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Hypertension, a globally prevalent condition, is closely associated with T cell-

mediated inflammatory responses. Studies have shown that T cells, by secreting

pro-inflammatory cytokines such as interferon-gamma (IFN-g), Interleukin-17
(IL-17), and Tumor necrosis factor-alpha (TNF-a), directly lead to vascular

dysfunction and elevated blood pressure. The activation of Th1 and Th17 cell

subsets, along with the dysfunction of regulatory T cells (Tregs), is a critical

mechanism in the onset and progression of hypertension. This review explores

the role of T cells in the pathophysiology of hypertension and discusses potential

therapeutic strategies targeting T cell regulation, such as immunotherapy and

gene-editing technologies. These emerging treatments hold promise for

providing personalized therapeutic options for hypertensive patients, reducing

inflammatory complications, and improving treatment outcomes.
KEYWORDS
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1 Introduction

1.1 Background and importance

Hypertension is a globally prevalent cardiovascular disease and one of the leading

causes of cardiovascular events and death. As shown in the chart below, the world’s top 25

countries for hypertension mortality in 2021 demonstrate a significant variation in the

estimated annual death rates attributed to hypertension (1). This highlights the global

burden of the disease and the disparities in hypertension management and control across

different regions (Figure 1)
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According to the latest data from the World Health

Organization (WHO), over 1.1 billion adults worldwide have

hypertension, with 78% residing in low- and middle-income

countries, contributing to approximately 7.5 million deaths

annually, accounting for 12.8% of global mortality. In high-

income countries, the control rate of hypertension is 44%, while

in low- and middle-income countries, it is only 21% (2, 3).In this

context, numerous studies suggest that adopting stricter blood

pressure classification standards, such as the new diagnostic

threshold of 130/80 mmHg, could increase awareness of early

screening and intervention (3). This new standard advances

hypertension diagnosis earlier than the previously lenient

threshold of 140/90 mmHg, aiming to prevent severe

cardiovascular complications later in life through earlier lifestyle

modifications and pharmacological interventions. Additionally,

hypertension prevalence varies significantly across age, gender,

and regions. Among younger adults (20-45 years), men have a

higher prevalence of hypertension than women, whereas in the

elderly population (65 years and older), the prevalence in women

slightly surpasses that in men (4). The higher hypertension control

rate in high-income countries contrasts with the lower rate in low-

and middle-income countries, reflecting disparities in hypertension

management globally (2). Hypertension not only poses a major risk

for cardiovascular events but is also closely related to various organ

system disorders, including stroke, myocardial infarction, and renal

failure (3).
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In recent years, growing evidence has highlighted the connection

between the immune system and the pathogenesis of hypertension,

particularly the crucial role of T cells in hypertension pathophysiology.

T cells, traditionally recognized for their role in immune responses,

directly participate in hypertension development by influencing vascular

endothelial cells and triggering chronic inflammatory responses. Studies

indicate that T cells, through the release of multiple cytokines and

chemokines, can induce endothelial damage and vascular dysfunction,

leading to elevated blood pressure (5–7). RANTES (Regulated on

Activation, Normal T Cell Expressed and Secreted), an important

chemokine, plays a pivotal role in the inflammatory response and T-

cell accumulation associated with hypertension. By promoting T-cell

migration to inflammatory sites, RANTES enhances local immune

responses and exacerbates vascular dysfunction (8). This discovery

provides new possibilities for immune-regulatory targets in

hypertension treatment. In summary, modulating T-cell-mediated

inflammatory responses and balancing T-cell subtypes could represent

potential therapeutic targets for hypertension, promoting the

development of personalized and innovative treatment strategies.
1.2 The clinical status of hypertension and
its health impact

Hypertension is a common chronic disease with a complex

pathogenesis. Long-term hypertension can lead to severe
FIGURE 1

The world’s top 25 countries for hypertension mortality in 2021. Estimated annual death rate attributed to hypertension, also known as high blood
pressure, per 100,000 people.
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complications, particularly affecting the cardiovascular, renal, and

ocular systems, posing significant threats to patient health and

survival. According to WHO statistics, approximately 12.5 million

cardiovascular disease-related deaths each year are associated with

hypertension, including 3.5 million cases of myocardial infarction

and 9.5 million strokes (2). Cardiovascular complications, such as

stroke and myocardial infarction, are particularly prominent; about

54% of strokes are associated with hypertension, and myocardial

infarction is the leading cause of death in cardiovascular patients,

with hypertension increasing its risk by 2-3 times (3). Additionally,

the incidence of chronic kidney disease (CKD) is significantly

higher in hypertensive patients, with hypertension being the

primary cause of 25-30% of end-stage renal disease (ESRD) (9).

Hypertension can also cause retinal damage, impacting vision.

Despite the availability of multiple antihypertensive drugs,

including ACE inhibitors, beta-blockers, and calcium channel

blockers, drug resistance remains a major challenge. Studies

indicate that 15-30% of hypertensive patients develop resistance

to one or more antihypertensive drugs, leading to suboptimal blood

pressure control (10). This resistance may be linked to genetic

differences, metabolic abnormalities, and lifestyle factors such as

high salt intake and lack of exercise (5). Furthermore, patient

compliance is an issue, with about 50% of hypertensive patients

failing to consistently adhere to prescribed medications due to side

effects, adverse reactions, and insufficient understanding of the

disease and treatment. To address this issue, regular blood

pressure monitoring, comprehensive treatments combining

medication and lifestyle interventions, and research into novel

antihypertensive drugs and personalized treatment strategies are

crucial. These measures can enhance hypertension management

and improve patient quality of life (11).
2 Immunological basis
of hypertension

2.1 Interaction between hypertension and
the immune system

Hypertension is a chronic condition, and recent research

suggests a complex interplay between hypertension and the

immune system. Immune cells, which include lymphocytes (such

as T cells and B cells), macrophages, and natural killer (NK) cells,

are responsible for immune surveillance, defense, and homeostasis,

playing key roles in infection defense and tissue repair. During the

pathogenesis of hypertension, immune cell activation and

functional alterations can trigger vascular inflammation

and remodeling.

The interaction between macrophages and T cells is a critical

regulatory mechanism. Macrophages contribute significantly to

endothelial cell damage and inflammation by secreting pro-

inflammatory cytokines like IL-6 and TNF-a, which activate T

cells, thereby exacerbating vascular inflammation (12). This

interaction depends on the macrophage’s functional phenotype,

which ranges from pro-inflammatory M1 to anti-inflammatory M2

(13). This creates a vicious cycle wherein macrophage and T cell
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activation synergistically enhance inflammation, further damaging

the endothelium and worsening hypertension. Activated T cells also

release IFN-g, which amplifies macrophage inflammatory

responses, further damaging the endothelium and promoting

vascular hardening, ultimately driving hypertension progression

(14). Additionally, T cells interact with B cells through CD40

signaling, leading to the production of pro-inflammatory

antibodies (especially IgG) by B cells, which enhance

macrophage-driven inflammation (15–18). Meanwhile, B cells

secrete IL-10 to modulate T cell function and maintain the

balance of T cell subsets (19). For instance, B cells help maintain

the balance between Th1 and Th17 cells, preventing the

differentiation of naïve T cells into these pro-inflammatory

subsets, while promoting Treg expansion to suppress pathological

Th1/Th17 responses (20, 21). This interplay of immune cells

highlights the potential for targeting T cell, B cell, and

macrophage functions as novel therapeutic strategies for

hypertension. By further understanding these interactions,

researchers can explore new therapeutic targets for better

managing hypertension and its complications.
2.2 Role of T cells in hypertension

T cells, as a subset of lymphocytes, play an essential role in the

immune response and have garnered significant attention in the

context of hypertension pathophysiology. T-cell-mediated

inflammation contributes to the progression of hypertension, with

different T cell subsets and their secreted cytokines playing crucial

roles in both the onset and progression of the disease.

Th1 cells, for example, release pro-inflammatory cytokines such

as IFN-g, which are implicated in vascular smooth muscle cell

(VSMC) proliferation and vascular inflammation. Recent studies

have demonstrated that Th1 cells activate the angiotensin II (Ang

II) signaling pathway, promoting VSMC proliferation and

triggering vascular inflammation, which can elevate blood

pressure (14). Th1-mediated inflammation contributes to the

hypertensive pathological process through immune responses that

promote vascular damage.

Similarly, Th17 cells secrete IL-17, which has been shown to

play a significant role in Ang II-induced hypertension. IL-17

exacerbates vascular inflammation, increases vasoconstriction, and

promotes endothelial dysfunction, directly driving the pathological

processes of hypertension (6). Additionally, RANTES (Regulated

upon Activation, Normal T cell Expressed and Secreted), a key

chemokine, not only attracts T cells to inflammatory sites but also

intensifies vascular inflammation, worsening the progression of

hypertension (8).

The imbalance between T-cell subsets is another critical factor

contributing to hypertension. A reduction in regulatory T cells

(Tregs) weakens their inhibitory effect on pro-inflammatory T cells,

such as Th1 and Th17 cells, leading to uncontrolled inflammation

that exacerbates hypertension. This imbalance is particularly

prominent in vascular stiffening, where a lack of Tregs leads to

endothelial dysfunction and inflammatory dysregulation, further

aggravating hypertension (22). Moreover, studies suggest that T
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1550206
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fu et al. 10.3389/fimmu.2025.1550206
cells can maintain immune balance in hypertension by regulating

Th1 and Th17 cell activity, especially in vascular lesions where the

immune balance is disturbed (23).

Recent research has also highlighted the importance of epigenetic

modifications in regulating T-cell function, particularly in

hypertension. Mechanisms such as DNA methylation and histone

modifications alter the activation state of T cells, suggesting that gene

regulation may contribute significantly to the role of T cells in

hypertension beyond just inflammatory responses (24, 25). This

highlights the complex regulatory network that influences T cell

activity and its contribution to hypertension pathogenesis.

Pro-inflammatory cytokines, such as TNF-a, IL-6, and MCP-1,

also play critical roles in T-cell mediated hypertension (26, 27).

TNF-a is linked to chronic inflammation, promoting VSMC

proliferation, vascular hardening, and the activation of the NF-kB
pathway in T cells, further driving vascular damage (28–30). IL-6

and MCP-1, secreted by T cells, activate inflammatory signaling

pathways such as the JAK/STAT pathway, contributing to the

chronic inflammation that exacerbates hypertension (27, 31, 32).

Although these preclinical studies highlight the critical role of T

cells in hypertension, relevant clinical trials are still ongoing.

Further clinical data will help validate these findings and guide

clinical treatment strategies.
3 Molecular mechanisms of T
cell regulation

3.1 Signaling pathways of T cell activation
and differentiation

T cell activation is the cornerstone of immune response, involving

the proliferation and differentiation of T cells into effector cells. This

process requires two signals: the first is delivered through the T-cell

receptor (TCR) and is enhanced by adhesion molecules; the second is

a co-stimulatory signal, provided by the interaction between co-

stimulatory molecules on antigen-presenting cells (APCs) and

receptors on T cells, which amplifies the TCR signal (33, 34). The

first signal alone cannot induce a full immune response in T cells.

Without the second signal, T cells enter a state of anergy, immune

tolerance, or undergo programmed cell death, likely due to limited

activation of the major histocompatibility complex (MHC)-peptide-

TCR complex and internalization of the TCR-CD3 complex. Co-

stimulatory complexes like B7-CD28 can prevent such outcomes (35).

The first signal determines the specificity of T cell activation, while the

co-stimulatory signal directs the functional outcome (36).

Different T cell subsets and their secreted cytokines regulate

inflammation through multiple signaling pathways, which play

critical roles in the pathogenesis of hypertension. T cell activation

and differentiation not only rely on antigen recognition but also

involve intricate signaling cascades, including the TCR, NF-kB,
JAK/STAT, mTOR, and Notch pathways.

The TCR signaling pathway is central to T cell activation. Upon

TCR binding to its antigen, downstream signals such as NF-kB and

MAPK are triggered, promoting T cell proliferation and functional

differentiation (33). TCR activation induces specific T cell subsets (e.g.,
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Th1 cells) to secrete large amounts of pro-inflammatory cytokines,

including IFN-g and TNF-a (33, 37). These cytokines exacerbate

immune responses in hypertension and, through various signaling

pathways, stimulate vascular smooth muscle cell proliferation and

vascular remodeling, leading to further elevation in blood pressure.

The NF-kB signaling pathway plays a crucial role in T cell-

mediated inflammatory responses. Activated by TCR and cytokine

signals, NF-kB regulates the expression of various pro-

inflammatory cytokines, such as TNF-a and IL-6 (37). Sustained

activation of the NF-kB pathway in chronic inflammation

accelerates vascular damage, contributing to endothelial

dysfunction and arterial stiffening (38–40). NF-kB signaling

pathway, activated via Angiotensin II binding to the Angiotensin

II type 1 receptor (AT1R), is involved in pro-inflammatory

responses, promoting vascular smooth muscle cell proliferation

and vascular remodeling, indirectly leading to elevated blood

pressure (40–43). The JAK/STAT signaling pathway is closely

related to T cell differentiation, particularly in the differentiation

of Th17 cells (44). IL-6 activates the JAK/STAT3 pathway, inducing

Th17 differentiation and promoting IL-17 secretion (31, 45–47). IL-

17 amplifies vascular inflammation and endothelial dysfunction,

exacerbating hypertension. Inhibiting the IL-6/JAK/STAT3

pathway reduces Th17 activity, alleviating vascular inflammation

and damage in hypertension (6, 31, 48, 49). The mTOR pathway,

which regulates T cell metabolism, influences T cell differentiation

as well. In hypertension, excessive mTOR activation enhances the

proliferation of pro-inflammatory T cell subsets, such as Th1 and

Th17, aggravating inflammatory responses. Studies in animal

models have shown that mTOR inhibitors can reduce

inflammatory T cell numbers and lower blood pressure (50–52).

The Notch signaling pathway also plays a pivotal role in T cell

differentiation, particularly in regulating Th1 and Th17

differentiation (53). While Notch signaling is linked to pro-

inflammatory T cell activation and its role in vascular

inflammation, whether direct inhibition of Notch can significantly

lower blood pressure in hypertensive patients remains insufficiently

supported. Animal studies suggest that inhibiting Notch signaling

can reduce inflammation, but its effect on lowering blood pressure

alone has not been conclusively demonstrated.

In summary, T cell activation and differentiation signaling

pathways regulate the expression of pro-inflammatory and anti-

inflammatory cytokines, playing an important role in the

pathophysiology of hypertension. Interventions targeting these

signaling pathways offer new avenues for future immunotherapy

in hypertension, particularly in reducing inflammation and

controlling blood pressure (Figure 2)
3.2 Role of epigenetic and post-
transcriptional modifications in T
cell function

Recent studies have increasingly focused on the role of

epigenetic and post-transcriptional modifications in regulating T

cell function. These regulatory mechanisms are crucial not only for

T cell activation, proliferation, differentiation, and maintenance of
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function but are also closely linked to the development and

progression of inflammatory diseases like hypertension.

DNA methylation is a classic form of epigenetic regulation,

catalyzed by DNA methyltransferases (DNMTs), which add methyl

groups to CpG islands within genes, thereby modulating gene

expression. In T cells, DNA methylation plays a key role in

determining their differentiation and functional status (24). For

instance, the Foxp3 gene, which is essential for the differentiation of

regulatory T cells (Tregs), is influenced by its DNA methylation

status (54). Elevated methylation of the Foxp3 gene in hypertensive

patients weakens Treg function, exacerbating immune

inflammation and vascular damage. Research has shown that

reducing the methylation of Foxp3 can restore Treg function,

potentially alleviating hypertension-associated immune

inflammation (55–57).

Not only Tregs, but pro-inflammatory T cell subsets like Th1

and Th17 also rely on DNA methylation for their differentiation.

DNMTs suppress excessive activation of these cells by methylating

key genes (58–61). Studies have shown that inhibiting DNMT

activity can significantly reduce the proliferation of Th1 and Th17

cells and suppress the secretion of pro-inflammatory cytokines,

such as IFN-g and IL-17, thereby alleviating chronic inflammation

in hypertension (61). This mechanism presents new possibilities for

controlling pro-inflammatory immune responses through

epigenetic regulation.

MicroRNAs (miRNAs), as key post-transcriptional gene

regulators, modulate T cell function by binding to target mRNAs,
Frontiers in Immunology 05
inhibiting their translation or inducing their degradation (62).

miRNAs finely regulate T cell activation, differentiation, and

cytokine secretion. For instance, miR-21 is upregulated in

hypertensive patients and regulates Treg function, mitigating

inflammation and improving vascular function (63–65). In

contrast, miR-155 is highly expressed in pro-inflammatory T cells

(e.g., Th1 and Th17 cells), enhancing their inflammatory activity

and promoting the secretion of IFN-g and IL-17, thereby

aggravating vascular inflammation (66, 67). Targeting miR-155

may reduce the secretion of pro-inflammatory cytokines,

alleviating hypertension-related vascular dysfunction (67, 68).

Notably, epigenetic and post-transcriptional modifications are

not isolated processes; they interact to co-regulate T cell fate and

function. For example, miRNAs can influence DNA methylation by

regulating DNMT expression, while also modulating other

epigenetic factors, thus extending the regulatory network of T cell

functions (69). This interaction increases the complexity of T cell

regulation and plays a key role in inflammatory diseases

like hypertension.

In conclusion, epigenetic modifications (such as DNA

methylation) and post-transcriptional modifications (such as

miRNAs) regulate T cell differentiation and function through

multiple layers and pathways, driving the immune pathology of

hypertension. Future research can further explore these regulatory

mechanisms as potential therapeutic targets in hypertension, with

broad clinical applications in reducing vascular inflammation and

improving vascular function.
FIGURE 2

Signaling pathways for T cell activation and differentiation. T cell subsets and their secreted cytokines regulate inflammation through signaling
pathways such as TCR, NF-kB, JAK/STAT, mTOR, and Notch, playing a role in the pathogenesis of hypertension.
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3.3 T cells and hypertension-related
molecular markers

Recent research has revealed that T cells and their secreted pro-

inflammatory cytokines play a central role in the pathogenesis of

hypertension. Th1 and Th17 cells, along with their products, such as

IFN-g, TNF-a, and IL-17, significantly contribute to vascular

inflammation and dysfunction (70). For example, IL-17 induces

local inflammatory responses by activating endothelial cells,

eventually leading to vascular remodeling and hypertension.

Clinical data have shown that IL-17 expression in hypertensive

patients correlates positively with blood pressure levels and

cardiovascular risk (6, 71). IFN-g, by activating the Angiotensin II

signaling pathway, promotes vascular smooth muscle cell

proliferation and exacerbates inflammation, worsening the

condition (72). TNF-a is closely linked to chronic inflammation

and vascular stiffening, activating the NF-kB signaling pathway,

which enhances T cell activation and the release of pro-

inflammatory cytokines, accelerating vascular damage and

remodeling associated with hypertension (73–75).

Targeted interventions against these molecular markers have

become a focus in immunotherapy research for hypertension. For

instance, IL-17 inhibitors have demonstrated significant therapeutic

effects in animal models, not only reducing blood pressure but also

mitigating vascular inflammatory damage (76, 77). Similarly,

blocking IFN-g and TNF-a signaling pathways can reduce vascular

inflammation and remodeling, thereby lowering cardiovascular risk.

Furthermore, epigenetic regulation, such as the methylation

level of the Foxp3 gene, directly affects the anti-inflammatory

function of regulatory T cells (Tregs). Studies have shown that

modulating the methylation state of the Foxp3 gene can enhance

Tregs’ anti-inflammatory activity, potentially alleviating

hypertension-related immune inflammation (78). These findings

underscore the critical role of T cells in hypertension and provide

promising directions for immunotherapy targeting T cell-related

molecular markers, advancing personalized treatment strategies.
4 Clinical review of
hypertension treatments

4.1 Effects of current hypertension
treatments on T cells

4.1.1 Pharmacological treatment
Current hypertension medications influence T cell function

through various mechanisms, thus modulating immune responses

related to inflammation. Common antihypertensive drugs (such as

ACE inhibitors [ACEI] and angiotensin receptor blockers [ARBs])

inhibit Th1 and Th17 cell activity, reducing the secretion of pro-

inflammatory cytokines like IFN-g and IL-17, which significantly

lowers vascular inflammation and improves blood pressure control

(79–82). Calcium channel blockers (CCBs) and diuretics reduce

Angiotensin II levels, indirectly inhibiting T cell activation and pro-

inflammatory cytokine release, thereby preserving vascular function

(83–85). Beta-blockers not only modulate regulatory T cell (Treg)
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function through metabolic and epigenetic pathways but also

promote Treg activation, modulating immune responses and

alleviating chronic inflammation in hypertension (86–88).

Additionally, Tocilizumab, an anti-inflammatory drug targeting

IL-6, is primarily used to treat immune-mediated inflammatory

diseases like rheumatoid arthritis. While its mechanism of

inhibiting Th17 cell activation and reducing inflammatory

cytokines through the IL-6/JAK/STAT pathway has been

validated in other diseases, its application in hypertension

remains in the exploratory phase. Current research has yet to

establish the widespread clinical use of Tocilizumab in managing

immune inflammation in hypertension (89–92). Therefore,

Tocilizumab’s potential role in hypertension warrants further

investigation, though its immunomodulatory mechanism offers

new possibilities for personalized hypertension treatment.

These studies highlight the potential of improving hypertension

treatment outcomes by regulating T cell function, suggesting that

immune modulation not only effectively controls blood pressure

but also reduces hypertension-related inflammation and

vascular damage.

4.1.2 Lifestyle interventions
Lifestyle changes also play a significant role in regulating T cell-

mediated inflammatory responses in non-pharmacological

treatments. Research has shown that the Mediterranean diet, rich

in polyunsaturated fatty acids and antioxidants, effectively inhibits

pro-inflammatory T cell subsets (e.g., Th1, Th17), while increasing

the proportion of regulatory T cells (Tregs), potentially reducing

immune inflammation in hypertensive patients (93, 94). A clinical

study demonstrated that the Mediterranean diet significantly

lowered IL-6 and TNF-a levels in the blood, reducing the risk of

developing hypertension (94–101). Additionally, low-sodium diets

and regular aerobic exercise reduce Th17 cell activation and increase

Treg proportions, significantly lowering blood pressure and reducing

vascular inflammation (94, 102). Exercise interventions also have

important benefits for improving T cell function. Regular aerobic

exercise not only inhibits pro-inflammatory T cell activation and

reduces IL-17 secretion but also promotes the recovery of Treg

function, alleviating vascular inflammation and immune imbalance

(103–108). Exercise also improves obesity-related metabolic

disorders, indirectly modulating T cell activity, further enhancing

vascular function and lowering blood pressure (109, 110).

Thus, lifestyle interventions provide an effective non-

pharmacological treatment strategy for correcting T cell

dysfunction, offering long-term vascular protection for

hypertensive patients, and providing essential evidence for the

development of personalized management plans.
4.2 T cell regulation in novel
therapeutic strategies

4.2.1 Gene therapy
Recent advancements in gene therapy technology have made

significant progress in research on immune regulation related to

hypertension. T cells, particularly regulatory T cells (Tregs), play a
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crucial role in the chronic inflammation associated with

hypertension. Thus, restoring and enhancing Treg function has

emerged as a promising new strategy in hypertension treatment.

CRISPR/Cas9 gene-editing technology has shown great potential

for modulating Treg function, particularly by targeting the

expression of the Foxp3 gene to restore its immunosuppressive

function (111, 112). Foxp3 acts as the central regulator of Treg

function, and hypermethylation of Foxp3 is closely associated with

Treg dysfunction (113, 114). By precisely regulating Foxp3

expression using CRISPR/Cas9 technology, it is possible to restore

the anti-inflammatory properties of Tregs while also reducing the

excessive activation of pro-inflammatory T cells, such as Th1 and

Th17 cells, thus mitigating endothelial damage (111, 115, 116).

Recent studies have further demonstrated that modulating the

methylation status of the Foxp3 gene can enhance Treg-mediated

immunoregulation, which in turn helps alleviate chronic

inflammation in hypertension (114, 117–121).

Despite these promising findings in animal models, the clinical

application of gene therapy for hypertension in humans still faces

significant challenges. These include concerns over the long-term

safety, specificity, and potential off-target effects of gene editing.

Therefore, future research must focus on optimizing the precision

of gene-editing tools like CRISPR/Cas9 and exploring their

individualized application in hypertensive patients to ensure

efficacy and safety under specific pathological conditions.
4.2.2 Cell therapy
Cell therapy, particularly Treg (regulatory T cell)-based therapy,

has shown great potential in the treatment of hypertension. Studies

have demonstrated that the number and function of Tregs are

significantly reduced in hypertensive patients, while the proportion

of pro-inflammatory T cells (e.g., Th17 cells) is elevated,

exacerbating inflammatory responses and subsequently increasing

blood pressure (22, 122–124). Tregs play a key role in immune

regulation by suppressing the release of pro-inflammatory cytokines

such as IL-17 and IFN-g, effectively alleviating hypertension-related
chronic inflammation (125, 126). Therefore, expanding and

reinfusing autologous Tregs to restore their immunosuppressive

abilities has emerged as a promising strategy for improving

hypertension treatment (122, 127).

Moreover, researchers are exploring the genetic modification of

Tregs to further enhance their immunosuppressive function. For

example, using CRISPR/Cas9 technology to modify key regulatory

genes in Tregs, such as Foxp3, can significantly improve Treg

function and stability. Studies have found that genetically

modified Tregs can maintain a longer-lasting anti-inflammatory

effect in vivo, enhancing their ability to control chronic

inflammation caused by hypertension (113, 124).

As technology advances, the application of Treg cell therapy in the

immunoregulatory treatment of hypertension holds even greater

promise. Future research will focus on improving the stability and

safety of Treg cell therapies, particularly in terms of clinical operability.

With further basic research and clinical trials, Treg cell therapy could

become an important therapeutic approach, offering personalized and

effective treatment options for hypertensive patients.
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5 Challenges and future
research directions

Research on T cell regulation in hypertension faces several

significant limitations. A major issue is the small sample sizes in

many studies, which reduce the statistical power of the results and

hinder a comprehensive understanding of hypertension and its

immune mechanisms. Additionally, existing studies tend to focus

on isolated T cell subsets or specific pro-inflammatory factors, often

overlooking the broader, systemic mechanisms that contribute to

the pathogenesis of hypertension. This narrow focus impedes a

holistic understanding of how T cells influence hypertension at a

molecular and physiological level.

Recent advancements in genetics and gene editing technologies,

particularly CRISPR/Cas9, present promising opportunities to

address these challenges (128). One notable development is the

identification of phosphodiesterase 3A (PDE3A) gene mutations

that enhance enzyme activity and are associated with hypertension

with brachydactyly (HTNB) (129, 130). This discovery opens new

avenues for targeted therapeutic interventions, emphasizing the

critical role of genetics in understanding hypertension. However,

it also highlights several hurdles. A primary challenge is the need for

more in vivomodels to confirm the involvement of mutated PDE3A

in hypertension development. Existing animal models often fail to

replicate the immune responses observed in humans, which limits

their utility in fully understanding the genetic-immune interactions

that underlie hypertension (128, 130).

A significant barrier in hypertension research lies in the

inadequacy of current animal models to faithfully simulate

human hypertension, particularly in terms of immune system

involvement. While advanced technologies like CRISPR/Cas9

have been used to generate PDE3A-mutant animal models, these

models do not yet fully capture the immune dynamics of human

hypertension (129, 130). For example, while overexpression of

PDE3A in smooth muscle cells leads to increased vascular

resistance and hypertension, the interaction between these genetic

alterations and immune cells—especially T cell subsets—remains

poorly understood. Further investigation into this aspect is needed

to explore how these mutations impact immune cell function and

contribute to hypertension pathogenesis.

To address these challenges, future research should focus on

developing more refined animal models that better simulate human

immune dynamics, with particular emphasis on T cell regulation.

The interaction between PDE3A mutations and immune cells such

as T cells and macrophages is a critical area of research.

Understanding how PDE3A mutations influence T cell activation

and proliferation could reveal novel gene-targeted therapies for

hypertension. These insights may also help identify new pathways

for modulating immune responses to reduce vascular damage and

improve blood pressure regulation (131).

While these findings provide a solid foundation for future

therapeutic strategies, it is important to explore how T cell-related

discoveries can be translated into clinical applications. For instance,

identifying specific T cell subtypes and their functional alterations

in hypertensive patients may guide patient stratification, risk
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prediction, and individualized treatment strategies, such as the use

of immunomodulatory agents. Furthermore, integrating immune

and genomic data may lead to more precise treatments, improving

patient outcomes and reducing complications. By bridging basic

research to clinical practice, we anticipate that personalized

treatment strategies will become more precise and tailored,

offering new insights into individualized therapy.

Collaboration between genetics, immunology, and cardiology is

essential for advancing this field. By integrating gene editing

technologies with immune modulation strategies, researchers can

create more accurate models of human hypertension, which will

provide a clearer picture of the disease’s underlying mechanisms.

Such integrated research approaches could uncover novel signaling

pathways and mechanisms through which PDE3A mutations

influence vascular changes and contribute to hypertension (131).

In the long term, gene therapy and immunotherapy could

provide exciting new treatment options for hypertension. Future

research should aim to translate findings from animal models into

clinical applications. This includes using gene editing technologies

to precisely target PDE3A mutations or modulate immune

responses to alleviate hypertension (129–131). Overcoming

challenges related to the safety, efficiency, and long-term effects of

gene therapy will be key to bringing these novel approaches into

clinical practice.

In conclusion, while PDE3A mutations represent a promising

therapeutic target for hypertension, much work remains to be done.

The integration of genetic research and immune regulation, coupled

with the development of more precise animal models, will be crucial

for advancing our understanding of hypertension and improving

treatment strategies.
6 Future outlook

In the future, precision medicine and personalized treatment

will become increasingly important in the management of

hypertension. With the rapid development of genomics and

immunology, scientists are expected to gain deeper insights into

the role of T cells in hypertension, enabling tailored treatment plans

for individual patients. Specifically, genomics research can identify

genetic variations related to hypertension, particularly those

affecting T cell function. This will provide a crucial basis for

developing more precise treatment strategies. Moreover, immune

phenotyping can reveal changes in T cell subsets within patients,

helping clinicians select appropriate immunomodulatory drugs and

adjust dosages to optimize therapeutic outcomes.

In this context, interdisciplinary collaboration and technological

innovation will be key drivers of progress. By integrating knowledge

from fields such as cardiology, immunology, and genomics,

researchers can develop novel immunomodulatory drugs and gene

therapies aimed at improving the prognosis of hypertensive patients.

Overall, future research will continue to explore the role of T cells

in hypertension, promote the development of new immunotherapies,

and strive for significant progress in improving patients’ quality

of life.
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7 Conclusion

In conclusion, hypertension remains a global health crisis with

significant mortality rates (102, 132, 133).Recent studies highlight

the critical role of T cells in hypertension pathogenesis, particularly

in immune regulation and inflammatory responses. Dysregulation

of Tregs and the imbalance with pro-inflammatory T cells are

central to hypertension-induced inflammation (134). Targeted T

cell regulation through immunomodulatory drugs, gene therapy,

and cell therapy offers new therapeutic possibilities.

Future research should focus on the interactions between T cells

and other immune cells, exploring new regulatory molecules and

refining animal models. Integrating immune and genomic data

could lead to more precise, personalized treatments, improving

patient outcomes and reducing complications. T cell regulation

holds great potential for advancing hypertension therapy, offering

new insights into individualized treatment strategies.
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