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Introduction: Knee osteoarthritis (KOA) is a degenerative joint disease

characterized by the progressive deterioration of cartilage and synovial

inflammation. A critical mechanism in the pathogenesis of KOA is impaired

efferocytosis in synovial tissue. The present study aimed to identify and validate

key efferocytosis-related genes (EFRGs) in KOA synovial tissue by using

comprehensive bioinformatics and machine learning approaches.

Methods: We integrated three datasets (GSE55235, GSE55457, and GSE12021)

from the Gene Expression Omnibus database to screen differentially expressed

genes (DEGs) associated with efferocytosis and performed weighted gene co-

expression network analysis. Subsequently, we utilized univariate logistic

regression analysis, least absolute shrinkage and selection operator regression,

support vector machine, and random forest algorithms to further refine these

genes. The results were then inputted into multivariate logistic regression analysis

to construct a diagnostic nomogram. Public datasets and quantitative real-time

PCR experiments were employed for validation. Additionally, immune infiltration

analysis was conducted with CIBERSORT using the combined datasets.

Results: Analysis of the intersection between DEGs and EFRGs identified 12 KOA-

related efferocytosis DEGs. Further refinement through machine learning

algorithms and multivariate logistic regression revealed UCP2, CX3CR1, and

CEBPB as hub genes. Immune infiltration analysis demonstrated significant

correlations between immune cell components and the expression levels of

these hub genes. Validation using independent datasets and experimental

approaches confirmed the robustness of these findings.
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Conclusions: This study successfully identified three hub genes (UCP2, CX3CR1,

and CEBPB) with significant expression alterations in KOA, demonstrating high

diagnostic potential and close associations with impaired efferocytosis. These

targets may modulate synovial efferocytosis-related immune processes, offering

novel therapeutic avenues for KOA intervention.
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1 Introduction

Knee osteoarthritis (KOA) is one of the most prevalent

degenerative joint diseases worldwide and affects approximately

530 million people globally (1). With an increase in the world’s

aging population, the prevalence of KOA and its associated

healthcare costs are steadily increasing, thereby substantially

affecting the quality of life of patients with KOA (2). Despite

advances in the understanding of the pathophysiology of KOA,

current diagnostic and therapeutic strategies remain limited and

primarily focus on symptom management rather than on

addressing the underlying pathogenic mechanisms (3).

Traditionally, KOA has been regarded as a degenerative disease

predominantly driven by mechanical stress and characterized by

cartilage degradation and loss. However, recent studies have

revealed the involvement of a critical inflammatory component in

nearly all joint tissues and have implicated complex mechanisms,

such as immune responses, apoptosis, pyroptosis, and metabolic

reprogramming, in KOA development (4, 5). Synovial

inflammation plays a pivotal role in disease progression, and

immune cell dysfunction in the synovium is recognized as a key

mechanism that drives and sustains synovitis, resulting in persistent

cartilage damage and degeneration (6). Understanding the

functional abnormalities of immune cells in the synovium is

crucial for elucidating the pathogenesis of KOA.

Efferocytosis refers to the process by which macrophages, other

immune cells, and non-professional phagocytes, such as epithelial

and endothelial cells, efficiently engulf and clear apoptotic cells (7).

This process mediates alleviation of inflammation and restoration

of t issue homeostasis by reducing the expression of

proinflammatory cytokines and increasing the expression of anti-

inflammatory cytokines such as interleukin (IL)-10 and

transforming growth factor-beta (TGF-b). Efferocytosis plays a

pivotal role in modulating inflammation and maintaining

immune homeostasis, thereby suppressing inflammatory

responses and promoting tissue repair (8, 9). In the synovial

tissue of the knee joint, efferocytosis is mainly performed by

synovial macrophages, which are key immune cells that maintain

tissue homeostasis and prevent inflammation by clearing apoptotic

cells and microdebris (10). Recent studies have demonstrated that
02
the efferocytic function of synovial macrophages is considerably

impaired in KOA patients (11). This dysfunction results in the

inadequate clearance of apoptotic cells, leading to the activation of a

prolonged immune response, chronic synovitis, and progressive

joint degeneration (12). The depletion of synovial macrophages is

also closely associated with pain symptoms in KOA (13). Although

there is currently improved understanding of efferocytosis

dysfunction in KOA, the specific mechanisms of efferocytosis in

synovial tissues and their relationship with KOA-associated

inflammation remain underexplored.

The precise molecular mechanisms linking efferocytosis to

synovitis in KOA are unclear. This highlights the need to further

investigate potential biomarkers and therapeutic targets that could

facilitate the early diagnosis and intervention of KOA, eventually

improving patient outcomes and reducing the societal impact of

this common disease. Hence, the present study aimed to

systematically identify key genes related to efferocytosis and

analyze their relationship with different types of immune cells in

KOA synovial tissues by integrating multiple publicly available

datasets and applying approaches such as bioinformatics,

machine learning methods, and CIBERSORT algorithm. Finally,

three genes were identified as hub genes and confirmed by

experiments. A preliminary diagnostic model was established and

experimentally validated using animal models. This study may shed

light on the relationship between efferocytic dysfunction and OA

inflammatory mechanisms, thereby offering new potential avenues

for future OA diagnosis and targeted therapies.
2 Methods

2.1 Data acquisition and preprocessing

Gene expression profiles of KOA patients and control subjects

were obtained from the Gene Expression Omnibus (GEO) database

(http://www.ncbi.nih.gov/geo). The GSE55235 (14), GSE55457, and

GSE12021 (15) datasets from the GPL96 platform were used as the

training datasets, and the GSE36700 (16), GSE82107 (17), and

GSE77298 (18) datasets from the GPL570 platform were used as

the validation datasets (Table 1). These datasets include synovial
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tissue samples from KOA patients and control subjects. The

extracted data were normalized by log2 transformation. The

microarray data were normalized using the normalize.quantiles

function of the preprocessCore package in R software (version

3.4.1). The raw data were downloaded as MINiML files. The probes

were converted to gene symbols according to the annotation

information of the normalized data in the platform. Probes that

matched multiple genes were removed from the datasets. The

average expression value of the genes measured by multiple

probes was calculated as the final expression value. For the data

obtained from the same dataset and platform but in different

batches, the removeBatchEffect function of the limma package in

R software was used to remove batch effects. For the data obtained

from different datasets or the same dataset but on different

platforms, multiple datasets with common gene symbols were

extracted, and different datasets or platforms were marked as

different batches. The data preprocessing results were assessed

using a boxplot. A principal component analysis (PCA) plot was

generated to display the samples before and after batch effect

removal (Supplementary Figure 1).

2.1.1 Identification of differentially
expressed genes

DEGs between the KOA and control groups were identified

using the limma package in R software (19). To minimize the risk of

overlooking candidate genes and ensure significant differential

changes, we set the following criteria: adjusted P-value < 0.05 and

|log2 fold change| > 0.7. Volcano plots and heatmaps were

generated using “ggplot2” and “pheatmap” packages, respectively,

in R software to visualize the DEGs, which provided a

comprehensive view of the gene expression landscape in KOA.

2.1.2 Enrichment and correlation analysis
Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analysis were

conducted using the “clusterProfiler” package in R software to

elucidate the biological functions and pathways significantly

associated with the DEGs. All the abovementioned procedures

were performed using the online tool available at: https://

www.aclbi.com/. Protein-protein interaction (PPI) networks were

constructed using the STRING database and visualized with

Cytoscape to determine the interactions and correlations among

the DEGs (20, 21).
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2.2 Identification of efferocytosis-
related DEGs

First, the efferocytosis-related genes (EFRGs) were identified

from the GeneCards website (https://www.genecards.org/), a

comprehensive database containing information on known genes

across various species. Next, by using “efferocytosis” as the keyword,

the relevant genes were retrieved from the KEGG database, a

general-purpose bioinformatics resource containing molecular

pathways and genomic information. To expand the selection of

EFRGs, the gene lists from both databases were combined, and a

Venn diagram was generated using the “VennDiagram” (version

1.7.3) package. From the DEGs identified in the GEO dataset, those

related to efferocytosis were filtered out and designated as

EFRDEGs. EFRDEGs were visualized using the “ggplot2” (version

3.4.4) and “ComplexHeatmap” (version 2.13.1) packages in

R software.
2.3 Weighted gene co-expression
network analysis

By using the WGCNA package (version 1.63) in R software,

WGCNA was conducted to construct gene co-expression networks

and identify modules of highly correlated genes. First, the expression

data were transformed to a scale-free network with soft thresholding

power to ensure that the network topology was scale-free and

biologically meaningful. An adjacency matrix was constructed

based on Pearson’s correlation coefficients between gene expression

profiles, and a topological overlap matrix was generated to identify

clusters of genes with similar expression patterns.

Modules of the co-expressed genes were identified through

hierarchical clustering using the average linkage method. Each

module was assigned a distinct color for visualization. The

correlation between module eigengenes (the first principal

component of the genes in a module) and the trait of interest

(KOA or healthy status) was determined to identify modules

significantly associated with the disease phenotype. Modules

showing significant correlations were considered for further

analysis. In the identified modules, genes were ranked based on

their module membership (MM) and trait gene significance (GS). In

the absence of specific criteria, MM > 0.7 and GS > 0.3 were selected

as the thresholds for hub genes, indicating their central role within
TABLE 1 Details of the datasets.

Type Platform Title OA Samples Control Samples

Training datasets GPL96

GSE55235 10 10

GSE55457 10 10

GSE12021 10 9

Validation datasets GPL570

GSE36700 5 0

GSE82107 10 7

GSE77298 0 7
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the module and significant association with the disease phenotype.

The chromosomal locations of KOA-related EFRDEGs (KOA-

EFRDEGs) were illustrated using the “circlize” (version 0.4.15)

package. The online tool ImageGP (http://www.ehbio.com/

ImageGP/) was used for visualizing the results of WGCNA (22).
2.4 Construction of PPI and transcription
factor networks of KOA-EFRDEGs

PPI and TF networks were constructed and analyzed to identify

key regulatory hubs and their potential roles in KOA pathogenesis.

The STRING database (version 12.0) was used to construct a PPI

network. The network was visualized using Cytoscape (version

3.10.2), and interactions with a combined score of >0.7 were

considered significant, which ensured the reliability of the

interactions. Network topology parameters, such as degree,

betweenness, and closeness centrality, were calculated to identify

hub genes. The “cytoHubba” plugin in Cytoscape was used to

prioritize the most influential genes in the network based on their

network connectivity. Potential TFs regulating the DEGs were

predicted using the ChEA3 database (https://maayanlab.cloud/

chea3/), a comprehensive resource for TF–target gene

interactions. TFs and their target genes were integrated into the

PPI network to construct a comprehensive regulatory network. This

integration was performed using Cytoscape, which enabled

visualization of both TF gene regulatory relationships and gene–

gene interactions.
2.5 Diagnostic model construction
and validation

2.5.1 Logistic regression analysis
Univariate logistic regression analysis was initially conducted to

screen for DEGs among the 12 EFRDEGs showing significant

association with diagnostic outcomes (P < 0.05). These genes

were subsequently subjected to receiver operating characteristic

(ROC) analysis. An area under the ROC curve (AUC) value of

>0.5 indicated that the tests or models possessed a certain diagnostic

value. Only EFRDEGs with an AUC value of >0.75 were retained for

further analysis.

2.5.2 Machine learning-based gene selection
Three machine learning algorithms were used for gene selection

on the basis of their robustness and effectiveness in feature selection.

The least absolute shrinkage and selection operator (LASSO)

regression is effective in reducing model complexity by shrinking

some coefficients to zero, thus facilitating feature selection. The

“glmnet” (version 4.1.7) package in R software was used for

performing LASSO regression. Subsequently, we used support

vector machine-recursive feature elimination (SVM-RFE), a robust

classifier that can iteratively remove the least important features. The

“e1071” (version 1.7.13) package in R software was utilized to

perform SVM-RFE. Random forest (RF), which provides an

estimate of feature importance, was used for classification and
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regression. The “randomForest” (version 4.7.1.1) package in R

software was utilized to rank the genes according to their

importance in the classification of KOA samples. Each algorithm

was applied to the integrated gene expression dataset. Five-fold cross-

validation was used to evaluate the performance of the models.

Genes were selected according to their significance in the

model. For the LASSO regression analysis, genes with non-zero

coefficients were selected. For SVM-RFE, genes that contributed to

the highest accuracy in the reduced feature set were chosen. For RF,

genes with a relative importance score above the threshold (set at

the 75th percentile of importance scores) were considered. The

genes selected by the three algorithms were intersected to obtain a

consensus set of the key genes. This intersection ensured that the

selected genes are robust and consistently identified as important

across the different machine learning methods.
2.6 Construction and validation of
the nomogram

The intersection of genes selected by the aforementioned

methods provided a consensus list of key genes. The “rms”

(version 6.4.0) package in R software was utilized to construct the

nomogram. Each hub gene was assigned a regression coefficient

based on its association with KOA, as determined by multivariate

logistic regression analysis. These coefficients were used to calculate

the risk score for each gene. The nomogram graphically represented

the risk score, facilitating easy interpretation of an individual’s

probability of developing KOA.

The predictive accuracy of the nomogram was validated with a

separate validation dataset. The AUC value was calculated to assess

the discriminative ability of the nomogram. Decision curve analysis

(DCA) was performed to evaluate the clinical utility of the

nomogram; this analysis provides a measure of the net benefit of

using the nomogram to guide patient management decisions. The

net benefit was plotted against the threshold probability for various

levels of risk tolerance. The curves were generated using the “rmda”

(version 1.6) package in R software. The nomogram was calibrated

by comparing the predicted probabilities with the observed

outcomes in the validation dataset. A calibration plot was

generated, and the calibration slope was calculated to determine

the extent of match between nomogram predictions and the

actual observations.
2.7 Immune infiltration analysis

CIBERSORT, a widely used algorithm for deconvoluting

complex tissue expression data into constituent cell types, was

used to analyze the immune cell infiltration in the combined

datasets (23). This algorithm is based on the principle of linear

support vector regression and utilizes a database of gene expression

signatures from pure cell populations to estimate the proportion of

each cell type in the mixed tissue sample. The preprocessed gene

expression matrix was uploaded to the CIBERSORTX web portal

(https://cibersortx.stanford.edu/). The algorithm was configured to
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use the default LM22 gene signature matrix, which includes

signatures for 22 distinct immune cell types. CIBERSORT

estimates the relative abundance of each immune cell type in the

tissue samples based on the expression of the characteristic genes of

the analyzed immune cell. The output of the algorithm is a matrix of

cell type abundance estimates for each sample.

The results of the CIBERSORT analysis were visualized using the

“ggplot2” (3.4.4) package in R software. Violin plots were generated

to display the distribution of immune cell abundance estimates across

the samples, and box plots were used to compare the median

abundance of each cell type between the KOA and control groups.

To determine the relationships between the abundance of different

immune cell types and the expression of hub genes identified in the

study, Spearman’s rank correlation coefficients were calculated. A

heatmap was generated to visualize these correlations, and significant

correlations (P < 0.05) were highlighted.

The differences in immune cell infiltration between KOA and

control samples were assessed using Wilcoxon rank-sum test, a

nonparametric test suitable for comparing two independent

samples. A P-value of <0.05 was considered statistically significant.
2.8 Animal experiments

2.8.1 Surgical procedure
All animal experiments were approved by the Ethics Committee of

the University of South China (No. USC2024D5026). We established

the anterior cruciate ligament transection (ACLT) rat model by using

the methods described in previously published studies (24). Three-

week-old rats were selected for the study; the experimental group

underwent ACLT surgery, and the control group received the same

surgical procedure, except for ligament transection. In this experiment,

isoflurane was used for rat anesthesia. The rats were placed on a

dedicated anesthesia platform, and a mask was used to administer the

anesthetic gas. Isoflurane was delivered through inhalation, with an

induction concentration set at 5%. Once the rats lost reflexes and

exhibited signs of anesthesia, the concentration was reduced to 1.5–2%

for maintenance. All procedures were conducted in a temperature-

controlled environment to maintain the body temperature stability of

rats. Twelve weeks post-surgery, synovial tissue samples were collected

from the knee joints of both groups. Six samples were collected from

different rats in each group. After samples were collected, all rats were

euthanized with an intraperitoneal injection of 10 mg/mL

pentobarbital sodium (200 mg/kg).
2.8.2 Enzyme-linked immunosorbent assay
To confirm the development of inflammation in the model

group, ELISA was performed using tumor necrosis factor-alpha

(TNF-a) (Cat. No. CSB-E11987r; Cusabio, Wuhan, China) and IL-

1b (Cat. No. JL20884; JONLNBIO, Shanghai, China) kits in

accordance with the manufacturers’ instructions for reagent

preparation. Briefly, reagents were equilibrated at room

temperature (18–25°C) for at least 30 min. For the assay, 100 μL of

the standard or sample was added to each well, mixed gently, and
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incubated at 37°C for 2 h. After incubation, the liquid was discarded,

and the plate was dried without washing. Next, 100 μL of biotinylated

antibody solution was added, followed by 1 h incubation at 37°C.

After discarding the liquid, the plate was washed three times. Next,

100 μL of enzyme-conjugated streptavidin solution was added, and

the plate was incubated for 1 h at 37°C. Following five washes, 90 μL

of substrate solution was added to each well and incubated in the dark

for 15–30 min. Finally, 50 μL of stop solution was added to terminate

the reaction, and the absorbance was measured at 450 nm within 5

min by using a microplate reader.

2.8.3 Immunohistochemical analysis
The entire knee joint of ACLT and Sham rats (n = 3) was

sectioned and deparaffinized. The sections were then immersed in

citrate buffer (pH 6.0) for antigen retrieval. After cooling, the

sections were washed to complete heat-induced antigen epitope

retrieval. To block endogenous peroxidase activity, the sections

were treated with 1% hydrogen peroxide at room temperature for

15 min, followed by washing with PBS. The sections were then

incubated overnight at 4°C with appropriately diluted primary

antibodies (MerTK, Cat. No. 27900-1-AP; PTG). After washing,

the sections were incubated with secondary antibodies (Cat. No.

AWI0629; Abiowell, Changsha, China) for 30 min, followed by

washing with PBS. The sections were then incubated with a DAB

working solution at room temperature, followed by washing with

distilled water. Hematoxylin counterstaining was performed, and

the sections were subsequently dehydrated and mounted. Images

were captured using Slideviewer (version 2.6) and analyzed

quantitatively using ImageJ software (version 2.14).

2.8.4 Quantitative real-time PCR
Synovial tissues were extracted from ACLT rats and Sham rats,

and qRT-PCR was performed to confirm the expression of the three

key genes. We also tested the “eat me” ligand milk fat globulin

protein E8 (MFG-E8) and receptor MER tyrosine kinase (MerTK),

both of which are key factors of efferocytosis. Total RNA was

extracted using TRIzol (Cat. No. 15596026, Thermo Fisher) by the

chloroform-isopropanol method, and cDNA was transcribed and

synthesized using a reverse transcription kit (Cat. No. CW2569;

CWbio, Beijing, China). SYBR Green PCR Master Mix (Cat. No.

CW2601, CWbio) was used for qRT-PCR experiments. Primer

sequences are shown in Supplementary Table 1.
2.9 Statistical analysis

Except for the identification of DEGs, all statistical analyses were

performed using R software (version 4.2.1). GraphPad Prism (version

10.2.1) was used for plotting logistic regression analysis results and

ROC curves as well as for constructing correlation plots and boxplots

after CIBERSORT analysis. Wilcoxon rank-sum test and Spearman’s

correlation analysis were utilized for determining significant

differences in gene expression and immune cell infiltration. A two-

tailed P-value of <0.05 was considered statistically significant.
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3 Results

3.1 Workflow

The workflow of this study is shown in Figure 1.
3.2 Data preprocessing, differential gene
expression analysis, and GO/KEGG
enrichment analysis

In the training datasets, 30 and 29 samples were included in the

KOA and control groups, respectively. The batch effect removal results

and the PCA results before and after batch effect elimination for the

three datasets are shown in Supplementary Figure 1. A total of 1110
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DEGs were identified, with 545 upregulated and 565 downregulated

genes, respectively, as shown in the volcano plot (Figure 2A). The

clustering heatmap results are shown in Figure 2B.

GO enrichment analysis showed that the top 5 enriched terms

of the upregulated genes in biological process (BP) were mainly

involved in leukocyte-mediated immunity, leukocyte proliferation,

leukocyte chemotaxis, myeloid leukocyte migration, and positive

regulation of T cell activation. The top 5 enriched terms of

downregulated genes in BP were mainly regulation of vasculature

development, regulation of angiogenesis, fat cell differentiation,

positive regulation of angiogenesis, and cellular response to

interleukin-1. The abovementioned results and top 5 terms

enriched in cellular components (CC) and molecular functions

(MF) as well as KEGG pathway enrichment analysis results are

shown in Figures 2C and D.
FIGURE 1

Flowchart of the study.
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3.3 Acquisition of EFRGs

A total of 149 EFRGs were retrieved from the GeneCards

database, and 131 genes were obtained from the KEGG database.

Commonly utilized symbols were appended to specific molecules to

ensure comprehensive inclusion of the relevant genes during the

intersection process. The combination of these two lists yielded 305

EFRGs (detailed gene information is provided in Supplementary

Table 2). The 1110 DEGs identified previously were intersected with

305 EFRGs, thereby yielding 26 EFRDEGs. Of these, 15 and 11

genes were upregulated and downregulated in the KOA group

(Figures 3A, B). The results were visualized through a volcano

plot (Figure 3C) and a heatmap (Figure 3D).
Frontiers in Immunology 07
3.4 Weighted gene co-expression network
construction and filtering of KOA-EFRDEGs

The WGCNA package in R software was used for all 59 samples

in the clustering analysis. Boxplots and violin plots were utilized to

visualize the abundance distribution of the samples (Supplementary

Figure 2). To filter genes with lower variability, the top 70% of genes

based on their maximum mean absolute deviation were selected;

this process yielded 8862 genes for constructing the co-expression

network. The optimal soft thresholding power for constructing a

scale-free network was 14 (R² = 0.85) (Figure 4A). Clustering

analysis was subsequently performed to identify and divide the

highly correlated gene modules, with the minimum module size set
FIGURE 2

(A) Volcano plot of the combined training datasets. (B) Heatmap of the differentially expressed genes (DEGs). (C) The top five GO and KEGG
enrichment results of the upregulated DEGs. (D) The top five GO and KEGG enrichment results of the downregulated DEGs.
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to 200. The initial and merged modules are presented as a clustering

dendrogram in Figure 4B. By utilizing the dynamic hybrid cutting

approach, eight gene modules were obtained for further analysis

(Figure 4C). The modules exhibiting the most significant

correlation with KOA were green (716 genes), blue (994 genes),

turquoise (1232 genes), yellow (770 genes), and red (688 genes)

(Figures 4D–H). The complete module details are provided in

Supplementary Table 3. To ensure comprehensive inclusion of

key genes, those with cor.MM > 0.7 and |cor.GS| > 0.3 in these

modules were designated as hub genes. These hub genes were

intersected with EFRDEGs, which yielded 9 KOA-EFRDEGs for

further screening.
3.5 PPI and TF interaction
network construction

A PPI analysis of the 9 KOA-EFRDEGs was initially conducted

with the STRING database, which excluded the PHACTR1 gene due

to the absence of interactions with other nodes. Subsequently, TFs for

the 8 KOA-EFRDEGs were predicted using the ChEA3 database,

which yielded 1632 results. Sixteen efferocytosis-related TFs were

identified through the intersection of these TFs with the EFRGs, and

CEBPB, which overlapped with the key genes, was excluded. The
Frontiers in Immunology 08
remaining 24 TFs were analyzed using the STRING database, and the

results were visualized using Cytoscape software, as illustrated in the

molecular interaction network diagram (Figure 5).
3.6 Selection of diagnostic biomarkers
related to efferocytosis in KOA

3.6.1 Regression analysis
To further identify the key genes with diagnostic significance

among the EFRDEGs, we initially conducted a univariate logistic

regression analysis and generated ROC curves for the 9 EFRDEGs.

Based on the AUC value of >0.75 as the threshold value, 8 genes,

excluding APOE, were selected for the subsequent analysis. The

ROC curves for these 8 genes are shown in Figures 6A–H, and

Figures 6I and J display boxplots illustrating their expression levels

and their chromosomal locations, respectively.

3.6.2 Machine learning-based screening of hub
KOA-EFRDEGs

To further screen the nine candidate hub genes identified in the

previous section, we used three machine learning algorithms: LASSO

regression, SVM, and RF. LASSO regression analysis with a minimum

l value of 0.00011889 identified 6 non-zero coefficient genes: UCP2,
FIGURE 3

(A, B) Venn diagram of upregulated and downregulated genes and efferocytosis-related genes (EFRGs). (C) Volcano plot of efferocytosis-related
DEGs (EFRDEGs). (D) Heatmap of EFRDEGs.
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CEBPB, LIPA, PHACTR1, CX3CR1, and NCF1 (Figures 7A, B). DCA

demonstrated that SVM analysis achieved the highest accuracy

(93.03%) with the inclusion of 7 genes, except NCF1 (Figure 7C).

RF analysis identified eight key coefficients using the top 75% of mean
Frontiers in Immunology 09
decrease accuracy as the cutoff, which included CX3CR1, CEBPB,

PTGS2, PHACTR1, TREM2, andUCP2 (Figure 7D). By combining the

results of all three algorithms, four key genes were selected: UCP2,

CEBPB, PHACTR1, and CX3CR1 (Supplementary Table 4).
FIGURE 4

(A) The optimal soft thresholding power was 14 (R2 = 0.85). (B) Cluster dendrogram of the top 70% of genes; each branch of the graph represents a
gene, and each color below represents a co-expression module. (C) Module–trait relationships; the minimal size of each module is 200 genes.
(D–H) Scatterplot of correlations between gene significance (GS) and module membership (MM) in all modules with a significant correlation.
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3.7 Diagnostic prediction model
construction and validation

These four genes were incorporated into a multivariate logistic

regression model, and UCP2, CEBPB, and CX3CR1, which met the

threshold of P < 0.05, were finally identified as hub KOA-EFRDEGs

and were included in the regression model (Table 2). We developed

a nomogram diagnostic model for KOA based on the three hub

KOA-EFRDEGs (Figure 8A). The nomogram integrated the

expression levels of two genes, with each gene assigned a score

proportional to its regression coefficient derived from the

multivariate logistic regression analysis. The total score was

calculated by summing the individual scores of each gene, which

provided an overall risk estimate for KOA. The DCA curve

(Figure 8B) indicated that the curves for individual genes and the

overall model, derived from linear predictors, were higher than the

high-risk threshold curve, thus demonstrating the high accuracy

and clinical relevance of the nomogram model. The Hosmer-

Lemeshow goodness-of-fit test performed with 500 resamples

showed that the calibration curves in both training and test

cohorts (Figure 8C) were close to the reference line, with a P-

value of 0.98, which indicated no significant difference between the

predicted and observed values and good model fit. The AUC value

of the nomogram model was 0.96 (95% CI: 0.92–1.00) (Figure 8D),

indicating high feasibility for diagnosing KOA.

Subsequently, the validation cohort from the datasets of

GPL570 platform yielded an AUC value of 0.71 (95% CI: 0.52–
Frontiers in Immunology 10
0.89) (Figure 8E). These findings suggest that the diagnostic model

demonstrated high efficacy in differentiating between KOA patients

and normal individuals.
3.8 CIBERSORT immune infiltration
analysis results

By using 29 samples from healthy individuals and 30 samples

from KOA patients in the validation cohort, the relative abundance

of various immune cell subtypes was estimated using the

CIBERSORT algorithm. The results are shown in Figure 9A. The

abundance of CD4 memory resting T cells (P = 0.0005), monocytes

(P = 0.0107), activated mast cells (P < 0.0001), and eosinophils (P =

0.0211) was significantly higher in KOA patients than in the healthy

control group. Conversely, the abundance of memory B cells (P =

0.0047), regulatory T cells (Tregs) (P = 0.0123), resting dendritic

cells (P = 0.0181), and resting mast cells (P < 0.0001) was relatively

lower in KOA patients, as shown in the bar plot in Figure 9B.

Subsequently, we determined correlations between the different

immune cell types (Figure 9C) as well as correlations between the

hub genes and various immune cell types, along with their P-

values (Figure 9D).

The results indicated significant correlations between the three

hub genes and the changes in the abundance of the eight immune

cell types. Notably, UCP2 exhibited significant correlations with

seven immune cell types, with the most prominent correlations
FIGURE 5

PPI network of the EFRDEGs and their possible TFs predicted by the ChEA3 database. The size of a knot depends on the number of its edges.
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observed with T cells CD4 memory resting (r = -0.51, P < 0.0001)

and macrophages M2 (r = 0.43, P = 0.0008). CX3CR1 expression

was significantly correlated with nine immune cell types, and the

strongest correlation was observed with mast cells resting (r = 0.50,

P < 0.0001), mast cells activated (r = -0.44, P = 0.0005), and

eosinophils (r = -0.43, P < 0.0008). Similarly, CEBPB expression

exhibited significant correlations with nine immune cell types, and

the most significant correlations were found with the proportion of

T cells CD4 memory resting (r = 0.54, P < 0.0001), mast cells resting

(r = -0.52, P < 0.0001), and mast cells activated (r = 0.49, P <

0.0001). Furthermore, T cells CD4 memory resting, Tregs, resting

NK cells, activated mast cells, and eosinophils demonstrated

significant correlations with the three hub genes.
Frontiers in Immunology 11
3.9 Resource identification initiative

The results of HE staining of knee joint tissue sections from the

ACLT and Sham groups confirmed the successful establishment of

the KOA model. The ACLT group exhibited increased synovial

tissue fibrosis, enhanced synovial tissue density, and a reduced gap

between the synovium and cartilage (Figure 10A). ELISA results

indicated that the levels of TNF-a and IL-1b in the peripheral blood

of ACLT rats were significantly elevated (Figure 10B), which

confirmed the reliability of the inflammatory model. IHC analysis

and qRT-PCR results for MerTK demonstrated a reduction in its

expression in the synovial tissue of ACLT rats (Figures 10C, D).

Similarly, qRT-PCR analysis of MFG-E8 showed a comparable
FIGURE 6

(A–H) Receiver operating characteristic (ROC) curves of 8 EFRDEGs selected from 12 EFRDEGs based on the criterion of AUC > 0.75. (I) Expression
profiles of these 8 EFRDEGs in the validation dataset on the GPL570 platform. (J) Chromosomal location of the 8 genes. * indicates statistically
significant differences between groups.
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trend, suggesting a decline in efferocytosis levels within the

synovium with the progression of arthritis. Additionally,

regarding diagnostic key genes, qRT-PCR results indicated that

UCP2 and CX3CR1 expression levels were significantly decreased in

the synovial tissues of ACLT rats (P < 0.01), while CEBPB exhibited

an opposite trend (Figure 10E); this finding was consistent with the

expression patterns of hub genes observed in the training set.
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4 Discussion

KOA is a classical chronic degenerative disease characterized by

cartilage wear and degeneration. Traditionally, KOA has been

considered a non-inflammatory condition and is often used as a

control group in clinical studies on inflammatory arthritis (6).

However, in recent years, the inflammatory features of KOA have
FIGURE 7

(A) EFRDEGs were screened using the LASSO algorithm. (B) The coefficient path of the key genes included in the LASSO algorithm. (C) SVM-RFE was
used to screen the key genes. (D) RF plots were used to rank the importance of the included EFRDEGs.
TABLE 2 Related parameters of multivariate logistics regression analysis.

Characteristics Total (N)
Univariate analysis Multivariate analysis

Odds Ratio (95% CI) P value Odds Ratio (95% CI) P value

CEBPB 59 76.548 (9.304 – 629.788) < 0.001 24.929 (0.615 – 1010.140) 0.089

CX3CR1 59 0.102 (0.032 – 0.328) < 0.001 0.133 (0.019 – 0.916) 0.040

UCP2 59 0.050 (0.011 – 0.228) < 0.001 0.069 (0.003 – 1.797) 0.108
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received increasing attention; this is because inflammation is not

merely an accompanying symptom, but it is also one of the key

driving factors of the disease. Inflammation in KOA involves nearly

all intra-articular tissues, with chronic, low-grade synovitis persisting

throughout the disease course (25). This persistent inflammatory

state has been reported to be associated with impaired efferocytosis.

Synovial macrophages in KOA patients exhibit reduced efferocytotic

activity, and blood-derived macrophages exposed to the synovial fluid
Frontiers in Immunology 13
of KOA patients display defects in this process (11). Moreover,

studies utilizing local hydrogel microspheres have demonstrated

that restoring in situ efferocytosis in cartilage tissue alleviates

inflammatory progression (26). Nevertheless, the specific molecular

mechanisms underlying the impairment of efferocytosis in KOA

remain incompletely understood, particularly in synovial tissues.

The present study re-analyzed publicly available transcriptomic

datasets of synovial tissues from KOA patients and control subjects,
FIGURE 8

(A) Nomogram of 3 hub genes by using multiple logistic regression analysis. (B) Decision curve analysis (DCA) for the nomogram. (C) Calibration
curves of the 3 genes. (D) ROC curve of the nomogram of 3 hub genes in the training set. (E) ROC curve of the nomogram of 3 hub genes in the
validation set (GPL570 platform).
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with an aim to comprehensively and accurately identify

efferocytosis-related targets affected in KOA synovial tissue. We

analyzed 3 different GEO datasets in combination with an online

database to identify EFRDEGs. WGCNA and machine learning
Frontiers in Immunology 14
algorithms were further used to filter these EFRDEGs. Finally, we

identified three key KOA predictive genes, namely UCP2, CX3CR1,

and CEBPB, which are highly relevant to efferocytosis mechanisms,

and changes in their expression levels were confirmed by qRT-PCR
FIGURE 9

(A) Results of the CIBERSORT algorithm showing the proportions of 22 different immune cell types in all 59 samples. (B) Violin plot displaying the
overall proportions of 22 immune cell types in the training dataset. (C) Correlation matrix illustrating the relationships between each immune cell
type and all other immune cell types. (D) Correlations between the expression levels of 3 hub genes and the proportions of 22 immune cell types in
the training dataset. * = p < 0.05, ** = p < 0.01, *** = p < 0.001.
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of ACLT rat synovial tissues. These hub genes exhibited strong

diagnostic performance, with high reliability and practicality

validated through public datasets. Recognizing the complexity of

immune regulation involved in efferocytosis and the importance of

immune response in osteoarthritis treatment (27), we conducted

immune infiltration analysis by using the CIBERSORT algorithm.

These findings offered novel insights for precise KOA interventions

targeting efferocytosis pathways in synovial tissues, revealed

compositional changes in immune cell populations within the

synovial tissue of KOA patients, and highlighted the associations

of these cell populations with the identified key genes.
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Uncoupling Protein 2 (UCP2) is an uncoupling protein

primarily involved in mitochondrial energy metabolism, with

varying expression patterns across different diseases and context-

dependent effects, such as inflammation. Under physiological

conditions, UCP2 regulates mitochondrial membrane potential

through a “mild uncoupling” mechanism, thereby reducing

reactive oxygen species (ROS) production and mitigating

oxidative stress (28). Tchetina et al. demonstrated a significant

increase in UCP2 expression in peripheral blood, which correlated

with pain in KOA patients undergoing total knee replacement. This

may be due to the synergistic activation and enhancement of
FIGURE 10

(A) HE staining results of joint tissue sections from the ACLT and Sham groups. Scale bar: 1 mm (5×). (B) ELISA results of TNF-a and IL-1b in
peripheral blood from the ACLT and Sham groups. (C, D) IHC image of MerTK and its OD value of the two groups. Scale bar: 1 mm (5×) (left),
0.2 mm (10×) (right). (E) qRT-PCR results of MerTK, MFG-E8, and three hub genes. ** = p < 0.01, **** = p < 0.0001.
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expression of AMP-activated protein kinase (AMPK) by an

excessive amount of UCP2, leading to increased cellular energy

demand. Simultaneously, the reduced affinity of UCP2 for purine

nucleotides compromises energy metabolism efficiency, leading to

increased pain sensitivity (29). UCP2 is also implicated in the

regulation of efferocytosis through these mechanisms. By

reducing mitochondrial ROS production, UCP2 controls

macrophage activation. Furthermore, its role in lowering

mitochondrial membrane potential enables macrophages to

continuously engulf apoptotic cells without becoming overloaded

(30). The present study confirmed the upregulation of UCP2

expression in the synovium of inflammatory rat models and

identified the UCP2 gene as a key parameter for diagnostic

prediction. The aforementioned results provide insights into the

molecular mechanisms linking this gene to KOA and efferocytosis,

highlighting the potential of targeting UCP2 as a novel therapeutic

approach for KOA and related immune-mediated diseases. Future

investigations should focus on evaluating the impact of gene

expression modulation on disease progression and identifying the

most effective therapeutic strategies. One study employed

macrophage corpses as drug delivery vehicles to activate AMPK

and indirectly upregulate UCP2 for the treatment of rheumatoid

arthritis (31), a strategy that may also be applicable to KOA.

CX3-C motif chemokine receptor 1 (CX3CR1) is a chemokine

receptor typically expressed on the surface of various immune cells,

including macrophages. During efferocytosis, CX3CR1 acts as a

“find me” signal. The expression of its ligand, the chemokine

CX3CL1, is markedly upregulated in apoptotic cells during the

degenerative phases of KOA. Through the chemokine-receptor

signaling axis, CX3CL1 activates signaling pathways such as c-

Raf, MEK, ERK, and NF-kB, thereby promoting inflammation and

the expression of apoptotic factors such as matrix metalloproteinase

(MMP)-3 (32). Following cellular apoptosis, the expression of

CX3CR1 on the surface of synovial macrophages and monocytes

is elevated. Simultaneously, membrane-bound CX3CL1 is cleaved

into its soluble form, which induces the recruitment of CX3CR1-

expressing immune cells, including mast cells, to the site of

apoptotic cells (33, 34). The observed expression trends of

CX3CR1 in the present study are consistent with these findings.

Notably, although CX3CR1 expression increases in the OA group, it

does not function as an inflammatory factor. In contrast, its

upregulation is crucial for promoting efferocytosis. It cooperates

with efferocytotic opsonins such as MFG-E8 and Gas6 to facilitate

the recognition and contact between macrophages and apoptotic

cells, further inducing phagocytosis (35). The reactive increase in

the CX3CR1 level may represent a physiological anti-inflammatory

feedback mechanism, supporting efferocytosis in a ligand-receptor-

dependent manner to a certain extent (36). In terms of therapy,

although this molecule, as a chemokine receptor, has been shown to

be strongly associated with KOA, targeting it may impact multiple

phenotypes simultaneously. In addition to efferocytosis and

macrophage polarization, CX3CR1 also regulates chondrocyte

proliferation and apoptosis (37) as well as fibroblast necroptosis

(33). This complexity makes developing targeted therapies

challenging, as interventions may lead to unpredictable effects on

other pathways. Currently, drug research targeting CX3CR1
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through various mechanisms remains at the mechanistic stage,

with substantial potential for further investigation.

Interestingly, immune infiltration analysis revealed a significant

negative correlation between CX3CR1 expression and the

proportion of activated mast cells. Additionally, the proportion of

activated mast cells was significantly lower in the KOA group than

in control subjects. This may be attributed to the lower degree of

synovial inflammation in KOA, where the concentration of

inflammatory factors is insufficient to stimulate substantial mast

cell activation. Chronic depletion of mast cells might also contribute

to this phenomenon. Furthermore, a review of publicly available

clinical datasets provided additional insights. In the GSE55235 and

GSE55457 datasets, 16 of 26 KOA patients and 1 of 20 control

subjects reported the use of nonsteroidal anti-inflammatory drugs

(NSAIDs), with 20 samples included in the final analysis for each

group (14). Similarly, in the GSE12021 dataset, 4 of 10 KOA

patients used NSAIDs, while none of the 10 control subjects used

medications (15). NSAID use suppresses the activation of immune

cells, including mast cells, thereby reducing the production of

inflammatory mediators, which is one of the mechanisms

underlying their analgesic effects (29). However, the results of

immune infiltration analysis suggest that this suppression may

also partially inhibit normal immune functions.

CCAAT enhancer binding protein b (CEBPB) is a classical

transcription factor involved in the regulation of immune and

inflammatory response-related gene expression. It can modulate

the production of multiple inflammatory cytokines, including IL-6,

TNF-a, and IL-1b, and activate signaling pathways such as nuclear

factor-kB (NF-kB), Janus kinase/signal transducers and activators

of transcription 3 (JAK/STAT3) pathway, and the mitogen-

activated protein kinase (MAPK), thereby amplifying

inflammatory responses (38, 39). In KOA, CEBPB synergizes with

the transcription factor RUNX2 to upregulate the expression of

MMP-3 and MMP-13, thereby promoting cartilage hypertrophy

and degradation (40). However, a limited number of studies have

investigated the role of CEBPB in synovial tissues of KOA patients.

Song et al. identified potential shared mechanisms between type 2

diabetes and KOA, which highlighted the role of CEBPB as a critical

gene in both diseases. This aligns with our findings, as CEBPB

expression was significantly lower in the KOA group than in the

healthy control group (41). The effect of CEBPB on efferocytosis is

time- and context-dependent. In late or chronic stages of

inflammation, it exhibits anti-inflammatory properties by

regulating the activation of macrophages (40), thereby potentially

promoting efferocytosis through this mechanism. In the datasets

included in this study, the average disease duration for KOA

patients ranged from 6.2 to 7 years. The downregulation or

depletion of CEBPB in this context may contribute to impaired

efferocytosis and prolonged infiltration of inflammatory cells in

synovial tissues. Immune infiltration analysis revealed a significant

negative correlation between CEBPB expression and the proportion

of M2 macrophages. Beyond the substantial variability caused by

the dramatic shifts in the proportion of activated mast cells, this

could also indicate a potential negative feedback regulatory

mechanism between CEBPB expression and M2 polarization,

warranting further investigation in future studies. Therapeutically,
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approaches targeting CEBPB function have been explored in other

immune-inflammatory diseases, such as spontaneous hepatitis (42)

and Alzheimer’s disease (43). These studies have validated the

impact of targeting this molecule through compounds or gene

editing. However, research focusing on CEBPB as a therapeutic

target for KOA remains limited, representing a valuable avenue for

future investigations. Subsequent studies could target its gene

transcription or protein function to assess both efficacy and safety

in KOA treatment.

In addition to the relationships among the aforementioned key

genes, the immune infiltration analysis yielded further intriguing

results. The immune cell infiltration data obtained from

CIBERSORT were integrated with the findings of gene expression

analysis and machine learning-based gene selection to provide a

comprehensive perspective on the immune landscape in KOA. This

integration enhanced our understanding of the roles played by

specific immune cells in KOA pathogenesis and their potential as

therapeutic targets. The results indicated that M2 macrophages,

resting mast cells, and resting memory CD4 T cells had the highest

proportions, which was consistent with the findings of Yuan et al.

(44). Macrophages can exist in two polarization states, M1 and M2.

Generally, M1 macrophages exhibit a proinflammatory phenotype

during the early stages of inflammation, with their phagocytic

activity primarily targeting exogenous substances such as

pathogens. In contrast, M2 macrophages gradually increase during

the mid-to-late stages of inflammation, secreting anti-inflammatory

factors to promote tissue repair. They also play a critical role in

engulfing large numbers of endogenous apoptotic cells to resolve

inflammation (45). However, unlike previous studies, our results

showed that the proportion of M1 macrophages was lower in the

KOA group than in the control group. This discrepancy may stem

from earlier studies combining datasets from cartilage and synovial

tissues, whereas our results focused specifically on synovial tissue

datasets. This should be confirmed by an independent analysis

employing additional datasets in the future. Notably, our findings

suggest an increased proportion of resting mast cells in KOA

synovium, accompanied by a decrease in activated mast cells

releasing histamine and other inflammatory mediators. This

observation likely reflects synovium-specific immune processes, as

opposed to cartilage, which exhibits acute inflammatory features in

KOA (25). Additionally, medication usage among the patients

providing samples may have influenced the composition of

immune cells. The proportion of resting memory CD4 T cells

showed a highly significant correlation with all three key genes

and was reduced in KOA synovial tissue. Moradi et al. detected

substantial CD4+ T cell infiltration in KOA synovial tissue; under

milder inflammatory conditions, macrophages outnumbered CD4+

T cells by approximately six-fold (46), a finding consistent with our

immune infiltration results. The reduced levels of activated memory

CD4 T cells might still reflect the characteristics of mild

inflammation. M2 macrophages also exhibited a strong correlation

with the three hub genes and showed a positive relationship with

inflammation severity. However, their proportion in synovial tissues

did not differ significantly between the KOA and control groups.
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This finding suggests that, in the included KOA synovial samples,

immune processes such as efferocytosis were moderately inhibited

or not fully activated by the chronic inflammatory environment.

Finally, it is important to note that these changes in immune cell

proportions do not necessarily reflect changes in their absolute

numbers. This nuance should be considered when interpreting the

data and its implications for KOA pathogenesis.

The present study has certain limitations. The inclusion of

patients with varying degrees of medication usage in the public

datasets may have influenced the expression levels or even trends of

some genes in KOA synovial tissue as well as altered immune cell

composition, thereby potentially affecting the accuracy of the

results. Future sequencing datasets with fewer confounding

factors may help eliminate such biases. Additionally, because of

the difficulty in obtaining fully suitable control synovial samples

from humans, we validated the expression levels of key genes using

only a rat model.
5 Conclusion

By conducting an integrated analysis of three public datasets,

combined with EFRGs, we identifiedUCP2, CX3CR1, and CEBPB as

key diagnostic genes associated with the efferocytosis phenotype in

KOA. These three genes exhibited significant changes in their

expression trends in knee synovial tissues, which strongly

indicated the presence of KOA and abnormalities in physiological

efferocytosis. Furthermore, a diagnostic nomogram was

constructed, and its diagnostic efficacy was validated. The

expression trends of these key genes were also confirmed through

gene expression analysis in a KOA animal model. This study

enhances our understanding of the molecular association between

efferocytosis and KOA, guiding further therapeutic development.
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