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Interleukin-27-polarized HIV-
resistant M2 macrophages are a
novel subtype of macrophages
that express distinct antiviral
gene profiles in individual cells:
implication for the antiviral effect
via different mechanisms in the
individual cell-
dependent manner
Tomozumi Imamichi1*†, Jun Yang1†, Qian Chen1†,
Suranjana Goswami1, Mayra Marquez1, Udeshika Kariyawasam1,
Homa Nath Sharma1, Rosana Wiscovitch-Russo1, Xuan Li1,
Akihiro Aioi2, Joseph W. Adelsberger3, Weizhong Chang1,
Jeanette Higgins3 and Hongyan Sui1

1Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for
Cancer Research, Frederick, MD, United States, 2Laboratory of Basic Research, Septem-Soken,
Osaka, Japan, 3AIDS Monitoring Laboratory, Frederick National Laboratory for Cancer Research,
Frederick, MD, United States
Introduction: Interleukin (IL)-27 is an anti-viral cytokine. IL-27-treated

monocyte-derived macrophages (27-Mac) suppressed HIV replication.

Macrophages are generally divided into two subtypes, M1 and M2

macrophages. M2 macrophages can be polarized into M2a, M2b, M2c, and

M2d by various stimuli. IL-6 and adenosine induce M2d macrophages. Since

IL-27 is a member of the IL-6 family of cytokines, 27-Mac was considered M2d

macrophages. In the current study, we compared biological function and gene

expression profiles between 27-Mac and M2d subtypes.

Methods:Monocytes derived from health donors were differentiated to M2 using

macrophage colony-stimulating factor. Then, the resulting M2was polarized into

different subtypes using IL-27, IL-6, or BAY60-658 (an adenosine analog). HIV

replication was monitored using a p24 antigen capture assay, and the production

of reactive oxygen species (ROS) was determined using a Hydrogen Peroxide

Assay. Phagocytosis assay was run using GFP-labeled opsonized E. coli.

Cytokine production was detected by the IsoPlexis system, and the gene

expression profiles were analyzed using single-cell RNA sequencing

(scRNA-seq).

Results and Discussion: 27-Mac and BAY60-658-polarized M2d (BAY-M2d)

resisted HIV infection, but IL-6-polarized M2d (6-M2d) lacked the anti-viral
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effect. Although phagocytosis activity was comparable among the three

macrophages, only 27-Mac, but neither 6-M2d nor BAY-M2d, enhanced the

generation of ROS. The cytokine-producing profile of 27-Mac did not resemble

that of the two subtypes. The scRNA-seq revealed that 27-Mac exhibited a

different clustering pattern compared to other M2ds, and each 27-Mac expressed

a distinct combination of anti-viral genes. Furthermore, 27-Mac did not express

the biomarkers of M2a, M2b, and M2c. However, it significantly expressed CD38

(p<0.01) and secreted CXCL9 (p<0.001), which are biomarkers of M1.

Conclusions: These data suggest that 27-Mac may be classified as either an M1-

like subtype or a novel subset of M2, which resists HIV infection mediated by a

different mechanism in individual cells using different anti-viral gene products.

Our results provide a new insight into the function of IL-27 and macrophages.
KEYWORDS

interleukin-27, M2 macrophages, polarization, anti-viral genes, scRNA seq
1 Introduction

Interleukin (IL)-27 is a heterodimeric cytokine comprising the

p28 and EBI3 subunits. p28 is structurally related to p35 of the

alpha subunit of IL-12. Therefore, IL-27 is considered a member of

the IL-12 cytokine family (1), along with IL-12, IL-23, IL-35, and IL-

39 (2, 3). IL-27 binds to the IL-27 receptor (IL27R), which is

composed of WSX1 and glycoprotein 130 (gp130) (4). Given that

gp130 serves as a signal transducer of the IL-6 cytokine family, IL-

27 is classified as an IL-6-family cytokine based on its receptor usage

(4). IL-27 is primarily produced by antigen-presenting cells in

response to stimulation by pattern recognition receptors. IL-27

promotes the proliferation of naïve CD4 T cells and differentiation

of T helper 1 cells. IL-27 exerts regulatory effects on a multitude of

T-cell subsets, including regulatory T cells and follicular helper T

cells (5, 6). Multiple functions of this cytokine have been identified,

such as promoting or curbing inflammatory diseases, cancers,

aging, and viral infections (3, 6–11). It functions in multiple cell

types (T cells, monocytes, macrophages, dendritic cells, neutrophils,

hepatocytes, and keratinocytes) through IL27R (7, 12–14). Recently,

IL-27 has been considered a biomarker for a certain infection of

cancer (15–17). The binding of IL-27 to IL27R induces the Janus

kinase/signal transducer and activator of transcription (JAK/STAT)

signaling pathway. It functions as a pre-inflammatory,

proinflammatory, or antiviral cytokine (7). The antiviral effect of

IL-27 was first identified as a suppressor of human immune

deficiency virus type 1 (HIV-1) infection in T cells and

macrophages in culture supernatants of cervical cancer vaccine-

treated peripheral blood mononuclear cells (PBMCs) (18), revealing

the anti-HIV effect in dendritic cells (19). Additionally, it acts

against different types of viruses such as influenza virus, hepatitis

C virus, hepatitis B virus, cytomegalovirus coxsackievirus B3,
02
respiratory syncytial virus, dengue virus, chikungunya virus, Zika

virus, and Mayaro virus (13, 20–29).

IL-27 functions as a differentiation-inducing factor; it

differentiates monocytes into HIV-resistant macrophages (30, 31)

by enhancing the production of reactive oxygen species (ROS)

(30, 32), inducing anti-HIVmicroRNAs (33–35) and autophagy (31).

Macrophages serve as phagocytes, produce ROS, show

chemotaxis, secrete cytokines, present antigens for acquired

immune responses, and play an important role in innate

immunity (36–43). They are broadly divided into two groups: M1

macrophages and M2 macrophages (44–46). M1 macrophages

(classical macrophages) are pro-inflammatory cells, and M2

macrophages are anti-inflammatory cells. M1 macrophages are

activated from M0 cells by Toll-like receptor (TLR) ligands

[pathogen-associated molecular patterns (PAMPs), such as

lipopolysaccharide, or damage-associated molecular patterns

(DAMPs), for example, High mobility group box-1 (HMGB1)],

and S100 proteins or cytokines (such as interferon-g) and then

produce pro-inflammatory cytokines [such as tumor necrosis factor

(TNF)-a, IL-1-a, IL-1b, IL-6, IL12, C-X-C motif chemokine ligand

9 (CXCL9), and CXCL10] (47), phagocytose, and initiate an

immune response. M1 macrophages produce nitric oxide (NO) or

ROS. NF-kB, STAT1, STAT5, IRF3, and IRF5 have been shown to

regulate M1 cells and, as markers of M1, expression of TLR2, TLR4,

CD80, CD86, and MHC-II (47). M2 macrophages are alternatively

activated macrophage by exposure to certain cytokines such as IL-4,

IL-10, IL-13, IL-33, and transforming growth factor beta (TGF-b)
(48, 49), and regulated by STAT3, STAT6, and KLF4 (47–50). As

M2 markers, CD163, CD206, CD209, FIZ1, and Ym1/2 are known

(47, 50). M2 macrophages are subgrouped intoM2a, M2b, M2c, and

M2d (51). Recently, several novel macrophage subsets have been

identified, including regulatory macrophages (Mreg), macrophage
frontiersin.org
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heme-related (Mhem), oxidized macrophages (Mox), and M3 and

M4 macrophages (51–61).

Primary monocytes are differentiated into macrophages

[monocyte-derived macrophages (MDMs)] using cytokines or

serum. M1 and M2 macrophages are induced using granulocyte-

macrophage colony-stimulating factor (GM-CSF) and macrophage

colony-stimulating factor (M-CSF), respectively (44, 53, 62). M2

macrophages are further subdivided into M2a, M2b, M2c, and M2d

based on polarization using different stimuli (47, 52); IL-4 and IL-13

have been shown to polarize M2 macrophages into M2a.

Immunoglobulin complexes or Toll-like receptor ligands have

been demonstrated to induce polarization of M2 into M2b.

Moreover, IL-10, TGF-b, or glucocorticoid stimulation has been

illustrated to induce M2c from M2 macrophages, and IL-6

stimulation has been demonstrated to polarize M2 macrophages

into M2d (52, 63–65). Given that IL-27 shares gp130 to induce

intracellular signaling as a member of the IL-6 family of cytokines, it

was hypothesized that IL-27 treatment of M2 macrophages may be

polarized into M2d-like cells. In our previous study, we examined

the effects of IL-27 on the function of M2 macrophages. Our

research demonstrated that IL-27-treated/polarized M2

macrophage (27-Mac) exhibited resistance to HIV replication and

enhanced ROS production (32). While the enhanced ROS induction

was associated with an increase in p47phox expression (32), the

mechanisms by which IL-27 suppressed HIV replication in 27-Mac

remain unclear.

M2d is also induced by adenosine treatment (65–67).

Adenosine stimulation induces intracellular signaling via

adenosine receptors (ARs). ARs are members of the seven

transmembrane receptors (68) and comprise four subclasses: A1,

A2A, A2B, and A3 (69). A1 and A3 receptors couple to Gi/o proteins

and inhibit the activity of adenylyl cyclase, whereas A2A and A2B

preferentially couple to Gs proteins and stimulate cAMP

formation (69–71). Although each receptor agonist has been

developed and AR-mediated intracellular signaling and cellular

function have been investigated, the function of adenosine-

induced M2d on HIV replication is poorly understood. In the

current study, to elucidate the function of 27-Mac and the

mechanism of HIV resistance, comparative studies were

performed using 27-Mac and IL-6-polarized M2d along with

adenosine-polarized M2d. A multiplexed proteomic workflow

and single-cell RNA sequencing (scRNA-Seq) were utilized in

the study. Those systemic analyses further help to understand the

distribution of each known antiviral gene expression in each cell.

In summary, the current study provided new insights into the

function of 27-Mac as a potent novel subset of macrophages

resisting broad virus replication in individual cells with a

different manner. Our results further support that IL-27 may

serve as a therapeutic agent in cytokine-based therapy for the

treatment of HIV and other viral infections.
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2 Materials and methods

2.1 Cells and reagents

PBMCs were isolated from healthy donors’ apheresis packs

(NIH blood bank) using a lymphocyte separation medium (ICN

Biomedical, Aurora, OH, USA) (18); CD14(+) monocytes were

separated from PBMCs using CD14 MicroBeads (Miltenyi Biotec,

Auburn, CA, USA), according to the manufacturer’s instructions

(30). The purity of the cell types was at least 90%, based on the flow

cytometric analysis. Cell viability was determined using the trypan

blue (Thermo Fisher Scientific, Waltham, MA, USA) exclusion

method. The CD14(+) monocytes were cultured at 37°C and 5%

CO2 with saturating humidity for 7 days to differentiate into

macrophages (M2 macrophages) in the presence of M-CSF (R&D

Systems, Minneapolis, MN, USA) in macrophage-serum free

medium (M-SFM, Thermo Fisher Scientific) containing 50 mg/mL

gentamicin (Thermo Fisher) and 10 mM 4-(2-hydroxyethyl)-1-

piperazine ethane sulfonic acid (HEPES), pH 7.4 (Quality

Biological, Gaithersburg, MD, USA) (72). After differentiation,

M2 macrophages were maintained in the complete D-MEM

medium (Thermo Fisher) supplemented with 10% (v/v) fetal

bovine serum (FBS; R&D Systems), 10 mM HEPES, and 50 mg/
mL gentamicin (D10 medium) as previously described (73).

HEK293T cells were obtained from ATCC (Manassas, VA, USA)

and maintained in the complete D-MEM (74). Recombinant

human IL-6, IL-27, and interferon (IFN)-g were purchased from

R&D Sys t ems . A non- s e l e c t i v e AR agon i s t [ 5 ′ -N -

ethylcarboxamidoadenosine (NECA)], an A1AR specific agonist

[2-chloro-N6-cyclopentyladenosine (CCPA)], an A2aAR specific

agonist (CGS21680), A2bAR specific agonist (BAY60-6583), and

an A3AR specific agonist (piclidenoson: IB-MECA) were obtained

from Cayman (Ann Arbor, MI, USA). Plasmid encoding, CCR5

tropic HIV-1 strain, HIV-1AD8 (75), was obtained from Dr. M.

Martin (NIAID, Bethesda, MD, USA), and pNL4-3.Luc.R2.E2

(76, 77) was obtained from the NIH AIDS reagent program

(ATCC). Plasmid was isolated using the EndoFree Plasmid Maxi

isolation kit (Qiagen, Germantown, MD, USA).
2.2 Polarization of M2 macrophages

M2 macrophages were seeded onto culture plates at 0.15 × 106

cells/cm2 cell seeding density in D10 medium, cultured at 37°C and

5% CO2 with saturating humidity overnight, and then polarized in

the presence of 100 ng/mL IL-27, 30 ng/mL IL-6, or 10 mM BAY60-

6583 for 3 days. After incubation, the polarized cells were washed

with fresh D10 and used as subjects for assays. Cell viability was

assessed using the trypan blue exclusion method using a Trypan

Blue solution.
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2.3 Preparation of viral stocks

The infectious HIV-1AD8 was prepared by transfection of pAD8 (75)

to HEK293T cells (ATCC) using the TransIT-293 transfection kit

(Mirus, Madison, WI, USA) as previously described (18, 30). Briefly, 6

× 106 HEK293T cells were incubated in a 100-mm tissue culture dish in

10 mL D10 medium for 16 hrs, and then DNA-lipid complex (10 µg

DNA and 30 µL of TransIT-293) in 600 µL of OPT-MEM (Thermo

Fisher) was added dropwise. The cells were further incubated for 48 hrs;

then, virus particles were isolated from the transfection supernatants

using ultracentrifugation with 20% sucrose cushion at 100,000 × g for 2

hrs at 4°C (78), resuspended in 1/10 volume of the transfection

supernatants in D10 medium, and stored as viral stocks at −80°C until

use. The viral infection titer [50% tissue culture infectious dose

(TCID50)] of the viral stock was determined by an endpoint assay by

modifying amethod described in our previous report (79). In the current

study, TCID50 was quantified usingM2macrophage rather than T cells,

and cells were cultured for 14 days (18). The infection titer was

determined using the p24 antigen capture kit (PerkinElmer, Waltham,

MA USA) with 50 pg/mL as a cutoff. A pseudotyped HIV, HIVLuc-

VSV-G, was prepared by co-transfection of both pNL4.3.Luc.R2.E2 and

pLTR-VSVG into HEK293T cells as previously described (14, 73), and

virus amounts were quantitated using the p24 antigen capture kit.
2.4 HIV-1 infection and replication assay

Macrophages were seeded at 50 × 103 cells/well in 96-well plates

and cultured overnight at 37°C in D10 medium. The cells were then

infected with 5000 TCID50 HIV-1AD8 [multiplicity of infection

(MOI) = 0.01] for 2 hrs at 37°C and then washed three times with

warm D10 medium (72, 73). The infected cells were cultured in 200

µL D10 medium for 14 days with half of the medium changed every

3 to 4 days with a fresh warm medium. All replication assays were

conducted in quadruplicate, and HIV-1 replication was determined

by measuring the p24 antigen in the culture supernatants using the

p24 antigen capture assay kit (PerkinElmer, Boston, MA, USA).
2.5 Reactive oxygen species

The quantification of ROS was performed as previously described

(32). Briefly, macrophages (50 × 103 cells/well) were seeded in 96-well

plates overnight at 37°C and then polarized using 30 ng/mL of IL-6,

100 ng/mL of IL-27, or 10 mMBAY for 3 days. The cells were washed

with Krebs-Ringer Phosphate Buffer supplemented with 5.5 mM

glucose (KRPB-G) and then stimulated with 100 ng/mL of phorbol

myristate acetate (PMA) for 30 min at 37°C in Amplex™ Red

Hydrogen Peroxide/Peroxidase Assay buffer. ROS induction was

detected using the EnSpire Multimode Plate Reader (PerkinElmer).
2.6 Phagocytosis assay

Endogenous phagocytic activity was compared among M2, 27-

Mac, 6-M2d, and BAY-M2d using the phagocytosis assay kit
Frontiers in Immunology 04
(Abcam, Waltham, MA, USA). Briefly, 50 × 103 M2 macrophages

were seeded in quadruplicate onto a 96-well plate and then cultured

for 3 days at 37°C in the presence of D10 medium alone, 100 ng/mL

of IL-27, or 30 ng/mL of IL-6 or 10 mM of BAY60-6583. The

polarized cells were washed with warm D10 medium three times

and then cultured with or without green fluorescent protein (GFP)-

labeled opsonized Escherichia coli (T:E ratio at 10) for 3 hrs in D10.

The cells were washed with phosphate-buffered saline (PBS) and

then lysed using 2x radioimmunoprecipitation assay (RIPA) buffer

(Boston BioProducts, Milford, MA, USA) supplemented with a

cocktail of proteinase and phosphatase inhibitors (Pierce, Thermo

Fisher Scientific) and EDTA (Pierce), and phagocytosed particles

were quantified using EnSpire (PerkinElmer).
2.7 Western blotting

Western blotting (WB) was performed as previously described

(78). Briefly, M2 macrophages (1.5 × 106 cells/well in a 6-well plate)

were cultured in D10 medium with or without 100 ng/mL IL-27, 30

ng/mL of IL-6, or IFN-gamma for 3 days. The cells were washed

with cold PBS, lysed using 150 mL of 1x RIPA lysis buffer (Boston

BioProducts) supplemented with 5 mM EDTA (Quality Biological,

Gaithersburg, MD, USA) and 1x phosphate and protease inhibitor

cocktail (Thermo Fisher Scientific), and incubated on ice for 15

min. Then, the cell debris-free cell lysates were obtained by

centrifuging at 15,000 × g at 4°C for 10 min. Protein

concentration was determined using the BCA protein assay kit

(Pierce, Thermo Fisher Scientific), and 20 mg total protein for each

lysate was subjected to 4%–12% NuPAGE Bis-Tris gels (Thermo

Fisher Scientific). Proteins were transferred onto 0.2- or 0.45-mm
pore-size nitrocellulose membranes (Thermo Fisher Scientific) and

probed with antibodies against proteins of interest (antibodies are

listed in Supplementary Table S1). Protein bands were detected

using the ECL Prime Western Blotting Detection Reagent (Cytiva

Life Sciences, Marlborough, MA, USA) with the Azure 300 (Azure

Biosystems, Dublin, CA, USA) or Sapphire FL Biomolecular Imager

(Azure Biosystems) (80). Band intensities were analyzed using Fiji

(NIH ImageJ; http://rsbweb.nih.gov/ij/).
2.8 Quantitation of proteins in the
culture supernatants

To compare the produced amounts of cytokines and C1q in the

culture supernatants, M2 macrophages from five different donors

were cultured at 37°C for 3 days in the presence of D10 medium

alone, 30 ng/mL of IL-6, 100 ng/mL of IL-27, and 10 mM of BAY.

The cells were washed and then cultured for 2 days in the absence of

stimulus. To ascertain a potential correlation between the anti-HIV

effect and the cytokine profiles, cells were cultivated in the same

culture condition as HIV-infected cells. Subsequently, the cell-free

culture supernatants were collected and stored at −20°C until use.

Granzyme B, IFN-gamma, IL-10, IL-13, IL-17A, IL-2, IL-4, IL-5, IL-

6, IL-7, IL-8, IL-9, IP-10, monocyte chemoattractant protein-1
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(MCP1/CCL2), macrophage inflammatory protein (MIP)-1 alpha

(MIP-1a/CCL3), MIP-1 beta (MIP-1b/CCL4), TNF-a, and TNF-b
were quantified using the IsoLight automation system (Bruker

Cellular Analysis, Emeryville, CA, USA). Briefly, the frozen

supernatants were thawed at room temperature for 30 min and

mixed well by pipetting up and down prior to loading in the system.

An aliquot of 5.5 mL of each sample was pipetted into each

microchamber of a CodePlex chip pre-patterned with a 22-plex

antibody with the IsoPlexis Human Adaptive Immune Panel

(Bruker Cellular Analysis). Each sample was run in duplicate.

D10 medium was used as background control. The chips were

sealed and then loaded into the IsoLight automation system, and

various cytokine proteins were measured automatically by

fluorescence ELISA and analyzed by the IsoSpeak software

(Bruker Cellular Analysis). Quantification of TGF-b1 was

conducted using TGF-b1 ELISA (R&D Systems) with the

reactivation buffer (R&D Systems) following the vendor’s

protocol. The resulting cytokine amounts were plotted using a

heat map created using GraphPad Prism version 9.3.1 (Boston,

MA, USA). The amounts of IFN-a, IFN-b, and C1q in the culture

supernatants were quantified using all type IFN-a ELISA kits (PBL

Assay Science, detection limit <6.25 pg/mL), Verikine-HS Human

IFN beta ELISA kit (PBL Assay Science, detection limit <1.2 pg/

mL), and Human C1q ELISA kit (Invitrogen, Thermo Fisher

Scientific, detection limit 0.9 ng/mL), respectively. All assays were

conducted following the manufacturer’s protocols.
2.9 Construction of scRNA-Seq libraries

M2 macrophages (4 × 106 cells) were seeded in 60-mm Petri

dishes and cultured at 37°C for more than 16 hrs in D10 media. The

cells were polarized with IL-6, BAY60-6583, or IL-27 for 3 days;

washed three times with the warmed PBS; and then incubated with

2.5 mL of trypsin-EDTA (0.25%) (QBI) at 37°C for 15 min in a CO2

(5%) incubator. After the incubation, 5 mL of warm D10 was added

per dish, and the cells were detached by flushing the medium. Cells

were washed three times with D10 media, and cell viability and cell

number were determined using Cellometer Auto 2000 (Nexcelom

Bioscience, Lawrence, MA, USA) with the ViaStain AOPI Staining

Solution (Nexcelom Bioscience). Consistently, the cell viability was

98% to 100%. Each cell was resuspended at 1,000 cells/µL in D10.

The scRNA-Seq libraries were constructed using the Chromium

Next GEM Single Cell 5′ Reagent Kit V2 (Dual Index) (10x

Genomics, Pleasanton, CA, USA) following the manufacturer’s

instructions. Briefly, 16.5 µL of the cell suspension with the

master mix containing reverse transcription (RT) reagent and

template switch oligos and RT enzyme was loaded into a

Chromium Chip K (10x Genomics). The single-cell GEM

generation and barcoding followed by cDNA synthesis were run

on the Chromium Chip K in the 10x Chromium Controller (10x

Genomics). The cDNA was amplified by 13 cycles of reaction. Based

on Agilent 2100 Bioanalyzer (Agilent Biotechnology, Santa Clara,

CA, USA) and Qubit 4 analysis (Thermo Fisher Scientific), the
Frontiers in Immunology 05
scRNA-Seq libraries contained a single peak of DNA between 300

and 1,000 bp (average fragment sizes were 450–550 bp).
2.10 Analysis of scRNA-Seq

Sequence data were processed using Cell Ranger V6.0.1 (10x

Genomics). The resulting count matrices followed the standard

pipeline with default parameters. The count matrices for each

sample were loaded into Partek Flow (version 12.3.1, https://

www.partek.com) for further quantification and statistical

analysis. All data underwent quality control (QC) and were

filtered based on the following criteria. 1) Low-quality cells and

potential doublets were filtered out from analysis using the

following parameters: total reads per cell (800–40,000), expressed

genes per cell (800–6,000), and mitochondrial reads (<15%). 2) The

genes (features) with maximum values ≤ 1.0 were excluded. Counts

were normalized by counts per million, added with 1.0, and then

transformed to log 2.0. The top 20 of the principal component

analysis (PCA) contributing to data variance were used for unbiased

clustering (graph-based clustering) and presented using Uniform

Manifold Approximation and Projection (UMAP), a dimensional

reduction algorithm that shows groups of similar cells as clusters on

a scatter plot. Differential gene expression analysis among the

receptor-positive cells for each macrophage subtype was

performed using an analysis of variance (ANOVA) model; a gene

is considered differentially expressed if its p ≤ 0.05 and absolute fold

change ≥3. The bubble plot was performed using the Partek Flow,

and the gene annotation and function analysis for the selected gene

lists were performed in DAVID (81) and Metascape (82).
2.11 Flow cytometric analysis

The cellular phenotype was confirmed by flow cytometric

analysis as previously described (14). A total of 1 × 106 cells of

M2, 27-Mac, 6-M2d, and BAY-M2d macrophages were washed

three times with ice-cold Dulbecco’s PBS (Thermo Fisher Scientific)

in the presence of bovine serum albumin (BSA) and then blocked

using Fc Receptor Blocker (Innovex Biosciences, Richmond, CA,

USA) for 30 min at room temperature in the dark. Cells were

washed twice in 2% BSA (MilliporeSigma, St. Louis, MO, USA) with

0.5% NaN3 (MilliporeSigma) in Dulbecco’s PBS (DPBS-BSA-

NaN3). Cells were then stained, including paired isotype controls,

for 15 min at room temperature in the dark. The following

antibodies and their respective fluorochrome were used: CD38

(Fluorochrome PE-Cy7; Cat. # 560677, BD Biosciences, Franklin

Lakes, NJ, USA), isotype control (Fluorochrome PE-Cy7; Cat. #

557872, BD Biosciences), CD130/GP130 (Fluorochrome AF647,

Cat. # 564151, BD Biosciences), isotype control (Fluorochrome

AF647, Cat. # 557714, BD Biosciences), WSX1 (Fluorochrome PE;

Cat. # FAB14791PO2, R&D Systems), and isotype control

(Fluorochrome PE; Cat. # IC0041P, R&D Systems). The cells

were washed twice in DPBS-BSA-NaN3 and then run
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immediately on an LSRFortessa flow cytometer (BD Biosciences).

The results were analyzed using FCS Express version 7 (De Novo

Software, Pasadena, CA, USA) (14).
2.12 Statistical analysis

Intergroup comparisons were performed by one-way ANOVA

with multiple comparison analysis or Student’s t-test using

GraphPad Prism 9 (GraphPad, San Diego, CA, USA). p-Values

less than 0.05 were considered statistically significant: * p < 0.05, ** p

< 0.01, *** p < 0.001, **** p < 0.0001, and p > 0.05 was considered

not significant (n.s.).
3 Results

3.1 Comparison of IL-27 and IL-6
treatment on HIV replication and
STAT activation

IL-6 enhances HIV replication in a combination of M-CSF and

GM-CSF-induced MDMs (83) and macrophage-like cell lines (84),

whereas IL-27 suppresses HIV in M2 macrophages (32, 72).

To compare the HIV resistance between 27-Mac and 6-M2d,

M2 macrophages were polarized with different amounts of IL-6 or

IL-27 for 3 days, and the polarized cells were infected with

replication-competent HIVAD8 (Figure 1A). HIV replication

capacity was assessed by measuring HIV p24 levels in culture

supernatants 14 days after infection using the p24 capture assay.
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HIV replication was dose dependently suppressed in 27-Mac. 27-

Mac polarized with 30 ng/mL and 100 ng/mL of IL-27 suppressed

HIV replication to 39.1% ± 0.7% (p < 0.01) and 21.0% ± 0.8% (p <

0.001), respectively, when compared to HIV replication in

unpolarized cells. In contrast, 6-M2d did not indicate HIV

resistance, suggesting that 27-Mac differs from 6-M2d in anti-

HIV effect.

To define the difference between 27-Mac and 6-M2d at the

initiation of cell activation, STAT activation was compared. M2

macrophages were stimulated for 15 min with each cytokine, and

STAT activation was detected using WB. IL-27 induces the

activation of STAT1 and STAT3 (13, 19, 20, 72, 85, 86);

therefore, IFN-g was used as a positive control for STAT1

activation. IL-27 and IL-6 induced phosphorylation of STAT3 at

T705 and S727; however, IL-27 notably induced STAT1

phosphorylation at Y701, as did IFN-g. IL-6 promoted the

activation at a lower level of STAT1 activation than that by IL-27

or IFN-g (Figure 1B). Amounts of each phosphorylated STAT were

quantified using ImageJ, and one-way ANOVA statistical analysis

was performed. The results showed that the phosphorylation at

STAT1 Y701 by IL-27 was increased by 5.1 ± 1.2-fold compared to

that by medium alone, and the activation level was compared to that

by IFN-g, but it was significantly higher than that by IL-6 (p < 0.01).

On the contrary, the activation of STAT3 by IL-27 at T705 and S727

was increased by 141 ± 10.9- and 1.98 ± 0.09-fold, respectively, and

their activation was significantly higher than that by IFN-g (p <

0.01); however, it was lower than that by IL-6 (p < 0.01)

(Supplementary Figure S1). These results indicated that IL-27

induced activation of STAT1 like IFN-g did and modest

activation of STAT3, suggesting that the downstream of the gene
FIGURE 1

Comparison of HIV inhibitory effects of IL-27, IL-6, and adenosine receptor agonist-polarized M2 macrophages. (A) M2 macrophages were polarized
in the presence of different concentrations of IL-6 or IL-27 for 3 days. The polarized cells were then infected with HIVAD8 as described in Materials
and Methods and then cultured for 14 days. HIV replication was monitored using the p24 HIV antigen ELISA kit. (B) The STAT activation profile was
compared. M2 macrophages were incubated with medium alone, 100 ng/mL IL-27, 100 ng/mL IFN-g or 30 ng/mL IL-6 for 15 min, and then Western
blotting was performed to measure the phosphorylation status of STAT-1 and STAT-3 in the cells. For each phosphorylated STAT measured, the
unphosphorylated total protein was also measured. b-Actin was measured as a loading control. Data are mean ± SD (n = 4). IFN-g
**<0.01, ***<0.001.
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expression profile may differ between IL-27 and IL-6 treatment;

consequently, 27-Mac differs from 6-M2d in the anti-HIV effect.

Since IL-6 had no effect on HIV replication, STAT3 activation and

genes induced by the activated STAT3 in the cells may not be

involved in the anti-HIV effect.
3.2 A2BAR agonist and BAY60-6583-
polarized M2 macrophages resisted
HIV replication

Adenosine also polarizes M2 macrophages into M2d (63, 65).

Although adenosine is considered to have therapeutic potential, its

impact on HIV replication in macrophages has been poorly

investigated (87, 88). Adenosines bind to four different ARs—

A1AR, A2aAR, A2bAR, and A3AR (69)—and induce the activation

of adenylate cyclase (69, 89–92). Therefore, to define the role of each

AR on viral replication, each AR specific agonist was used for

polarization, and then HIV resistance was evaluated. M2

macrophages were cultured for 3 days with different doses (0–10

mM) of CCPA (90, 93) for A1AR, CGS 21680 (90) for A2AAR,

BAY60-6583 for A2bAR, and IB-MECA/CF-101 (90, 94, 95) for

A3AR, and the anti-HIV effect was monitored. BAY60-6583-

polarized M2d (BAY-M2d) significantly suppressed HIV

replication (p < 0.01 at 1 mM and p < 0.001 at 10 mM) without

any impact on cell viability (Figure 2). Therefore, 10 mM BAY-M2d

was chosen for further functional analysis using 27-Mac and

6-M2d.
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3.3 Comparison of biological function
among 27-Mac, 6-M2d, and BAY-M2d

To further characterize 27-Mac, biological function

(phagocytosis, ROS induction, and cytokine production) was

compared among three macrophages. Phagocytic activity was

compared using opsonized fluorescence-tagged E. coli (30), and

ROS-inducing activity was measured by PMA stimulation (32).

Phagocytic activity was similar among the three cell types

(Figure 3A); however, ROS induction was enhanced in only 27-

Mac by sixfold (p < 0.01) compared to M2 macrophages

(Figure 3B), indicating that 27-Mac differed from 6-M2d and

BAY-M2d in ROS-inducing potential.

To elucidate the similarity of 27-Mac with macrophage

subtypes, the profiles of cytokine secretion from four different

macrophages (M2, 27-Mac, 6-M2d, and BAY-M2d) derived from

five independent donors were analyzed. M2 macrophages or 27-

Mac were cultured for 2 days in a D10 medium without any

reagents, and the supernatants were collected. Cytokine levels in

the culture supernatants were measured using an IsoLight

automation system with the IsoPlexis Human Adaptive Immune

Panel kit and a TGF-b ELISA kit. Cytokine production by each cell

type was compared with that of unpolarized M2 macrophages.

Unpolarized M2 macrophages produced granzyme B, IFN-g, IL-10,
IL-17A, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IP-10, MCP-1, MIP-

1a, MIP-1b, TNF-a, TNF-b, and TGF-b (Figure 3C). Statistical

analysis using one-way ANOVA demonstrated that 27-Mac

significantly suppressed the production of IFN-g (p < 0.0001) and
FIGURE 2

Adenosine analog-polarized macrophages suppress HIV infection. Evaluation of the anti-HIV effect among cells polarized with different adenosine
receptor agonists. M2 macrophages were cultured for 3 days with different concentrations (0–10 mM) of adenosine receptor agonists. The agonists
used for A1AR and A2aaAR were CGS 21680 (CCPA) and CGS 21680 (CGS), respectively; the agonist used for A2bR was BAY60-6583 (BAY); the
agonist used for AR3 was IB-MECA/CF-101 (IB). The polarized cells were then infected with HIVAD8 and cultured for 14 days. HIV replication was
monitored by p24 antigen ELISA. Results are representative of data from three independent experiments. (E and F) Evaluation of phagocytic activity
and ROS-inducing activity of cells polarized with different stimuli. M2 macrophages were cultured for 3 days in the presence of medium alone, 100
ng/mL IL-27, 30 ng/mL IL-6, and 10 mM of BAY. ROS, reactive oxygen species. **: p<0.01, ***: p<0.001, ****:p<0.0001.
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IL-6 (p < 0.0001) and increased the secretion of IL-13 (p < 0.0001),

IL-2 (p < 0.05), IL-4 (p < 0.05), and IL-5 (p < 0.0001), compared to

unpolarized M2 macrophages. In the comparison of the cytokine

profile between 27-Mac and 6-M2d, even though the heat map

demonstrated a difference in the production of granzyme B, IFN-g,
IL-10, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IP-10, MIP-a, and MIP-b,
only the production of IFN-g, IL-4, and IL-6 was significantly

different. When the cytokine profile of 27-Mac was compared

with that of 6-M2d, the production of IFN-g, IL-4, and IL-6 was

significantly different. On the contrary, when the profile was

compared between 27-Mac and BAY-M2d, IFN-g and IL-6

production was significantly distinct, but not for IL-4 production.

Therefore, the profile of 27-Mac was similar to that of 6-M2d and
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BAY-M2d, but subtle differences exist in the profile. Of note, TGF-b
and MCP-1 were produced regardless of polarization. Although

TGF-b and MCP-1 have been reported as potential inhibitors of

HIV infection (96, 97), they may not play a role in our study

because both proteins were produced independently of polarization.
3.4 Gene expression profile of 27-Mac
districts from others

A comparative analysis of anti-HIV activity, induction of ROS

generation, and cytokine production of 27-Mac with those of M2

macrophages, 6-M2d, and BAY-M2d revealed notable differences.
FIGURE 3

Comparison of phagocytic activity, ROS-inducing activity, and cytokine production among 27-Mac, 6-M2d, and BAY-M2d. M2 macrophages were
cultured for 3 days in the presence of medium alone, 100 ng/mL IL-27, 30 ng/mL IL-6, and 10 mM of BAY. Then, (A) the polarized cells were cultured
with or without GFP-labeled opsonized Escherichia coli (T:E ratio at 10) for 2 hrs at 37°C. The cells were washed, and the uptake of E. coli was
determined using a fluorescence plate reader. Results are representative of three independent assays. Data are mean ± SD (n = 4). (B) Polarized cells
were washed with D-PBS-glucose (PBS-G) and then stimulated with 100 nM PMA in PBS-G for 30 min at 37°C in the presence of Amplex Red
Hydrogen Peroxide/Peroxidase Assay Reagent. Induced ROS amounts were determined as described in Materials and Methods. All assays were run in
quadruplicate, and results are representative of data from three independent assays. (C) Macrophages from five independent donors were polarized
for 3 days in the presence of D10 medium alone, 100 ng/mL IL-27, 30 ng/mL IL-6, or 10 mM of BAY, and then culture supernatants were collected.
The cell-free culture supernatants were subjected to cytokine assay using the IsoPlexis Human Adaptive Immune Panel Kit for detecting IFN-g IL-10,
IL-13, IL-17A, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IP-10, MCP-1, MIP-a, MIP-1b, TNF-a, and TNF-b, and TGF-b ELISA Kit for TGF-b. The results (log
pg/mL) were displayed by means of a heat map. White boxes indicate no cytokine detection. Bar graphs show each cytokine production with
statistical analysis using one-way ANOVA. *p < 0.05, ***p<0.001, ****p<0.0001 and n.s., not significant. ROS, reactive oxygen species; GFP, green
fluorescent protein; PBS, phosphate-buffered saline; PMA, phorbol myristate acetate.
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To further characterize 27-Mac, scRNA-Seq was used to compare

the gene expression profiles of the four different cell types. Polarized

macrophages from two independent donors were analyzed. During

QC, cells with low-quality scRNA-Seq data were excluded using the

following thresholds: total reads per cell (800–40,000), expressed

genes per cell (800–6,000), and mitochondrial reads (<15%).

Additionally, genes with maximum values ≤1.0 were omitted.

This process yielded 14,419 genes (features), 24,700 cells from

Donor 1, and 18,472 cells from Donor 2. Of the 24,700 cells from

Donor 1, 4,856 were identified as M2, 5,572 as 27-Mac, 7,878 as 6-

M2d, and 6,394 as BAY-M2d. In total, 18,472 cells from Donor 2

were classified as follows: 4,205 as M2, 5,530 as 27-Mac, 3,905 as 6-

M2d, and 4,832 as BAY-M2d (Supplementary Table S2). These cells

were then subjected to further analyses. The UMAP method was

employed to cluster and visualize gene distribution (Figures 4A, B).

The UMAP results indicated that within the dataset derived from
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Donor 1, 27-Mac, 6-M2d, and BAY-M2d were clustered in each

group and exhibited clear separation from M2 macrophages. In the

case of Donor 2, 27-Mac, 6-M2d, and BAY-M2d were clustered in

each group. However, some 6-M2d and BAY-M2d overlapped with

M2macrophages. Consequently, regarding gene expression profiles,

the profile of 27-Mac was consistently distinguished from the other

three cell types. In contrast, the profiles of 6-M2d and BAY-M2d

indicated donor dependence, being either similar to or distinct from

M2 macrophages.

The results of the gene expression analysis are presented as bar

plots (Figures 4C, D). The graphs show cell populations in each

cluster. PCA and graph-based clustering were used to cluster cells

with similar gene expression profiles. A total of nine and seven

distinct clusters were noticed in all cell types of Donor 1 and Donor

2, respectively. In Donor 1, M2 macrophages (yellow bars)

constituted 96.8% of total cells and were separated into two
FIGURE 4

Single-cell RNA sequence analysis. The scRNA-Seq using fresh M2 macrophages, 27-Mac, 6-M2d, and BAY-M2d derived from two independent
donors, Donor 1 (A, C) and Donor 2 (B, D), was conducted as described in Materials and Methods. (A, B) UMAP was used for clustering and
visualization; (C, D) the bar plots show the cell count in the graph-based cluster for each subtype. The cells with similar gene expression profiles
were clustered closer together using PCA and graph-based clustering. Macrophages from Donor 1 and Donor 2 were distributed in a total of nine
and six clusters, respectively. UMAP, Uniform Manifold Approximation and Projection; PCA, principal component analysis.
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clusters (clusters 5 and 6) (Figure 4C, Supplementary Table S2). In

contrast, 27-Mac (orange bars) was mapped to a single cluster 1

(95.8% of 27-Mac). The majority of 6-M2d (98.7% of 6-M2d,

indicated by blue bars) was distributed into four clusters (clusters

3, 4, 7, and 8), and 91.8% of BAY-M2d (shown in gray) was

distributed in clusters 2 and 4. Both 6-M2d and BAY-M2d were

present in cluster 4, whereas a small percentage of these two cell

types (<0.01%) were distributed in cluster 1. Cluster 9, in contrast,

was distributed across all four cell subtypes. In Donor 2 (Figure 4D),

98.9% of M2 macrophages (yellow bars) were distributed across

three clusters (clusters 1, 2, and 3; Supplementary Table S2),

whereas the majority (99.4%) of 27-Mac (orange bars) was

distributed into two clusters (55.5% and 43.9% of 27-Mac were

mapped in clusters 4 and 5, respectively). The gene expression

profiles of 6-M2d (blue bars) and BAY-M2d (gray bars) were

similar to those of M2 macrophages, which had been mapped

into three clusters (clusters 1, 2, and 3). To identify functional

differences in each cluster, biomarker genes (BGs) for each cluster

were computed, and the functional enrichment analysis was

performed using Metascape (82). In this analysis, BGs for each

cluster were selected with the gene expressing more than threefold

compared to those of other clusters, and then they were subjected to

the biological function enrichment analysis. In the analysis, clusters

composed of more than 85% of a single subtype were considered

signature clusters for each subtype; in Donor 1, clusters 1 and 2

were considered signature clusters for 27-Mac and BAY-M2d,

respectively (Figure 4C), and clusters 3, 7, and 8 were considered

6-M2d. The BGs in clusters 1 and 2 were involved in innate

immunity and B-cell proliferation, respectively (Supplementary

Figure S2). BGs of clusters for 6-M2d were involved in leukocyte

chemotaxis, NABA matrisome associated, and chromosome

segregation (Supplementary Figures S3, S4). In Donor 2, clusters
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4 and 5 were considered the signatures of 27-Mac, and cluster 6 was

the signature of 6-M2d (Figure 4D). BGs of clusters 4 and 5 were

involved in chemotaxis and interferon signaling, respectively, and

the BGs of cluster 6 were related to cytokine signaling in the

immune system (Supplementary Figures S5, S6). Therefore, the

functional enrichment analysis also demonstrated that 27-Mac

differed from other M2d macrophages. These data indicated that

the gene expression profile of 27-Mac differed from that of 6-M2d

and BAY-M2d cell types, suggesting the potential expression of

unique genes in 27-Mac.
3.5 Identification of 27-Mac gene markers

To identify the uniquely expressed genes in 27-Mac, the

differentially expressed genes (DEGs) in 27-Mac, 6-M2d, and BAY-

M2d were defined by comparing the normalized reads of each gene in

each cell type with those of the corresponding genes in M2

macrophages (27-Mac vs. M2, 6-M2d vs. M2, and BAY-M2d vs.

M2). The selection criteria were p-values <0.05 and absolute fold

changes >3. In Donor 1, the numbers of DEGs in 27-Mac, 6-M2d,

and BAY-M2d were 619, 542, and 380, respectively (column 1 of

Table 1 and Supplementary Table S3). In Donor 2, the numbers of

DEGs in 27-Mac, 6-M2d, and BAY-M2d were 348, 36, and 5,

respectively (column 5 of Table 1 and Supplementary Table S4). A

Venn diagram analysis revealed that 358 genes in the 27-Mac of

Donor 1 (Figure 5A) and 331 genes in the 27-Mac of Donor 2

(Figure 5B) were unique DEGs in the 27-Mac, and 130 genes in the

DEG of the 27-Mac were common DEGs among the three polarized

cell types of Donor 1. It is noteworthy that no genes were common in

all three types of Donor 2. To elucidate whether the genes that were

uniquely expressed in 27-Mac could serve as gene markers, the gene

profiles in 27-Mac were compared to the corresponding genes in 6-

M2d or BAY-M2d. A total of 483 and 287 were identified as DEGs in

27-Mac of Donor 1 when compared to those in 6-M2d and BAY-

M2d, respectively (column 2, Table 1, Supplementary Table S5). A

total of 356 and 253 genes were identified as DEGs in 27-Mac of

Donor 2 when compared to those in 6-M2d and BAY-M2d,

respectively (column 6, Table 1, Supplementary Table S6). The

gene lists were used together with DEGs in 27-Mac compared to

those in M2 macrophages (619 in Donor 1 and 348 in Donor 2) in a

Venn diagram analysis. Consequently, comparing 27-Mac to M2, 27-

Mac to 6-M2d, and 27-Mac to BAY-M2d, 125 and 173 genes were

identified as uniquely expressed genes in Donors 1 and 2, respectively

(Figures 5C, D), To define commonly differentiated genes in 27-Mac

of Donors 1 and 2, further analyses were performed using a Venn

diagram. The results demonstrated that 86 genes (71 genes were

upregulated, and 15 genes were downregulated) were common to

both datasets (Figure 5E, Supplementary Table S7 lists the names of

each gene). An analysis of biological functional annotation was

conducted on the 86 genes using Metascape. The genes associated

with innate immune response, cytokine signaling in the immune

system, positive regulation of immune response, and response to type

II IFN exhibited significant alterations (Figure 5F, Table 2). Using the

Venn diagram, the genes uniquely expressed in 6-M2d or BAY-M2d

were also analyzed in the two donors, or the genes shared between 27-
TABLE 1 The number of DEGs1 among different cell types.

Donor 1

1 2 3 4

M2 27-Mac 6-M2d BAY-M2d

M2

27-Mac 619

6-M2d 542 483

BAY-M2d 380 287 101

Donor 2

5 6 7 8

M2 27-Mac 6-M2d BAY-M2d

M2

27-Mac 348

6-M2d 36 356

BAY-M2d 5 253 42
1Genes that were significantly up- or downregulated in expression by more than threefold
(p < 0.05) in each cell type compared to the reference cells were selected. The total number of
selected genes is shown.
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Mac and 6-M2d. In 6-M2d, only nine genes (IL7R, RND3,

TNFSF10C, MMP7, SMOX, SLAM1, METIL7B, LINCO1678, and

CR1) were identified as unique DEGs (Supplementary Figure S7A),

whereas in BAY-M2d, none of the genes were commonly expressed

(Supplementary Figure S7B). The common genes in 27-Mac and 6-

M2d were only three (JAK3, PTX3, and GAS6) (Supplementary

Figure S7C). Within the nine common 6-M2d genes, IL7R, CR1, and

SLAMF1 were associated with negative regulation of adaptive

immune response, but other genes were not classified due to low

gene number.

The results from UMAP (Figures 4A, B) and Venn diagram

(Figures 5C, D) analyses illustrated that the gene profile in 27-Mac

was different from that in 6-M2d or BAY-M2d. Therefore, we

hypothesized that 27-Mac may be a new subset of M2 macrophages

and compared the 86 genes with markers of other M2 subsets (M2a,

M2b, and M2c) (98, 99) (cell marker genes for each subset are listed

in Supplementary Table S8). The results showed that none of the 86

genes overlapped with the M2a, M2b, and M2c markers

(Figure 6A). IL-27 may convert M2 into M1-like macrophages

(46, 100), M1 subtypes M1a and M1b (101, 102), or recently

identified novel macrophage subsets (M3, M4, Mreg, Mhem, and

Mox) (103); therefore, the 86 unique genes were cross-analyzed.
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Venn diagram analysis showed that, of the 86 genes, the expression

of CD38 and CXCL9 was shared with that in M1 macrophages

(Figure 6B), and C1QA, C1QB, and C1QC were commonly

expressed in M3 macrophages (Figure 6C). Comparison of the 86

genes with those of Mreg, Mhem, and Mox indicated that only

CD38 expression was shared with those of Mreg; however, none of

the other genes were commonly expressed (Figure 6D), suggesting

that 27-Mac is an M1-, M3-, or Mreg-like subset in the context of

gene expression. Taken together, only CD38 was associated with cell

surface markers on 27-Mac, and the others were secretary proteins;

therefore, we assessed the distribution of CD38-expressing cells

using UMAP. As illustrated in Figures 7A and B, CD38 was

expressed in 27-Mac, and the expression of CD38 mRNA in

Donors 1 and 2 was observed in 51.6% and 37.2% of 27-Mac,

respectively. WB analysis demonstrated that CD38 was detected in

only 27-Mac (Figure 7C), and fluorescence-activated cell sorting

(FACS) analysis revealed nearly 80% of cells as CD38-positive cells

(Figure 7D, Table 2). The expression of mean fluorescence intensity

increased 6.2-fold in 27-Mac compared to that in M2 macrophages

(Table 2). ELISA results showed that the levels of C1Q and CXCL9

in culture supernatants of 27-Mac were 10.4 ± 1.7 and 19,000 ±

3,100 pg/mL, respectively (Table 2).
FIGURE 5

Comparison of the gene expression profiles among M2, 27-Mac, 6-M2d, and BAY-M2d. (A, B) To identify DEGs in each polarized cell of Donors 1
and Donor 2, gene expression profiles in each subset were compared to those in M2 macrophages using Venn diagram analysis. (C, D) To identify
DEGs that are uniquely expressed in 27-Mac of Donor 1 (C) and Donor 2 (D) compared to polarized cells, a Venn diagram analysis was performed
among DEGs of 27-Mac compared to f M2 (27vsM2), 27-Mac compared to 6-Mac (27vs6), and 27-Mac compared to BAY-M2d (27vsBAY). (E) A Venn
diagram analysis to identify common DEGs in the gene uniquely expressed in 27-Mac of Donor 1 and Donor 2: 125 genes from Donor 1 and 172
genes from Donor 2. (F) Functional enrichment analysis by Metascape (Metascape.org) for 86 genes.
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3.6 Expression and distribution of
interferon-stimulated genes and host
factor genes in 27-Mac

IL-27 treatment induces multiple interferon-stimulated genes

(ISGs) in macrophages (26, 31, 32, 72) and regulates the expression

of multiple host factors (104–106), which are involved in HIV

replication and other viral infections. However, the mechanisms of

gene expression and gene distribution are not well understood. To

identify the genes that play a pivotal role behind the anti-HIV effect

of 27-Mac, 86 commonly regulated genes in 27-Mac (Figure 8A)

were cross-referenced with the 2,120 genes listed in databases of

host dependency factors (HDFs) and antiviral genes identified

through small interfering RNA, short hairpin RNA, or CRISPR
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library screening (104, 107–121) and 396 ISGs (Supplementary

Table S9). The results indicated that 41 genes overlapped with the

databases (Figure 8A): 38 genes belonged to ISGs. It has been

reported that IL-27-mediated cellular responses are associated with

type I IFN production (122), but this effect was cell type dependent

(19, 72, 123). To elucidate whether type I IFNs were produced

during polarization, all subtypes of IFN-a and IFN-b were

quantified using ELISA kits with culture supernatants from cells

treated with or without IL-27. A low level of IFN-a production was

detected from M2 macrophages, the production from 27-Mac was

merely decreased (p > 0.05) (Table 2), and IFN-b production was

not detected from both cell types (Table 2). These results suggested

that the induction of ISGs may not be associated with IFN

production. Since IL-27 induced STAT1 activation as did IFN-g
FIGURE 6

Characterization of the 86 common genes in 27-Mac with other subsets of macrophages. Venn diagram analyses were employed to determine the
degree of similarity between the 27-Mac and the macrophage subset signature genes (Supplementary Table S8). (A) 27-Mac vs. M2a subsets (M2a,
M2b, and M2c). (B) 27-Mac vs. M1 subset (M1, M1a, and M1b). (C) 27-Mac vs. M3 and M4. (D) 27-Mac vs. Mreg, Mox, and Mherm.
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(26, 124), IL-27 may directly induce the ISGs without

IFN production.

Of the 38 ISGs, 14 genes were identified as HDFs or antiviral

proteins (Figure 8A). STAT1 and IFIT3 were the DEGs that

overlapped with all four datasets. The Z-scores of each of the 41

genes were calculated using relative expression across all cells of M2

macrophages and 27-Mac of Donor 1 (Figure 8B) and Donor 2

(Figure 8C), and the results are presented as bubble plots; the size of

bubbles represent the percentage of expressing cells. The expression

of two ISGs (C15or48 and THBD) was decreased in 27-Mac

compared to that in M2 macrophages; other gene expression was

increased in 27-Mac (Supplementary Table S10). Of the 41 genes,

genes expressed in >40% of either 27-Mac or M2 macrophages were

selected (Supplementary Table S10). The resulting 27 genes were

further analyzed to define gene distribution and population using
Frontiers in Immunology 13
UMAP (Figures 9A, B). In addition to the 27 genes, two known

antiviral ISGs—OAS2 (125, 126) and IDO1 (119)—were also

included, although the genes exhibited lower levels in 27-Mac

compared to other genes and were, therefore, filtered out during

the selection process; the proteins encoded in these genes are known

to exhibit broad antiviral activity. Using a total of 29 genes, UMAP

analyses were conducted. The results illustrated that the expression

of ISGs and host factors exhibited a donor and individual cell-

dependent manner even in the polarized 27-Mac. Population

analysis with UMAP demonstrated that 40% to 70% of M2

macrophages of Donor 1 and Donor 2 expressed PSMB9, PSME2,

STAT1, TAP1, VAMP5, orWARS (Supplementary Table S10). After

polarization with IL-27, the population of cells expressing those six

genes was increased to more than 95% (Supplementary Table S10).

On average, the expression of those genes in 27-Mac was increased
FIGURE 7

Characterization of CD38 expression. (A, B) The expression of the CD38 gene in M2, 27-Mac, 6-M2d, and BAY-M2d of Donors 1 (A) and Donor 2 (B)
is illustrated using UMAP. The blue dots indicate cells that are expressing CD38. (C) In order to ascertain the expression of CD38 protein on
macrophages, monocytes were obtained from donors who were independent of Donor 1 and Donor 2, subsequently differentiated into M2
macrophages, and then polarized using IL-27, IL-6, or BAY60-6583, as described in the Materials and Methods. Each polarized cell was subjected to
Western blotting analysis using anti-CD38 or anti-b-actin as an internal control. Representative results from two independent assays are presented.
(D) CD38 expression on cell surfaces of M2 macrophages, 27-Mac, 6-M2d, and BAY-M2d was analyzed using flow cytometry as described in the
Materials and Methods. Representative results from three independent assays are presented. UMAP, Uniform Manifold Approximation and Projection.
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by 1.4 ± 0.2-fold in Donor 1 (p = 0.0036) and 2.1 ± 0.6-fold in

Donor 2 (p < 0.0001). In contrast, the expression of 13 genes

(APOL1, APOL3, GBP1, GBP2, GBP5, IFIT2, IFIT3, IRF1, NCF1,

SERPING1, SOCS1, TAP2, or TNSF10) in M2 macrophages and 27-

Mac was 6%–33% and 30%–95%, respectively (Supplementary

Table S10). Consequently, the mean population of 27-Mac

expressing these genes was significantly increased by 4.7 ± 0.80-

fold (p < 0.0001) in Donor 1 and 5.8 ± 1.00-fold (p < 0.0001) in

Donor 2 compared to that of M2 macrophages. The remaining 20

genes (AIM2, ANKRD22, APOBEC3A, BATF2, CCL8, CD38, CFB8,

CXCL9, ETV7, GBP4, GCH1, HLA-DOA, IDO1, IRF27, IFITM1,

IL15RA, ISG20, ITGB7, PSRY6, and SECTM1) were expressed in

less than 5% of M2 macrophages of both donors. The percentages of

27-Mac expressing these genes were significantly increased by 149.3

± 45.0-fold (n = 20) in Donor 1 (p < 0.0001) and 35.6 ± 8.7-fold in

Donor 2 (p < 0.0001) (Supplementary Table S10). To determine

whether the products of the upregulated genes were expressed in the

cells, the protein expression of randomly selected genes was

validated by WB. A total of 17 proteins including CD38

(Figure 5C) were predominantly or uniquely induced in 27-

Mac (Figure 9C).
3.7 Impact of the expression of WSX1,
gp130, CD4, and CCR5 genes in 27-Mac

IL27R consists of WSX1 (also known as TCCR) and gp130. The

expression of WSX1 in monocytes and macrophages is lower than

that in T cells or NK cells (4, 124, 127, 128). To define the population

of cells expressing WSX1 and gp130 in M2 macrophages prior to

polarization, flow cytometric analysis was performed. Figures 10A

and B show results from one of the donors. Consistent with others,
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the protein expression of WSX1 was low. FACS assays using three

independent donors illustrated that WSX1 and gp130 protein

expressed on 16.8% ± 2.7% (n = 3) and 42.8% ± 5.5% (n = 3) of

M2 macrophages, respectively (Figure 10C), and the cells expressing

both proteins were 3.1% ± 1.5% (n = 3) (Figure 10C). The scRNA-Seq

analysis revealed that the expression of both WSX1 and GP130

(WSX1+/GP130+) in M2 was 7.9% in Donor 1 and 4.6% in Donor

2, while both genes were detected in 5.9% of Donor 1 and 1.6% of

Donor 2 of 27-Mac (Table 2), indicating that the polarization to 27-

Mac resulted in a decrease rather than an increase in the population

of WSX1/gp130-expressing cells.

HIVAD8 is an R5 tropic virus that infects cells through CD4

and CCR5 (129). As shown in Figure 1A, HIVAD8 replication was

suppressed in 27-Mac. To predict the mechanism of inhibition in

CD4+CCR5+ cells, the distribution of antiviral genes in 27-Mac

expressing both CD4 and CCR5 was analyzed using UMAP (CD4

+CCR5+ population in 27-Mac in Donor 1 and Donor 2 was 11.2%

and 7.6%, respectively) (Supplementary Table S11). In the analysis,

a total of 20 genes [15 genes were subjected in Figure 9, and GBP2,

IFITM1, PSME2, ANKRD22, and S100A8 (130)] were analyzed.

The UMAP showed that each gene expression was not clustered in

both donors (Figures 11A, B). A population analysis of cells

expressing the antiviral genes revealed that nine out of the 20

genes in Donor 1 and 11 out of the 20 genes in Donor 2 were

expressed in less than 20% of M2. However, in 27-Mac, these genes

were expressed in nearly 50% (17.7%–98.0%) of Donor 1 (average

52%) and 6.9%–96.4% of Donor 2 (average 47.6%) (Supplementary

Table S12). The mean fold increases in the cells expressing the genes

were 19 ± 7.2-fold (p < 0.001) in Donor 1 and 9.9 ± 2.6-fold (p <

0.01) in Donor 2, compared to those in M2 macrophages

(Supplementary Table S12). The expression level of each gene

differed among individual cells. However, the distribution of the
TABLE 2 Quantification of biomarkers.

Biomarkers M2 macrophages 27-Mac F.D.1 p-Value

CD382

Population (%) 12.3 ± 7.8 (n = 3)3 76.8 ± 4.2 (n = 3) 6.2 0.0019

MFI 4 12.7 ± 4.8 (n = 3) 835 ± 225 (n = 3) 65.7 0.0217

C1Q (ng/mL) 5 N.D 6 10.4 ± 1.7 (n = 5) N/A N/A

CXCL9 (pg/mL) 5 3.2 ± 7.0 (n = 5) 19,818.5 ± 3,137 (n = 5) 62,443 0.0002

IFN-a (pg/mL)5 1.94 ± 0.19 (n = 5) 1.69 ± 0.11 (n = 5) 0.87 0.2878

IFN-b (pg/mL)5 N.D 7 N.D. 7 N/A N/A

WSX (%)8 16.8 ± 2.7 (n = 3)3 N/A

gp130 (%)8 42.8 ± 5.5 (n = 3) N/A

WSX1/gp130 (%)8 3.1 ± 1.5 (n = 3) N/A
FACS, fluorescence-activated cell sorting.
1Fold difference. Values in 27-Mac were compared to those in M2 macrophages (27-Mac/M2).
2CD38 expression was assessed by fluorescence-activated cell sorting (FACS) as dissected in the Materials and Methods. Population of CD14 (+)/CD38 (+) is shown in the table.
3Data indicate means ± SE.
4Mean fluorescence intensity in histogram.
5Protein amounts in culture supernatants after polarization were quantified using ELISA kit.
6Not detected; the values were below the detection limit (0.9 ng/mL).
7Not detected; the values were below the detection limit (1.2 pg/mL).
8Percentages of the cells expressing WSX or gp130 proteins on unpolarized M2 cells.
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genes among CD4(+)/CCR5(+) cells was similar to that observed in

the entered 27-Mac, with no clustering evident among the two

donors. This finding suggests that each HIV-susceptible cell in 27-

Mac expresses multiple antiviral genes, but not the same expression
Frontiers in Immunology 15
profiles in all cells. Thus, the anti-HIV effect observed in 27-Mac

appears to be regulated by the cooperative action of the products of

multiple genes, and the mechanism of the anti-HIV effect in 27-Mac

may differ in each cell.
FIGURE 8

Identification of host factors associated with HIV inhibition in the 86 common genes. (A) Venn diagram analysis was conducted using the 86
common genes and a total of 2,439 genes of host factor identified from CRISPR, siRNA, shRNA library screening, and ISGs (Supplementary Table S9).
(B, C) To demonstrate the proportion of cells expressing each of the 41 genes in M2 macrophages and 27-Mac, a bubble plot analysis was
performed. The results demonstrate the comparative gene expression between M2 macrophages and 27-Mac from Donor 1 (B) or Donor 2 (C). The
size of the bubbles is proportional to the percentage of cells in each sample that are expressing the gene of interest. The color intensity is
proportional to the relative scaled (Z-score) gene expression within each sample. The relative expression levels are indicated by color, with higher
expression levels represented by red and lower expression levels represented by blue. ISGs, interferon-stimulated genes.
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4 Discussion

IL-27 possesses antiviral properties and inhibits the replication

of RNA and DNA viruses in several cell types. We have previously

noticed that 27-Mac exhibits resistance to HIV infection (32);

however, the mechanism underlying this inhibition is not clearly

understood. Given that IL-27 and IL-6 share gp130 and that IL-6

polarizes M2 macrophages to M2d (6-M2d), we postulated that 27-

Mac may be M2d-like macrophages. We found that 27-Mac has

phenotypical differences from other M2d cells, especially ROS-

inducing activity, and the expression of 86 genes was differentially

regulated in 27-Mac. The 86 genes contained 38 ISGs. The 86 genes

were involved in innate immune responses and cellular activation.

As we previously demonstrated (32), the enhanced ROS activity

appeared to be the result of an increase in the expression of the

NCF-1 (p47phox) gene among the 86 genes. The phagocytic activity

of 27-Mac was comparable to that of 6-M2d and BAY-M2d.

Therefore, DEGs in 27-Mac may not be involved in its function.

Although IL-27 shares gp130 with IL-6, IL-27 stimulation induced

STAT1 activation in addition to STAT3 activation, suggesting that

86 gene activation may be mediated by STAT1 or a combined

STAT1 and STAT3 pathway; this pathway may contribute to the

anti-HIV effect in 27-Mac.

To determine whether 27-Mac is a subtype that has converted

into another subtype, we compared the 86 genes in 27-Mac with

signature gene profiles of other macrophage subtypes (M1, M2a,

M2b, M2c, M3, M4, Mreg, Mhem, and Mox), and CD38, CXCL9,

and C1Q were identified as common genes shared with other
Frontiers in Immunology 16
subtypes. The majority of 27-Mac expressed CD38 protein on the

cell surface, and CXCL9 and C1Q proteins were significantly

secreted by 27-Mac. CD38 is a biomarker of M1 and Mreg, and

C1Q is a biomarker of M3 macrophages. It appears that 27-Mac

may be converted from M2 macrophages to M1- or Mreg/M3-like

subset. To further elucidate the function of the 27-Mac, a

comparative study using 27-Mac and M1 is necessary; currently,

the comparative study is in progress.

CD38 is a multifunctional transmembrane ectoenzyme

identified as a marker of T- and B-cell activation and

macrophages (131). It functions as a cyclic adenosine

diphosphate-ribose (cADPR) hydrolase, catalyzing the

degradation of cADPR to ADPR and converting nicotinamide

adenine dinucleotide (NAD) to cADPR (131, 132). cADPR

increases the concentration of intracellular calcium (Ca2+) via

calcium channels (133, 134); thus, 27-Mac may regulate Ca2

+-dependent cell signaling such as Ca2+-dependent kinases

(135, 136) and modulate Ca2+-dependent mitochondria function

(137), subsequently cytokine production and differentiation (138).

The increase in intracellular Ca2+ may also activate Ca2+-dependent

transcription factors, such as calcium-responsive transcription

factor (CaRF) (139), cyclic adenosine monophosphate response

element binding protein (CREB) (140), or nuclear factor of

activated T cells (NFATA) (141). Those factors may be involved

in the induction of the 86 unique gene expression in 27-Mac.

cADPR negatively regulates ISG induction (142), suggesting that

CD38 in 27-Mac may be involved in the differential expression of

ISGs. CD38 also plays a role in cell adhesion (132). CD38 can
A B C

FIGURE 9

Distribution of antiviral genes in each subset of macrophages. (A, B) The genes expressed in >40% of cells in either 27-Mac or M2 macrophages
were selected from the 41 antiviral genes (Figure 8). The results of 27 genes in Donor 1 (A) and Donor 2 (B) were analyzed to define gene
distribution and population using UMAP. The genes of interest are colored blue. (C) To ascertain the expression of antiviral proteins in macrophage
subsets, monocytes were obtained from two independent donors and subsequently differentiated into M2 macrophages. M2 macrophages were
then polarized into 27-Mac, 6-M2d, and BAY-M2d as described in the Materials and Methods. Each polarized cell was subjected to Western blotting
analysis using total of 16 antibodies or anti-b-actin as an internal control. Representative results from two independent assays are presented. UMAP,
Uniform Manifold Approximation and Projection.
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function as a receptor with the ability to bind CD31 (PCAM-1).

CD31 is expressed in naïve T-cell population and also macrophages

(143, 144); thus, the interaction of CD38 and CD31 between

macrophages may regulate the 27-Mac cellular function. A

correlation between CD38 and HIV pathogenesis has been

reported (145–147), although these reports focus on CD38

function in T cells rather than macrophages (147). Consequently,
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further studies are necessary to elucidate the role of CD38 in the

ce l lu lar funct ion of 27-Mac and its involvement in

HIV suppression.

CXCL9, also known as a monokine induced by IFN-g (MIG), is

produced by IFN-g, but not by IFN-a/b (148, 149). In the current

study, unpolarized M2 cells produced IFN-g, which is reported to be
produced from M1 but not M2 (150). Since unpolarized cells were
FIGURE 10

Detection of WSX and gp130 on M2 macrophages using FACS. The surface expression of WSX1 and gp130 on M2 macrophages was assessed by
flow cytometry as described in the Materials and Methods. (A) The left and right panels show WSX1 and gp130 (CD130) staining, respectively. The
staining pattern of isotype control antibodies is shown in gray line, and black indicates the protein of interest. The x-axis and y-axis show
fluorescence intensity and cell counts, respectively. The percentages in the panels indicate the percentage of cells expressing WSX1 or gp130 in the
samples. Data are representative of three independent experiments with similar outcomes. (B) Flow cytometric analysis of M2 macrophages showing
the expression of WSX1 and gp130 (CD130) from one donor M2 macrophages. (C) FACS analysis for WSX1 and gp130 expression on M2 cells was
performed using three independent donor cells. Results indicated means ± SE (n = 3). FACS, fluorescence-activated cell sorting.
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cultured in the presence of FBS, the spontaneous production of

IFN-g may be regulated by supplemented serum, and the

production of IFN-g was suppressed in 27-Mac; thus, the

induction of CXCL9 may be IFN-g independent. To further

characterize 27-Mac, a comparative study using 27-Mac and IFN-
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g-treated M2 cells is necessary. CXCL9 acts as a chemoattractant for

T cells via its receptor, C-X-C motif chemokine receptor 3

(CXCR3), on T cells. Therefore, 27-Mac may enhance the

communication between T cells and macrophages and regulate T-

cell function. CD38 is known as a T-cell activation and
FIGURE 11

Distribution of antiviral genes in CD4(+) and CCD5(+) each macrophage. Cells expressing both CD4 and CCR5 (the cutoff is 4 or above for
expression) were selected from whole M2 macrophages, 6-M2d, BAY-M2d, and 27-Mac of Donor 1 (A) and Donor 2 (B). UMAP analysis for CD4
(+)/CCR5(+) cells for each subtype was conducted by extracting them from the UMAP for entire subtype (Figures 7A, B). The UMAPs for genes of
interest were colored blue to demonstrate the expression level. UMAP, Uniform Manifold Approximation and Projection.
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differentiation marker. In our previous studies, we have not

observed the induction in T cells treated with IL-27 (72, 151).

Thus, IL-27 may regulate the activation of the CD38 gene in

macrophages and T cells in a deferential manner.

The expression of WSX1 (also known as TCCR) in monocytes and

macrophages is lower than that in T cells or NK cells (4, 124, 127, 128).

The scRNA-Seq analysis using fresh PBMCs demonstrated that

approximately 1% of total monocytes in PBMCs expressed both

WSX1 and GP130 (personal communication, Xuan Li and Tomozumi

Imamichi, November 27, 2024, Supplementary Table S13). A lower level

of detection of WSX1 or GP130 may be due to the limited depth of

scRNA-Seq; therefore, the value of the expression level may not

accurately reflect the absolute value of the expressed proteins or genes.

Despite the fact that, in the current study, scRNA-Seq analysis illustrated

that 6.25% ± 1.7% (n = 2) ofM2macrophages wereWSX1(+)/GP130(+)

cells, while 3.8% ± 2.2% (n = 2) of 27-Mac expressed WSX1(+)/GP130

(+). Thus, the polarization of M2 to 27-Mac decreased rather than

increased in IL27R-expressing cells; however, 50%–95% of 27-Mac

expressed ISGs (GBP1, GBP2, GBP4, GBP5, APOL3, IFIT2, IFIT3,

STAT1, SERPING1, SOCS1, TAP1, TAP2, VAMP5, and WARS).

It has been reported that the induction of ISGs may not be directly

induced by IL-27; it may be mediated by uncharacterized soluble factor

(s), which are induced by IL-27-responding cells. IL-27-mediated

antiviral mechanism is considered IFN-dependent in human serum-

inducedmacrophages (122); therefore, IFNs were considered the soluble

factors in 27-Mac in the current study. However, enhancement of any

IFN (IFN-a, b, and L) genes was not detected in scRNA-Seq analysis,

and ELISA results using culture supernatants from during polarization

demonstrated that neither IFN-a nor IFN-b was detected. These results

implicate that uncharacterized soluble factors, rather than IFNs, may be

induced by M2 macrophages responding to IL-27. As IL-27 induced

activation of STAT1, some genes are directly activated by IL-27. These

factors may trigger polarization and induce the expression of ISGs and

antiviral genes, including anti-HIV genes. Since scRNA-Seq

demonstrated that each cell expresses multiple different antiviral

genes, 27-Mac may suppress broad viral infection including HIV

through either a single or a combination of the gene products in an

individual cell-dependent and donor-dependent manner; therefore, it

cannot be defined by a single mechanism. In the current study, we

demonstrated for the first time that the A2bAR agonist, BAY60-6583,

inhibits HIV replication in macrophages. The precise mechanism of its

anti-HIV effect remains unclear; however, the expression of the 17 anti-

HIV genes that significantly increased in CD4(+)/CCR5(+) 27-Mac was

not augmented in BAY-M2d (Supplementary Table S10); those genes

appear not to be involved in the anti-HIV effect in the BAY-M2d. BAY-

M2d induced multiple antiviral genes (TLR7, CD74, CES1, HLA-DOA,

CD209, and CMPL2), the products of which may be involved in

resistance to viral infections.

In the current study, 27-Mac is resistant to HIV. The gene

expression profile of 27-Mac was distinct from that of conventional

M2d (IL-6 or adenosine-polarized M2 macrophages). In the current

study, scRNA-Seq analysis was carried out using two independent

donor cells. AlthoughWB, IsoPlexis, and ELISA were conducted using

a total of more than 10 independent donors, the sample size may not be

sufficient to make our findings in general, especially to demonstrate cell
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clustering among 27-Mac, 6-M2d, and BAY-M2d. In the current study,

taking advantage of scRNA-Seq, we found that 86 genes were uniquely

expressed in 27-Mac. Further studies of each gene functionmay help to

understand the specific functional properties of 27-Mac. However, the

results of this study provide new insights into the function of IL-27 and

the potential existence of a novel subset in macrophages resisting broad

viral infection by inducing multiple ISGs in most cells. Although an

effective combination of antiretroviral regimens has been developed for

HIV infection in clinical therapy, the emergence of multidrug

resistance and transmission of drug-resistant HIV strains limit the

clinical efficacy. Since IL-27 has been demonstrated to effectively

suppress HIV, it may serve as a potential agent for treating

multidrug-resistant HIV infection. IL-27 serves as an antiviral

reagent against influenza virus, hepatitis C virus, hepatitis B virus,

cytomegalovirus coxsackievirus B3, respiratory syncytial virus, dengue

virus, chikungunya virus, Zika virus, andMayaro virus in vitro (13, 20–

29). Since the expression profiles of antiviral genes are different among

cells, understanding the exact mechanism of anti-HIV effects in each

infected cell warrants further investigation. Our result supports others

indicating that IL-27 induces ISGs and antiviral effects (26, 86). ROS-

inducing activity is considered an M1 marker (152), and IL-27

treatment enhances ROS induction in M2 cells; therefore, IL-27-

induced polarization may switch M2 into M1 cells like other

reagents (153). Although we need further characterization of 27-Mac

to determine whether the cells are the converted M1 macrophages, IL-

27 may regulate the M1/M2 polarizing ratio, which affects the

development of autoimmune disease (154, 155) or tumor (156) and

immunoregulation and therapeutics (157). Thus, IL-27 may serve as a

potential cytokine-based therapy for various viral infections and

autoimmune diseases, and cancer progression.
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26. Valdés-López JF, Hernández-Sarmiento LJ, Tamayo-Molina YS, Velilla-
Hernández PA, Rodenhuis-Zybert IA, Urcuqui-Inchima S. Interleukin 27, like
interferons, activates JAK-STAT signaling and promotes pro-inflammatory and
antiviral states that interfere with dengue and chikungunya viruses replication in
human macrophages. Front Immunol. (2024) 15:1385473. doi: 10.3389/
fimmu.2024.1385473

27. Kwock JT, Handfield C, Suwanpradid J, Hoang P, McFadden MJ, Labagnara KF,
et al. IL-27 signaling activates skin cells to induce innate antiviral proteins and protects
against Zika virus infection. Sci Adv. (2020) 6:eaay3245. doi: 10.1126/sciadv.aay3245

28. Antas P, Borchert J, Ponte C, Lima J, Georg I, Bastos M, et al. Interleukin-6 and -27 as
potential novel biomarkers for human pleural tuberculosis regardless of the immunological
status. Microbes Infect. (2024) 26:105238. doi: 10.1016/j.micinf.2023.105238

29. Hernández-Sarmiento LJ, Tamayo-Molina YS, Valdés-López JF, Urcuqui-
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