosis and respiratory pathogenic microbial

infection (78, 99–105). Tuberculosis, caused by infection with M.

tuberculosis, remains a significant global public health issue (106).

The current lack of safe and effective adult tuberculosis vaccines, the

need for prolonged and adequate antibiotic treatment, the increase

in global population, and the concentration of populations in

underdeveloped areas have all contributed to the increased

challenges in the prevention and treatment of M. tuberculosis

infection (107, 108). This challenge has spurred significant

interest in developing new strategies to target M. tuberculosis

infection. EBV is the first identified virus associated with cancer.

However, the precise mechanisms by which EBV influences the
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progression of malignancies in related tumors remain unclear,

posing challenges for the prevention and treatment of EBV-

associated cancers (109, 110). SARS-CoV-2 caused a global

pandemic at the end of 2019 (111). Despite the emergence and

administration of multiple vaccines against SARS-CoV-2, infections

continue to occur. Cytokine storms are a significant factor

contributing to mortality in severe cases of SARS-CoV-2 infection

(112, 113). The emergence of multidrug-resistant strains of P.

aeruginosa infections, particularly among ICU patients, presents

significant challenges to treatment (114). Dengue fever is highly

prevalent in tropical and subtropical regions, particularly in Africa,

where mosquito-borne fatalities are common (115). The influenza

A virus has caused numerous global pandemics, resulting in tens of

millions of deaths. Despite the use of vaccines against certain strains

of the virus, its multiple serotypes and rapid mutation rate continue

to pose significant challenges for prevention, control, and treatment

(116, 117). This remains a particularly pressing issue in many

countries, especially Japan. HSV-1 spreads rapidly and has a high

prevalence among humans. In addition to causing oral herpes, it can

lead to severe diseases affecting the central nervous system and

circulatory system, which are significant factors in mortality

(118, 119).Consequently, the investigation of ferroptosis inhibitors

offered new avenues for the treatment of these respiratory infectious

diseases, which was summarized in Table 1.

Inhibiting ferroptosis had emerged as a promising new

direction for the treatment of respiratory diseases, leading to the

development of various ferroptosis inhibitors, such as

deferoxamine, troglitazone, and Rosiglitazone (125–127).

However, despite the promising results of these ferroptosis and

iron-induced apoptosis inhibitors (such as DFO, Fer-1, and

UAMC-3203) in cellular and animal models, they still face certain

challenges in clinical applications (128). For instance, selectivity and

targeting may pose problems, as these inhibitors could affect other

physiological processes, leading to adverse reactions. Additionally,

ferroptosis and iron-induced apoptosis pathways may vary across

different cell types and disease states, limiting the widespread

application of these molecules. Moreover, issues related to drug

stability, solubility, and pharmacokinetics still need to be optimized

to ensure the safety and efficacy of their clinical use.

Given the complexity of the human respiratory microbiome, the

interactions between different microorganisms are intricate, and the

biological effects and mechanisms of various pathogenic

microorganisms differ. The precise relationship between

ferroptosis and the immune system remains inadequately

elucidated. Consequently, the application of ferroptosis in treating

respiratory infectious diseases is still in its nascent stages. Future

research should delve deeper into the relationship between

ferroptosis and the respiratory microbiome to determine whether

ferroptosis affects the survival and pathogenicity of other bacteria or

viruses. It is also essential to identify any infection-specific
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TABLE 1 Ferroptosis mechanisms and therapeutic strategies in respiratory infectious diseases.

Pathogen Mechanism of Ferroptosis Functionality Importance Treatment Methods

Mycobacterium
tuberculosis
(M. tuberculosis)

M. tuberculosis induces macrophage necrotic cell
death by increased intracellular iron,
mitochondrial superoxide, lipid peroxidation, and
regulation of Gpx4/GSH levels.

Ferroptosis enhances pathogenicity,
promotes necrosis, and facilitates
bacterial spread.

Use iron chelators (such as deferoxamine) and
ferroptosis inhibitors (such as Fer-1) to prevent
tissue necrosis, as well as develop agents targeting
Nrf2, PtpA factors, and BACH1 inhibitors. Vitamin
E and selenium can also mitigate ferroptosis and
reduce cell damage through their antioxidant effects.

Epstein–Barr
virus (EBV)

EBV infection activates lipid metabolism and
induces ferroptosis, which may serve as a potential
therapeutic strategy for EBV-associated lymphomas.
It triggers ferroptosis by promoting lipid
peroxidation while simultaneously upregulating
Gpx4 to confer resistance to ferroptosis in
NPC cells.

In the early stages of infection, EBV
induces lipid metabolism and ROS
production, making B cells susceptible
to ferroptosis. In the later stages of
infection, EBV upregulates Gpx4 to
protect NPC cells from ferroptosis.

Dipyridamole (DIP) effectively inhibits EBV
reactivation in B cell lines. Erastin induces
significant cell death by inhibiting SLC7A11, while
ML-210 induces cell death by inhibiting Gpx4.

SARS-COV-2 SARS-CoV-2 induces ferroptosis through multiple
mechanisms, thereby enhancing its pathogenicity.
In sinoatrial node cell lines, infection triggers
ferroptosis. While in ischemic stroke, ACSL4
esterification promotes ferroptosis. The SARS-
CoV-2 Orf 7b protein mediates ferroptosis via c-
Myc, leading to lung injury. Additionally, ORF 3a
sensitizes cells to ferroptosis through the Keap1-
NRF2 axis. ORF 3a stabilizes Keap1, which
promotes NRF2 degradation and relieves the
inhibition of ferroptosis.

SARS-CoV-2 infection induces
ferroptosis in sinoatrial node cells,
damages lung cells through ferroptosis
mechanisms, and exacerbates ischemic
stroke via iron metabolism-
related biomarkers.

Deferiprone is a chelating agent that binds to iron and
is widely utilized in the treatment of iron overload.
Cathepsin L (CTSL) plays a critical role in the entry of
SARS-CoV-2 into host cells, and deferiprone mitigates
viral entry by decreasing the RNA and protein levels
of lysosomal (CTSL). Ferroptosis inhibitors (DFO,
Fer-1) can counteract the effects of SARS-CoV-2
ORF3a, which acts as a positive regulator of ferroptosis
in cells. Ferroptosis inhibitors such as troglitazone and
Rosiglitazone have been shown to reduce viral
production, including that of SARS-CoV-2.

Pseudomonas
aeruginosa
(P. aeruginosa)

P. aeruginosa induces ferroptosis via pLoxA and
TMEM 16F, leading to lipid peroxidation and cell
death in lung epithelial cells.

Ferroptosis exacerbates inflammation
and damages lung tissues, particularly in
cystic fibrosis patients.

Antioxidant compounds such as Idebenone, in
conjunction with next-generation ferroptosis
inhibitors (UAMC-3203), may effectively inhibit cell
death in cystic fibrosis lung cells induced by
Pseudomonas aeruginosa, as well as other forms of
bacterial pneumonia, potentially leading to a
significant reduction in lung inflammation.

Dengue Virus Dengue virus alters iron metabolism, induces
ferroptosis via IL-6 and CDKN2A and disrupts
cellular iron homeostasis.

Ferroptosis promotes severe disease
progression, enhancing vascular
permeability and immune dysregulation.

Targeting IL-6-mediated pathways; modulation of
ferroptosis-related genes.

Influenza Virus Influenza Virus causes intracellular ROS
accumulation and GSH depletion,
triggering ferroptosis.

Ferroptosis impacts viral replication
efficiency and cell survival in
infected tissues.

Inhibitors like Lipstatin-1 to modulate intracellular
iron levels and limit viral replication.

Herpes Simplex
Virus-1 (HSV-1)

HSV-1 infection promotes the ubiquitination and
degradation of KEAP1-dependent Nrf2, leading to
reduced expression of downstream anti-iron
deposition genes, disrupting cellular redox
homeostasis, and promoting iron accumulation.
HSV-1-induced ferroptosis activates the
upregulation of PTGS2 and PGE2, promoting the
development of encephalitis.

Ferroptosis drives neuro-pathogenesis,
leading to encephalitis and other
neurological complications.

Inhibition of ferroptosis to reduce neuropathological
damage; targeting Nrf2 pathways.
Ferroptosis inhibitor Fer-1 significantly reduces
neuropathological damage and brain inflammation
in HSV-1-infected mice.

Aspergillus
fumigatus

The pathogenicity of Aspergillus fumigatus is
contingent upon its ability to acquire iron from
the host and its resistance to oxidative stress
generated by the host, thereby enhancing its
virulence through the action of ROS detoxifying
enzymes (120). Fusarinine C plays a role in spore
iron storage and intracellular iron transport in
Aspergillus fumigatus (121).

The pathogenicity of Aspergillus is
intricately linked to its capacity to
acquire iron and its ability to respond to
oxidative stress, both of which
significantly enhance its survival
and proliferation.

Combining targeted siderophore-mediated iron
uptake with the oxidative stress response network
may synergistically enhance fungal cell death (1, 3).
Further investigation into targeted therapies
addressing oxidative stress responses and iron
metabolism could facilitate the advancement of
antifungal drug development.

Cryptococcus
neoformans

Cryptococcus neoformans can induce ferroptosis by
elevating the levels of ferrous ions and lipid ROS.
During cryptococcal infection in macrophages,
significant lipid peroxidation occurs, resulting in
an increased volume density of dense lipid
droplets within these cells. The induction of
ferroptosis by Cryptococcus is primarily attributed
to the enhanced levels of ferrous ions and lipid
ROS (122–124).

Cryptococcus induces ferroptosis, which
enhances its pathogenicity, particularly
in hosts with compromised immune
systems, such as individuals infected
with HIV. The ferroptosis pathway plays
a crucial role in the host immune
response, and disruptions in classical
metabolic pathways may facilitate the
development of cryptococcal meningitis.

Inhibition of the ferroptosis pathway represents a
promising therapeutic strategy, which may involve
the use of iron chelators and antioxidants to
mitigate lipid peroxidation and ferroptosis.
Treatment approaches could include the
combination of antifungal agents with ferroptosis
inhibitors (122).
F
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ferroptosis markers, thereby providing a more robust theoretical

foundation for utilizing ferroptosis as a novel approach in

preventing and treating respiratory infections.
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