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Epigenetic regulation of placental development and pregnancy-related disease

processes has recently been a hot research topic. Implantation and subsequent

placental development depend on carefully orchestrated interactions between

fetal and maternal tissues, involving a delicate balance of immune factors.

Epigenetic regulation, which refers to altering gene expression and function

without changing the DNA sequence, is an essential regulatory process in cell

biology. Several epigenetic modifications are known, such as DNA methylation,

histone modifications, non-coding RNA regulation, and RNA methylation.

Recently, there has been increasing evidence that epigenetic modifications are

critical for the immune microenvironment at the maternal-fetal interface. In this

review, we highlight recent advances in the role of epigenetics in the immune

microenvironment at the maternal-fetal interface and in epigenetic regulation

and placenta-associated pregnancy complications.
KEYWORDS

epigenetics, DNA methylation, histone modification, non-coding RNA, RNA
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1 Introduction

Pregnancy is a physiological state in which the maternal immune system smoothly

tolerates hemizygous fetal tissues, and several immune mechanisms at the maternal-fetal

interface act synergistically to protect the fetus from rejection (1). The percentage and

function of immune cells in utero changes dynamically at different stages of pregnancy (2).

During normal pregnancy, dynamic interactions between trophoblast cells and decidual

immune cells are required to provide a suitable immune microenvironment for successful

embryo implantation and normal fetal development (3). The most important immune cells

in the human decidua include uterine natural killer (uNK) cells, different T-cell

subpopulations, dendritic cells, and macrophages (4). In addition, humoral factors such

as sex hormones and cytokines secreted by several immune and non-immune cells play an

important role in immune tolerance and pregnancy maintenance (5). An in-depth

understanding of the regulatory mechanisms of the immune microenvironment in fetal
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and maternal tissues will help to understand better the

pathophysiological characteristics of pregnancy-related

complications such as infertility, miscarriage, and pre-eclampsia

(PE), and at the same time, provide a foundation for improving

adverse perinatal outcomes (6).

Epigenetics is defined as protein expression changes that occur

without alterations in the DNA sequence. It can be stably

transmitted during cell proliferation and organismal development

and is closely linked to various pathophysiological processes (7).

Epigenetics is a cutting-edge discipline that has gradually developed

while studying many life phenomena that do not correspond to

traditional genetics. The regulatory modes of action of this process

include but are not limited to, DNA methylation, histone

modification, non-coding RNA (ncRNA) modification, and RNA

methylation. These modes of regulation act individually or interact

with each other (8, 9).

The pivotal role of epigenetic regulation in developing the

maternal-fetal immune microenvironment has garnered

significant scientific interest, with many recent studies published.

This paper aims to provide a review of the epigenetic mechanisms of

the immune microenvironment at the maternal-fetal interface and

an overview of recent advances in epigenetic regulation and

placenta-associated pregnancy complications.
2 An overview of epigenetic
inheritance

“Epigenetics” describes altering gene expression and function

without altering the DNA sequence, resulting in heritable

phenotypes. The concept of epigenetic inheritance was first

proposed by Waddington in the journal Endeavour in 1942 (10).

The primary focus of genetic research is the inheritance or

transmission of genotypes, whereas the process by which

genotypes produce phenotypes is the domain of epigenetics. The

process of epigenetic inheritance encompasses a range of

mechanisms, including DNA methylation, histone modification,

the regulation of ncRNA RNAs, and RNA methylation (Figure 1).

These mechanisms influence the functions and properties of genes,

primarily by regulating their transcription or translation

processes (11).
2.1 DNA methylation

DNA methylation is prevalent in the human genome, and the

normal methylation state of DNA is essential for the typical

structure and function of the organism’s cells. DNA methylation,

as a significant modality in the regulation of epigenetic mechanisms,

refers to the process by which the 5th carbon atom on the CpG

dinucleotide cytosine of a DNA sequence receives a methyl group

from the methyl donor S-adenosyl methionine (SAM) using

covalent bonding under the action of the enzyme DNA

methyltransferase (DNMT). Methyl donor S-adenosyl methionine

(SAM) is used to obtain a methyl group, and the product of this
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reaction is called 5-methylcytosine (5-mC) (12). DNA methylation

is associated with gene silencing, where methylation of CpG

sequences in the promoter or non-promoter regions can inhibit

promoter binding to transcription factors or be recognized and

bound by methyl CpG binding domain (MBD), thereby directly or

indirectly inhibiting gene expression (13). DNA methylation occurs

mainly at CpG islands in eukaryotes and is mainly regulated by

DNMTs and methyl-binding proteins. Five DNMT proteins have

been identified in mammals, but only DNMT1, DNMT3A, and

DNMT3B have methyltransferase activity (14). DNMT1 can

maintain the methylation status of hemimethylated DNA, while

DNMT3A and DNMT3B preferentially act on unmethylated and

hemimethylated DNA, and the TET protein (ten-eleven

translocation, TET) can convert 5-methylcytosine to 5-

hydroxymethylcytosine in order to induce DNA demethylation

(15). At the maternal-fetal interface, DNA methylation exhibits

significant differences in immune cells, which are crucial for

maintaining pregnancy immune tolerance and placental

development (16–18). However, abnormal DNA methylation

regulation may affect embryonic development ability and interfere

with the immune microenvironment of embryo attachment and

maternal-fetal interface, leading to adverse pregnancy outcomes.

Studies have shown that the DNA methylation pattern in human

placenta has a reliable and significant correlation with preeclampsia

(PE) and gestational diabetes (GDM) (19). Especially in PE patients,

the DNA methylation status of non-imprinting genes in the

placenta undergoes significant changes, with genes involved in

cell adhesion, proliferation, invasion, and other functions showing

particularly prominent methylation abnormalities (20).
2.2 Histone modifications

Histone modification refers to acetylation, phosphorylation,

methylation, ubiquitination, and other modifications at histone

amino acid sites (21). These modifications affect the compactness

and accessibility of chromatin in different ways, affecting gene

expression and, consequently, all aspects of biological physiology

and developmental processes. At the same time, histone

modification involves many modification sites and enzymes. Any

abnormal link can lead to the occurrence of diabetes in pregnancy,

recurrent abortion, PE, and other diseases.

2.2.1 Histone acetylation
Acetylation of histones involves introducing acetyl groups to

lysine residues in histone tails. This process is carried out by histone

acetyltransferase (HAT), which adds the acetyl group to catalyze

histone acetylation, and histone deacetylase (HDAC), which

removes the acetyl group for deacetylation (22). Under normal

conditions, histone acetylation is associated with transcription

activation, whereas histone deacetylation is associated with gene

silencing (23, 24). The level of acetylation is determined by the

balance between HAT and HDAC activity and plays an essential

role in chromatin remodeling and transcriptional regulation (25).

Specifically, histone deacetylases 8 and 9 (HDAC8, HDAC9) are
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involved in regulating M1/M2 polarization of macrophages, while

HDAC1 and HDAC2 can promote differentiation and fusion of

placental trophoblast cells by regulating the development of

trophoblast cells (26, 27).

2.2.2 Histone methylation
Histone methylation is an important form of histone

modification that involves adding one, two, or three methyl

groups to certain amino acids in histones, known as mono-, bi-,

and trimethylation, respectively. Although methylation can occur at

many sites in histones, it mainly occurs at lysine (K) and arginine

(R) residues in the tail (28–30). Here, we focus on histone lysine
Frontiers in Immunology 03
methylation because of its importance and range of vital functions.

Histone lysine methylation mainly occurs on histones H3 and H4,

and the six loci of H3K4, H3K9, H3K27, H3K36, H3K79, and

H4K20 have been studied more (31, 32). Usually, H3K4, H3K36,

and H3K39 are involved in transcriptional activation, while H3K9,

H3K27, and H4K20 are involved in transcriptional repression or

silencing, and thus the biological effects will vary according to

different methylation sites and methylation levels (33). At the

maternal-fetal interface, the process of sensitization of trophoblast

cells is closely related to the enhancement of various histone

modifications, including H3K4 trimethylation (H3K4me3), H3K9

acetylation (H3K9ac), and H3K27 acetylation (H3K27ac). The
FIGURE 1

Common epigenetic modifications at the maternal-fetal interface. (A) DNA methylation. DNA methyltransferases (DNMTs) catalyze the covalent
addition of a methyl group (-CH3) to the fifth carbon atom of cytosine (C) in DNA molecules, forming 5-methylcytosine (5mC). (B) Histone
modifications. These include acetylation, phosphorylation, methylation, and ubiquitination, which play critical regulatory roles at the maternal-fetal
interface by modulating chromatin structure and gene transcription activity. (C) Non-coding RNA. MiRNA mainly inhibits gene expression by binding
to the 3 ‘untranslated region of mRNA; lncRNA is ncRNA with a length exceeding 200 nucleotides; CircRNAs are highly conserved circular ncRNAs
that can act as miRNA sponges, bind to RNA binding proteins, or encode proteins. (D) N6-methyladenosine is the most common form of RNA
methylation, which includes three regulatory systems: Writer, Eraser, and Readers. The Writer is responsible for catalyzing the addition of methyl
groups to RNA, thereby promoting RNA methylation and ensuring its stability, such as METTL3 and METTL4. Eraser is responsible for mediating the
demethylation modification process of RNA, such as FTO and ALKBH5. Readers can recognize and bind to the m6A site in mRNA.
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activation of natural killer cells (NK cells) is closely related to H3K4

monomethylation (H3K4me1) and H3K27 acetylat ion

(H3K27ac) (33).

2.2.3 Histone phosphorylation
Histone phosphorylation is achieved by adding phosphate

groups to amino acid residues in histone tails (34). Several

protein kinases catalyze this histone modification, are closely

related to the cell cycle, and can affect the transcriptional

activation of DNA by mediating the recruitment of DNA damage

repair proteins (35). Almost all histones can be phosphorylated at

specific sites, and together with other post-translational

modifications, they regulate a variety of biological processes (36).
2.3 Non-coding RNA

The human genome is highly active at the transcriptional level,

but only about 1.9% of the gene sequence is transcribed into

proteins, while the rest is transcribed into ncRNAs (37). ncRNAs

mainly consist of microRNAs (miRNAs), long-stranded non-

coding RNAs (LncRNAs), and cyclic RNAs (circRNAs) (38).

Among them, miRNAs are between 19 and 23 nucleotide units in

length and mainly play a role in silencing gene expression by

antisense inhibition of the 3’untranslated regions (3’UTR) of

mRNAs (39); LncRNAs are a type of ncRNAs with a length of

>200 nucleotide units (40); circRNAs are a type of highly conserved

ncRNAs that form a closed-loop structure with covalent bonds, and

their mechanism of action mainly includes acting as miRNA

sponges, binding to RNA-binding proteins to regulate

transcription, and encoding proteins (41). Supplementary Table 1

summarizes the association of Maternal-fetal interface immune

cells with ncRNAs.
2.4 RNA methylation

RNA methylation is the most common type of RNA

modification, including N6 methyladenosine (m6A), 5-

methylcytosine (m5C), N7 methylguanine (m7G), and N1

methyladenosine (m1A) (42). Among them, m6A is the most

abundant RNA modification, mainly located in the 3

‘untranslated region (3’ UTR) near the mRNA protein coding

sequence and stops codons, regulating gene expression and

biological functions by controlling RNA metabolism, alternative

splicing, degradation, and translation processes (43, 44). The m6A

methylation modification regulatory system mainly includes three

categories: Writer, Eraser, and Readers. The writer mainly promotes

RNA methylation and maintains its stability, with the most

common molecules being METTL3 and METTL4. Eraser is

responsible for mediating the demethylation modification process

of RNA, such as molecular FTO and ALKBH5. Readers can

recognize and bind to the m6A site in mRNA, shortening the

half-life of mRNA. As an important post-transcriptional regulatory

mechanism, RNA methylation can significantly affect the stability,
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intracellular localization, transport process, splicing mode, and

translation efficiency of RNA (45). Research has shown that this

epigenetic modification exhibits abnormal expression patterns in

various reproductive system diseases, including pathological states

such as PE, spontaneous abortion, endometriosis, and premature

ovarian failure. The root cause of many pregnancy complications

lies in poor implantation. Zhan Hong Zheng et al. (46) found that

mice with Mettl3 deficiency were completely infertile due to

implantation and decidualization failure, revealing that the m6A

modification in the 5 ‘- UTR of Pgr mRNA mediated by METTL3 is

closely related to the signal transduction of normal progesterone. In

addition, the elevated level of RNA demethylase ALKBH5 in

placental villus tissue of patients with recurrent spontaneous

abortion (RSA) may be due to its ability to shorten the half-life of

CYR61 mRNA in an m6A dependent manner and reduce the level

of total m6A modification, affecting the invasiveness of the

trophoblast and leading to miscarriage (47).
3 The role of epigenetic inheritance in
the immune microenvironment at the
maternal-fetal interface

The maternal-fetal interface consists mainly of decidua from the

mother and trophoblast cells from the embryo. The interactions

between decidual immune cells and trophoblast cells form a vast

network of cellular connections. The decidual immune system is

constituted by different subpopulations of maternal immune cells,

including decidual natural killer (dNK) cells, macrophages, and T

cells, among others. Modern reproductive immunology suggests

that imbalances in the immune microenvironment at the maternal-

fetal interface may be involved in the development of pregnancy-

related diseases. Increasing evidence suggests that epigenetic

modifications are critical to the immune microenvironment at the

maternal-fetal interface, and studies on the correlation between the

dynamic function and compositional changes of vital immune cells

(NK cells, macrophages, and T cells) and trophoblasts at the

maternal-fetal interface and epigenetics are described in detail

below (Figure 2).
3.1 The role of epigenetics in maternal-
fetal interface NK cells

3.1.1 Maternal-fetal interface NK cells
NK cells are intrinsic immune cells in the human body and are

found in peripheral blood and endometrium (48). Among them,

peripheral blood (pb) NK cells have two main subpopulations

(CD56bright CD16dim and CD56dim CD16bright), and up to

90% of pNK cells are predominantly CD56dim CD16bright, and

the primary function of pNK cells is highly cytotoxic (49).

Compared to pbNK cells, dNK cells have a different phenotype;

they resemble the CD56brightCD16dimpbNK subpopulation but

have their unique characteristics, are mainly responsible for the

production of cytokines and have poor cytotoxicity (50). Vento-
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Tormo et al. (51) have identified three significant subpopulations of

dNK cells. In early pregnancy, NK cells are present in large numbers

at the maternal-fetal interface, accounting for 70% to 80% of the

decidual lymphocytes, whereas in the human decidua, 10% to 15%

of the cells are decidual lymphocytes (52). Dnk cells are

multifunctional, secreting various growth factors, angiogenic

factors, chemokines, and cytokines. These not only synergistically

promote the metamorphosis process of the endometrium and the

remodeling of the spiral arteries of the uterus, thus laying a solid

foundation for the growth of placental blood vessels and the

construction of the placenta, but also exhibit a unique immune-

regulatory mechanism. NK cells guide the migration of trophoblasts

toward the fetal membranes and spiral arteries while preventing

trophoblasts from being destroyed, thus regulating trophoblast

invasion into the uterine wall and ensuring that the whole process

is safe and smooth (52, 53).

3.1.2 Maternal-fetal interface NK cells and DNA
methylation

Decidual NK cells promote angiogenesis and trophoblast

invasion and are closely associated with placental development

(54). Epigenetic mechanisms such as DNA demethylation and

histone acetylation have been shown to dynamically regulate gene

transcriptional activity in immune cells, including CD8 (+) T cells

and NK cells (18). However, research on the DNA methylation

regulatory network in NK cells at the maternal-fetal interface is still

limited. It is worth noting that the DNA methylation status is

closely related to the activation level of NK cells: activated NK cells

exhibit low methylation characteristics of CpG sites, while primitive

NK cells maintain relatively high methylation levels, indicating that

the methylation status of NK cells has significant plasticity and

reproductivity (55). Hu et al. (17) found that DNA methylation in

chorionic extravillous trophoblast (EVT) cells is regulated by dNK

and the soluble molecules it secretes, which in turn affects EVT

differentiation, adhesion, and migration. This discovery extends the

function of dNK from classical immune regulation to epigenetic-

mediated regulation of trophoblast development. In addition, Ana

Sofia Cerdeira et al. (56) successfully induced dNK-like cell

generation through pharmacological demethylation intervention,

providing evidence for the core role of epigenetic mechanisms in

dNK development. In summary, DNAmethylation is not only a key

epigenetic switch for the dynamic regulation of NK cell function but

also affects the immune microenvironment and placental

development at the maternal-fetal interface through dNK-

mediated methylation remodeling. Future research needs to reveal

the specific regulatory network of DNA methylation in dNK cells

and its impact on pregnancy outcomes.

3.1.3 Maternal-fetal interface NK cells and
histone modification

Histone modifications are essential to promote normal NK cell

development, and the histone H2A deubiquitinase MYSM1

regulates NK cells by controlling transcription factors, the lack of

which severely impairs NK cell development (57). Giuseppe Sciumè

et al. (58) found that activation of NK cells induced enhancer
Frontiers in Immunology 05
regions to H3K4me1 and H3K27ac histone modifications.

Wiedemann et al. (59) used a multi-omics approach to analyze

the complex interactions between cytokine signaling pathways in

NK cells and found that IFN - a can enhance the epigenetic

modification of the H3K4me3 promoter site. Ma et al. (60)

demonstrated that SPA-VSMC has the potential to transform into

CD56 dNK by identifying a small portion of dNK modified with

H3K4me2 in the myosin heavy chain 11 (MYH11) promoter region

through immunofluorescence-DNA in situ hybridization-neighbor-

joining and chromatin immunoprecipitation experiments, which is

the first demonstration that SPA-VSMC has the potential to

transform into CD56 dNK. Zhang et al. (61) showed that

ubiquitin C-terminal hydrolase L1 (UCHL1) can regulate

decidualization through the JAK2/STAT3 signaling pathway.

When UCHL1 is deficient, it can cause damage to decidualization

during pregnancy in mice, leading to miscarriage, and is associated

with a decrease in the number of decidual natural killer cells

(dNKs). Through the above research, we can gain a deeper

understanding of the epigenetic regulatory mechanisms of NK

cells, as well as the pathogenesis of related diseases such

as miscarriage.

3.1.4 Maternal-fetal interface NK cells and non-
coding RNAs

In recent years, multiple studies have revealed the important

role of NK cells in pregnancy and their epigenetic regulatory

mechanisms. Gamliel et al. (62) discovered a unique phenotype

and transcriptional features of NKG2C high NK cell population

in the decidua of women with multiple pregnancies. These

cells showed increased accessibility at the Ifng and Vegfa

loci and exhibited more vigorous IFN - g and VEGF-A

secretion. It provides important clues for understanding how

microenvironmental changes during pregnancy induce epigenetic

reprogramming of NK cells. In terms of miRNA regulation of NK

cells, research (63) found through comparative analysis that 36

miRNAs were expressed explicitly in decidual NK cells. In

comparison, two miRNAs were only expressed in peripheral

blood NK cells, revealing molecular differences in NK cells from

different sources. Another study (64) through miRNA profiling

analysis of decidual NK cells from patients with unexplained

recurrent spontaneous abortion (URSA), 50 differentially

expressed miRNAs were identified, of which 49 were upregulated,

and 1 was downregulated, indicating a close association between

abnormal miRNA expression and URSA. Specifically, researchers

have found through in vitro experiments that upregulated miR-30e

can reduce the cytotoxicity of peripheral blood and decidual NK

cells by targeting PRF1, inhibit Th1 tolerance phenotype, and

induce Th2 immune dominance, thereby promoting the

formation of a micro immune tolerance environment at the

maternal-fetal interface (65). In addition, miR-185-5p is involved

in the occurrence of RSA by interfering with VEGF expression and

angiogenesis in decidual NK cells (66). Fang et al. (67) found that a

decrease in miR-29a-3p levels in villous-derived exosomes of

patients with URSA can increase IFN - g levels in decidual NK

cells. In vivo, experiments in mice revealed that vEXOs carrying
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miR-29a-3p can reduce embryonic resorption in RPL mice.

However, despite significant progress in these studies, the

epigenetic regulatory mechanisms of decidual NK cells have not

been fully elucidated. Further in-depth research is needed regarding

the proportion, functional status, and relationship with epigenetic

regulatory mechanisms of decidual NK cells.

3.1.5 Maternal-fetal interface NK cells and RNA
methylation

In METTL3 deficient NK cells, the absence of m6A

modification leads to a decrease in SHP-2 protein expression,

inhibiting the activation of AKT and MAPK signaling pathways,

and significantly reducing NK cell responsiveness to IL-15. In

addition, the absence of METTL3 disrupts the homeostasis of NK

cells. It inhibits their infiltration and function in the tumor

microenvironment, ultimately accelerating the development of

mouse tumors and shortening their survival period (68).

Although the function of RNA methylation (especially m6A
Frontiers in Immunology 06
modification) in immune cells is gradually being revealed,

research on its role in natural killer cells (NK cells) at the

maternal-fetal interface is still relatively limited. Mother-fetal

interface NK cells (NK cells) are crucial in early pregnancy

embryo implantation, placental formation, and maternal-fetal

immune tolerance. However, their functional regulatory

mechanisms still need further exploration.
3.2 The role of epigenetics in maternal-
fetal interface macrophages

3.2.1 Maternal-fetal interface macrophages
Decidual macrophages are the second largest immune cell

population (10%-20%) in the uterine decidua in early human

pregnancy, second only to the percentage of dNK cells (60%-80%)

(69). Notably, macrophages can be categorized into classically

activated (M1) and alternatively activated (M2) phenotypes based
FIGURE 2

Summarizes the key molecules and modification sites associated with epigenetic regulation in four critical cell types (NK cells, macrophages, T cells,
and trophoblasts) at the maternal-fetal interface. These epigenetic modifications, encompassing DNA methylation, histone modifications, non-
coding RNAs (ncRNAs), and RNA methylation, play pivotal roles in regulating immune tolerance at the maternal-fetal interface and supporting
placental development.
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on their function and the types of cytokines they produce (70). M1

macrophages are pro-inflammatory and are characterized by the

production of higher levels of IL-12 and IL-23, as well as lower levels

of IL-10, thus killing intracellular microbes and inducing Th1

immunity. In contrast, M2 macrophages produce higher levels of

IL-10 and lower levels of IL-12 and IL-23 and perform functions such

as anti-inflammatory and tissue remodeling, as well as the removal of

apoptotic cells and debris (71). At the maternal-fetal interface, the

number and ratio of M1/M2 macrophages change during different

gestation periods. Specifically, M1-type macrophages predominate

during the precomputation period, followed by a transition to a

mixed population of M1 and M2 types; after the establishment of the

placenta, M2-type macrophages dominate (72). Evidence suggests

that an imbalance of M1/M2 macrophages leads to a pro-

inflammatory microenvironment in the endometrium, which is not

conducive to inducing fetal tolerance and further leads to pregnancy-

related disorders such as recurrent miscarriages (73, 74). M1 and M2

macrophages play different roles at different gestational stages; thus,

the maintenance of a normal pregnancy requires that the M1/M2

macrophage is in a state of equilibrium.

3.2.2 Maternal-fetal interface macrophages and
DNA methylation

A study (16) conducted genome-wide methylation analysis on

maternal monocytes, fetal monocytes, decidual macrophages, and

fetal placental macrophages (Hofbauer cells) using Illumina

Infinium Human Methylation 27 BeadChip technology and found

significant differences in DNA methylation among these cell

populations. Notably, genes related to immune response are

highly methylated in fetal cells, while maternal cells exhibit

different methylation patterns. Meanwhile, excessive pro-

inflammatory reactions at the maternal-fetal interface may

jeopardize pregnancy maintenance. At the same time, DNA

methylation may play a protective role in this process by

regulating the anti-inflammatory function of macrophages. In

premature birth studies, genome-wide placental DNA

methylation analysis combined with methylated DNA

immunoprecipitation sequencing (MeDIP-seq) technology

revealed the gene functional characteristics of differentially

methylated regions (DMRs), with a significant enrichment of Fc -

g receptor-mediated macrophage phagocytosis related pathways

(75). This discovery suggests that DNA methylation may be

involved in the mechanism of premature birth by regulating the

phagocytic function of macrophages. In addition, unmethylated

CpG dinucleotides derived from microorganisms can activate Toll-

like receptor 9 (TLR-9), and these DNA activators exert phagocytic

and clearance functions through the production of intrauterine

immune cells (such as macrophages), thereby affecting the immune

microenvironment at the maternal-fetal interface (76). These

studies collectively reveal the important role of DNA methylation

in regulating macrophage function at the maternal-fetal interface

and maintaining pregnancy, providing a new perspective for a

deeper understanding of the epigenetic mechanisms of

pregnancy-related diseases.
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3.2.3 Maternal-fetal interface macrophages and
histone modification

It was found that the expression of HDAC8 was reduced in

decidual macrophages from patients with RSA, and the knockdown

of HDAC8 inhibited M2 macrophage activation and promoted

apoptosis of differentiated THP-1 (dTHP-1) macrophages through

ERK pathway (26). Meng et al. (71) reported that nuclear factor-k B

ligand (RANKL) receptor activator, secreted by human embryonic

trophoblasts and maternal decidual stromal cells, polarizes decidual

macrophages to an M2 phenotype, which is mediated by activation

of Akt/signal transducer and activator of transcription factor 6

(STAT6) signaling, and correlates with the up-regulation of the

histone H3 lysine 27 demethylases, Jmjd3 and IRF4, in decidual

macrophages. Liu et al. (77) found that Hdac9/HDAC9 deficiency

promotes macrophage polarization toward M2 macrophages, while

Hdac9/HDAC9 ablation significantly enhanced phagocytosis of

fluorescent microspheres in M2 Raw 264.7 cells, but reduced the

capacity of THP-1-derived M1 macrophages. These studies

collectively reveal the key role of histone modifying enzymes in

macrophage polarization and functional regulation.

3.2.4 Maternal-fetal interface macrophages and
non-coding RNAs
3.2.4.1 miRNAs

NcRNA can regulate macrophage function and M1/M2

polarization, closely related to the occurrence and development of

various pregnancy-related diseases. Some in vitro experimental

studies have shown that specific miRNAs affect macrophage

polarization by regulating key signaling pathways. For example,

miR-103 and miR-410-5p inhibit the STAT1-mediated signaling

pathway, preventing polarization of M1 macrophages and

preventing RSA (78, 79). MiR-6869-5p induces M2 polarization

in gestational diabetes by regulating PTPRO (80). On the contrary,

miR-657 promotes gestational glucose by targeting FAM46C (81).

In addition, miRNA-30d-5p derived from placental exosomes

induces M2 polarization by inhibiting HDAC9 expression (82).

The low-level miR-455-3p in decidual stromal cells inhibits the

invasion of trophoblast cells by promoting macrophage polarization

(83). MiR-146a-5p has been shown to increase embryo resorption

rate and promote M2 polarization of macrophages in URSA (84).

The article also briefly introduces the relationship between some

miRNAs and macrophages (85).

3.2.4.2 lncRNA

LncRNAs also participate in the regulatory network of

macrophage polarization. Wu et al. (86) found that the expression

of AOC4P was significantly up-regulated in trophoblast cells of

patients with RSA. This molecule inhibits the degradation of EZH2

by regulating TRAF6, thus inhibiting glycolysis in trophoblast cells

and actively participating in the polarization process of M2

macrophages. Xiujun Li et al. (87) confirmed through in vitro

experiments that lncRNA MALAT1 not only regulates the

proliferation and angiogenesis of mesenchymal stem cells (MSCs)

but also promotes M2 polarization by regulating the expression of
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indoleamine 2,3-dioxygenase (IDO). LINC00240 could promote

macrophage polarization toward the M2 type by regulating the

miR-155/Nrf2 axis (88). The knockdown of LINC00221 negatively

regulated the expression of miR-542-3p in trophoblasts to reduce

macrophage migration and invasion (89). These studies provide a

new perspective for elucidating the regulatory role of ncRNA in

macrophage polarization. However, most current research is limited

to in vitro experiments. The mechanism of action of lncRNA is

highly complex, and its function may vary significantly depending

on cell type and pathological state. Therefore, in the future, more in

vivo experiments are needed to verify its biological functions and

further explore its regulatory mechanisms and therapeutic potential

in diseases by combining clinical samples.

3.2.5 Maternal-fetal interface macrophages and
RNA methylation

METTL3 participates in macrophage regulation through

different mechanisms as a “writer” in RNA methylation. Low

expression of METTL3 can inhibit the degradation of NOD1 and

RIPK2 mRNA mediated by YTHDF1 and YTHDF2, thereby

upregulating the NOD1 pathway and subsequently promoting

LPS-induced macrophage inflammatory response (90). Another

study showed that METTL3 could promote oxLDL-induced

macrophage inflammatory response by activating STAT1

signaling (91). Zhao et al . (92) co-cultured ALKBH5

overexpressing cell lines with THP-1 and found that the N6

methyladenosine regulatory factor ALKBH5 damaged

macrophage recruitment and M2 differentiation by reducing

VEGF secretion in stromal cells, leading to miscarriage.

Meanwhile, inhibiting VEGF signaling can help discover changes

in macrophage polarization in different pregnancy complications

(93). In addition, Cox analysis found that M2 macrophages were

positively correlated with the m6A regulatory factor FTO and

negatively correlated with CBLL1 (94).
3.3 The role of epigenetics in maternal-
fetal interface T lymphocytes

3.3.1 Maternal-fetal interface T lymphocytes
In early pregnancy, 30% to 45% of the decidual T cells are CD4+

T cells at the maternal-fetal interface, and 45% to 75% are CD8+ T

cells (95). Under normal conditions, a dynamic balance is maintained

between CD4+ and CD8+ T lymphocytes (96). CD4+ T cells are

mainly helper T cells (Th) and regulatory T cells (Treg) (97). CD4+

helper T cells (Th) are classified into Th1, Th2, and Th17 cells

according to the type of cytokines they secrete (98). Th1 cytokines

promote macrophage activation and cytotoxicity and mainly mediate

cellular immune responses (99). Th2 cytokines mediate humoral

immune responses, promote eosinophil and mast cell differentiation,

inhibit immune inflammation, reduce excessive damage, and have

immunotoxic effects (100). After conception, maternal recognition of

the fetus and maintenance of pregnancy is achieved through the

immune balance between Th17/Treg, Th1/Th2 cells, and the

dominant Th2-type cells (101). The large amount of Th2-type
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cytokines at the maternal-fetal interface inhibits the production of

Th1-type cytokines through a negative feedback effect, suppresses

TDTH and CTL cell activity, and thus inhibits rejection (102). Some

subpopulations of maternal-fetal interface T cells help EVT invade

the endometrium and promote embryo implantation and placenta

formation, whereas other subpopulations are closely associated with

pregnancy complications (103). The classical pattern of immune

regulation in human pregnancy is a shift in maternal immune

response from an inflammatory Th1 cytokine pattern to a Th2

pattern, with maternal-fetal interface decidual T cells playing a

crucial role in regulating the placental microenvironment and

recognizing fetal antigens (104).

3.3.2 T-lymphocytes and DNA methylation at the
maternal-fetal interface

Research has shown that the methylation levels of Th1/Th2

pathway genes exhibit dynamic changes at different stages of

pregnancy. During normal pregnancy, the methylation levels of Th2

pathway genes change more significantly in the early stages of

pregnancy. In contrast, the methylation levels of Th1 pathway CpG

genes change more frequently in the late stages of pregnancy,

suggesting that the temporal regulation of Th1/Th2 gene

methylation is closely related to the maintenance of pregnancy

(105). Abnormal DNA methylation can participate in the

occurrence of pregnancy-related diseases through multiple

pathways. It can disrupt the immune balance at the maternal-fetal

interface by regulating the proliferation, differentiation, and cellular

activity of Th and Treg cells, thereby promoting pathological processes

such as recurrent RSA (106). Comparative analysis reveals that RSA

patients exhibit abnormal FOXP3 promoter hypermethylation in

decidual tissues, resulting in suppressed FOXP3 expression and

subsequent disruption of maternal-fetal immune tolerance,

potentially representing a key molecular pathway in RSA (107).

3.3.3 T-lymphocytes and histone modification at
the maternal-fetal interface

Histone methyltransferase Nsd2 was found to upregulate

CXCR4 expression through H3K36me2 modification, promoting

Treg cell recruitment into the decidua to ensure maternal-fetal

immune tolerance (108).

3.3.4 T-lymphocytes and non-coding RNA at the
maternal-fetal interface

Schjenken et al. (109) found that miR-155 is required to expand

regulatory T cells to mediate robust pregnancy tolerance in mice.

Notably, the expression of miR-33a/b and miR-181a was significantly

down-regulated in patients with RSA and led to a reduction in the

number of Treg cells by negatively regulating the expression level of

the vital molecule sphingosine-1-phosphate receptor-1 (S1PR1)

(110). In patients with PE, miR-106b inhibits Treg differentiation

by suppressing TNF - b expression, while miR-20b and miR-363-3p

upregulate TH17 cell transcription factor ROR g t/STAT3 and

enhance TH17 activity, respectively, leading to Treg/TH17

imbalance (111). It is worth noting that environmental factors can

also interfere with ncRNA networks. For example, Jamie L. McCall
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et al. (112) confirmed that prenatal cadmium exposure activates CD4

+T cells in offspring by upregulating lncRNA Snhg7, suggesting that

exogenous toxic substances may participate in the pathological

process of pregnancy through epigenetic mechanisms.

3.3.5 T-lymphocytes and RNA methylation at the
maternal-fetal interface

METTL3 deficient CD4 (+) T cells disrupt the homeostasis and

differentiation of immature T cells (113). By hybridizingMettl3f/f mice

with Foxp3Cre YFP mice and specifically knocking out Mettl3 in

Tregs, the results showed that the offspring mice’s peripheral lymph

nodes and spleen significantly increased and developed severe

autoimmune diseases and infertility. Mechanism studies have shown

that the absence of Mettl3/m6A leads to an increase in Socs mRNA

levels, inhibiting the IL-2-STAT5 signaling pathway, which is crucial

for the function and stability of Treg cells (114). In addition, METTL3-

dependent m6Amethylation plays a critical role in regulating follicular

helper T cell (TFH) lineage differentiation. Research has found that the

absence of METTL3 in CD4+T cells impairs the function of TFH cells,

leading to a significant reduction in germinal center (GC) response in

METTL3 deficient mice after acute viral infection (115).
3.4 The role of epigenetics in trophoblasts
at the maternal-fetal interface

3.4.1 Trophoblast cells at the
maternal-fetal interface

EVT are one of the main coordinators of immunity at the

maternal-fetal interface (116), actively creating an environment for

tolerogenic phenotypes by expressing a unique set of major

histocompatibility complex (MHC) molecules (117).

3.4.2 Trophoblasts and DNA methylation
DNA methylation in trophoblast cells continues to change

dynamically after implantation and throughout pregnancy, with

the differentiation of cytotrophoblasts into syngeneic trophoblasts

and the acquisition of an invasive phenotype in EVT, both of which

involve extensive DNA methylation changes (118). The study (119)

identified ZBTB24 as an epigenetic regulator that modulates E-

cadherin expression and, thus, cell viability, differentiation, and

migration in trophoblasts by altering DNA methylation in the

promoter region. In addition, dNK can regulate trophoblast

function by altering gene expression through DNA methylation

(120). In summary, these findings reveal the core regulatory role of

DNA methylation in nourishing cells and pregnancy maintenance

at the maternal-fetal interface.

3.4.3 Trophoblast and histone modification
During the sensitization process of BeWo trophoblast cells,

histone markers associated with active transcription (H3K4me3,

H3K9ac, and H3K27ac) significantly increased, while the levels of

inhibitory histone modifications (H3K9me3 and H3K27me3)

remained unchanged (121). This process is consistent with

increased mRNA levels of EP300 and P300/CBP-related factors
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(PCAF). The binding of RNA polymerase II to specific gene

promoters is enhanced during the process of trophoblast

differentiation, which is closely related to active histone markers.

Meanwhile, the downregulation of pro-inflammatory transcription

factors after differentiation of multinucleated syncytiotrophoblasts

is associated with reduced enrichment of H3K27Ac and H3K9Ac

promoters, as well as enhanced binding of H3K9me3 to histone

deacetylase 1 (122). Histone deacetylases 1 and 2 regulate the

development of extrachorionic trophoblast cells and promote the

differentiation and fusion of human placental trophoblast cells (27).

In addition, glycolytic metabolism is involved in regulating the

function of trophoblast cells. Yu et al. (123) found that glycolysis

exhibited high activity in human trophoblast stem cells and

cytotrophoblast cells, whereas it was significantly reduced in

syncytiotrophoblast cells. However, when supplemented with the

glycolytic derivative acetyl coenzyme A, the fusion function of the

syncytiotrophoblast was restored. Of particular note, acetylation of

H3K9, H3K18, H3K27, and H4K16 was particularly sensitive to

glycolysis during syncytiotrophoblast fusion with the metabolism of

acetyl-coenzyme A. These modifications regulated the promoters of

relevant genes involved in syncytiotrophoblast fusion and

metabolism of syncytiotrophoblast cells. In terms of pathological

mechanisms, an in vitro experiment found that knocking down

ACLY disrupts histone acetylation and IL-10 secretion in

nourishing cells, thereby inhibiting M2 polarization of

macrophages. This process is involved in the pathogenesis of RSA

(124). Sumi et al. (125) found that LPS treatment increased SIRT1

expression in mouse placental tissue and human trophoblast cells

and inhibited NLRP3 inflammasome activation in trophoblast cells

by reducing oxidative stress, thereby reducing lipopolysaccharide-

induced IL-1 b levels. These studies collectively reveal the important

role of histone modifications in the differentiation, metabolic

regulation, and pathological processes of trophoblast cells.

3.4.4 Trophoblasts and non-coding RNAs
MiRNAs are equally important in regulating trophoblast

function, and their abnormal expression is closely related to

pregnancy-related diseases. Liang et al. (126) systematically

summarized miRNA regulation on trophoblast function and its

related signaling pathways, providing a theoretical basis for

understanding the mechanisms of pregnancy diseases. Meanwhile,

lncRNA also participates in trophoblast dysfunction through

various mechanisms. The long noncoding RNA DUXAP8 is

significantly upregulated in the placental tissue of PE and can

inhibit biological functions such as proliferation, migration, and

invasion of trophoblast cells. The research team constructed a

pregnant rat PE model to further validate its molecular

mechanism by mediating DUXAP8 overexpression through

adenovirus vectors. The experimental results showed that

DUXAP8 activates the AKT/mTOR signaling pathway, inhibits

endoplasmic reticulum autophagy, and promotes the occurrence

and development of PE (127). In vitro experiments, Inc-HZ01 with

m6A RNAmethylation modification forms a positive feedback loop

with MXD1, which plays a vital role in regulating abortive and

BPDE-exposed trophoblast cell function regulation. This loop
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increases Inc-HZ01 levels by enhancing the RNA stability of MXD1,

which inhibits trophoblast proliferation and induces miscarriage

(128). Circ_0003314 inhibits trophoblast function and induces cell

apoptosis through the miR-26b-5p/IL1RAP signaling axis (129). In

the PE study, circ_0015382 impaired trophoblast function through

the miR-942-5p/NDRG1 axis, and its expression level was

significantly elevated in the placental tissue of PE patients (130).

In addition, Ou et al. (131) found through Pearson correlation

analysis of placental tissue from 25 PE patients that the expression

level of circ_0111277 was significantly higher than that of normal

pregnancy placenta. Mechanism studies have shown that

circ_0111277 participates in the occurrence of PE by regulating

the miR-494-3p/HTRA1/Notch-1 signaling pathway, inhibiting the

invasion and migration ability of trophoblast cells. These research

results indicate that ncRNA participates in the precise regulation of

trophoblast function through a complex regulatory network,

providing potential molecular targets for diagnosing and treating

pregnancy-related diseases. However, the exact molecular pathways

of these regulatory mechanisms still need to be elucidated through

more in-depth in vivo experimental studies, including the

construction of conditional gene knockout animal models.

3.4.5 Trophoblasts and RNA methylation
In vitro experiments showed that knocking down m6A

demethylase ALKBH5 can promote the invasion of HTR-8/SVneo

in trophoblast cells by regulating the stability of CYR61 mRNA,

while overexpression of ALKBH5 has the opposite effect (132).

Meanwhile, Chuanmei Qin et al. (133) found that the expression of

ALKBH5 in the villus tissue of RSA patients was elevated compared

with the control group and confirmed through in vitro experiments

that ALKBH5-overexpression-inhibited RSL3-induced cell death in

the trophoblast by promoting the expression of iron death-related

gene FTL. In addition, the expression of m6A demethylase FTO

protein increased in URSA trophoblast cells, inhibiting m6A

modification of MEG3 and weakening the stabilizing effect of

YTHDC1 protein on MEG3. MEG3 inhibits the expression of the

TGF - b 1 gene by binding to the EZH2 protein and TGF - b 1 gene

promoter, thereby affecting the invasion and proliferation of

trophoblast cells (134). These findings reveal the key role of RNA

methylation in regulating the function of trophoblast cells and its

potential mechanisms in miscarriage.
4 Epigenetic regulation and placenta-
related pregnancy complications

As mentioned above, epigenetic regulation plays a moderately

important role in the immune microenvironment at the maternal-

fetal interface, and their absence or dysfunction may lead to

complications during pregnancy (135). It has been suggested that

normal and abnormal pregnancies lead to changes in cell

populations, which may be facilitated by epigenetic modifications

induced by different pregnancy-associated processes (136). The

placenta, a uniquely evolved organ that develops externally to the

embryo, undergoes rapid growth and fulfills diverse roles
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throughout pregnancy, primarily ensuring a stable and protective

milieu for fetal development. Notably, in recent years, shifts in

lifestyle have coincided with a steady increase in the incidence of

placental-related pregnancy disorders, exerting profound

consequences on both maternal and neonatal health (137).

Table 1 summarizes the association between epigenetic regulation

and placental related pregnancy complications.
4.1 DNA methylation

Abnormal changes in DNA methylation are closely related to

maternal health and fetal development. There are extensive DNA

methylation changes in early-onset PE, among which TGFBR1

induces disease occurrence through a DNMT3A downregulation

mediated DNA methylation-independent pathway (138).

Meanwhile, the low methylation status of placental growth factor

and Fms-related tyrosine kinase-1 further affects placental function

(139). In terms of fetal development, changes in CpG methylation

associated with maternal PE, pre-pregnancy weight loss, and type 2

diabetes risk are significantly associated with low birth weight,

suggesting that placental DNA methylation may serve as a bridge

between maternal metabolic status and the risk of chronic disease in

offspring (140). In addition, epigenetic changes are also associated

with other pregnancy-related diseases. Researchers recruited three

decidua samples from patients with RSA and normal controls. They

systematically identified key genes regulated by DNA methylation

in the decidua and blood of RSA patients through genome-wide

bisulfite sequencing (GWBS) and transcriptome sequencing. They

found that 23 genes exhibited significant methylation and

expression differences between RSA patients and healthy controls,

with hypomethylated differential methylation regions (DMR) and

upregulated differential gene expression (DGE) co-enriched in the

Rap1, GnRH, and Estrogen signaling pathways. Additionally, 32

genes from these three pathways showed significant differences in

DMR between RSA patients and the control group. Hi-MethylSeq

analysis further revealed that SGK1 in RSA patients’ blood and

decidua samples exhibited a high methylation state. At the same

time, SGK3 and CREB5 also showed significant changes in

methylation levels in the decidua (141). T lymphocyte CD3

methylation may mediate psychiatric symptoms such as

depression and anxiety during pregnancy (142). The above

research reveals the extensive role of epigenetic modifications in

pregnancy-related diseases, providing a new perspective for the

mechanism research of related diseases.
4.2 Histone modifications

HDAC 2 expression and activity are down-regulated in

monocytes/macrophages of patients with gestational diabetes,

suggesting the role of histone deacetylation in metabolic disorders

(143). The difference in placental chromatin activity is associated

with fetal growth restriction, and H3K27 acetylation may be

involved in regulating placental function (144). Men1, a member
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TABLE 1 Epigenetic regulation and placenta-associated pregnancy complications.

Epigenetic
modifications

Molecules Mechanisms Diseases Reference

DNA Methylation
DNMT3A Downgrade

Mediates the non-dependent induction of DNA
methylation by TGFBR1

Early onset severe
pre-eclampsia

(138)

Placental growth factor and Fms-
associated tyrosine kinase-
1 hypomethylation

━━ Pre-eclampsia (139)

DNA methylation at the CPG site ━━ Low birth weight (140)

Placental DNA methylation sites
associated with birth weight ━━

Perinatal cardiometabolic status
of the mother, chronic disease
in later life of the offspring

(140)

CD3 methylation in pregnancy
━━

Psychiatric symptoms such as
depression and anxiety

(142)

Histone modification Deletion of Men1, a member of the
histone H3K4
methyltransferase complex

Disruption of terminal differentiation of
stromal cells

Embryo resorption and
pregnancy failure

(145)

H3K18la downgrade Influence on endometrial tolerance Abortion (146)

Knockout of KAT8
Adjustment of H4K16ac/CDX2 axis

Vulnerable to embryo
implantation failure
induced miscarriage

(148)

KDM5CK upward
Regulate the expression of TGFb2 and RAGE

Recurrent
spontaneous abortion

(149)

H3K4me3 and H3K9ac downgrades Regulated by Gal-2 and PPARg Pre-eclampsia (150, 151)

Down-regulation of HDAC 2
expression and activity in
monocytes/macrophages

━━ Gestational diabetes (153)

Up-regulation of miR-153-3p Mediated inhibition of trophoblast function by
the IDO/STAT3 pathway

Unexplained
recurrent miscarriage

(152)

Non-coding RNA
Up-regulation of miR-185-5p

Reduced VEGF Expression and Angiogenesis in
dNK Cells

Recurrent
spontaneous abortion

(66)

Up-regulation of miR-515-5P Reducing HDAC2 levels harms trophoblast cell
biological behavior

Recurrent
spontaneous abortion

(153)

Up-regulation of miR-23a Inhibition of HDAC2 and activation of NF-kB
impede trophoblast migration and invasion and
promote apoptosis

Pre-eclampsia (154)

Down-regulation of miR-199a-5p Reduction of VEGFA expression to inhibit
trophoblast invasion

Pre-eclampsia (155)

RNA methylation
Upregulation of METTL3

Increase the level of m6A RNA methylation and
hnRNPC1/C2 expression in trophoblasts

Pre-eclampsia (157)

Upregulation of METTL14 Increase the level of m6A RNA methylation and
FOXO3a expression and inhibite trophoblast
proliferation and invasion

Pre-eclampsia (159)

Upregulation of RBM15 RBM15 suppresses hepatic insulin sensitivity of
offspring of gestational diabetes mellitus mice via
m6A-mediated regulation of CLDN4

Gestational diabetes Mellitus (160)

Down-regulation of m6A
methylation level

ALKBH5 regulates CYR61 mRNA stability
through m6A dependent mechanism and affects
trophoblast function

Recurrent
spontaneous abortion

(132)

Down-regulation of METTL3 METTL3 mediated ZBTB4 m6A RNA
methylation modification inhibits trophoblast
invasion ability

Recurrent
spontaneous abortion

(161)
F
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of the H3K4 methyltransferase complex, is crucial for endometrial

decidual transformation. Research has shown that abnormal

differentiation of uterine stromal cells in mice with Men1

deficiency can lead to embryo resorption and pregnancy failure

(145). Intriguingly, novel histone acetylation modifications,

including H3K18la, have been identified as critical regulators of

embryo implantation, with reduced levels potentially contributing

to pregnancy loss. Optimal lactate concentrations facilitate

endometrial cell proliferation and apoptosis regulation by

enhancing histone acetylation, creating a favorable environment

for successful embryo implantation (146, 147). Qianying Yang et al.

(147) detected relatively high levels of lactate in the fetal membranes

and endometrial tissues of pregnant sheep and found that lactate

can induce H3K18 acetylation and regulate the balance of redox

homeostasis and apoptosis in the endometrium to ensure successful

implantation RSA is closely related to the abnormal proliferation

and differentiation of early trophoblast cells. Histone

acetyltransferase KAT8 activates downstream gene CDX2 through

H4K16ac, regulating trophoblast cell proliferation. Its absence

increases the risk of embryo implantation failure. Clinical analysis

shows that decreased expression of KAT8, CDX2, and H4K16ac is

associated with RSA (148). Meanwhile, H3K4-specific demethylase

KDM5C affects the function of trophoblast cells by regulating

H3K4me3 demethylation at the promoter of TGF b 2 and RAGE

genes. Overexpression of KDM5C can lead to decreased

proliferation and invasion ability of trophoblast cells. In vivo

experiments further confirmed that overexpression of KDM5C

leads to a significant increase in mouse embryo absorption rate

(149). In addition, the expression of H3K4me3 and H3K9ac in the

placenta of patients with PE is reduced, and these modifications are

regulated by substances such as Gal-2 and PPAR g, suggesting the

potential role of epigenetic modifications in gestational

hypertension (150, 151). In conclusion, histone modification plays

an important role in embryo implantation, placental development,

and pregnancy maintenance by regulating gene expression and cell

function. Its abnormal expression may lead to complications such

as pregnancy diabetes, RSA, and PE.
4.3 Non-coding RNA

Abnormal expression of ncRNA can affect pregnancy outcomes

by regulating the function of trophoblast cells. In RSA, miR-153-3p

is highly expressed in extracellular vesicles derived from decidual

macrophages, inhibiting the proliferation and migration of

trophoblast cells through the IDO/STAT3 pathway (152).

Meanwhile, miR-185-5p expression was elevated in the villi of

RPL patients, and further in vitro experiments showed that miR-

185-5p leads to pregnancy failure by reducing VEGF expression in

dNK cells and decreasing angiogenesis (66). In PE, multiple in vitro

experiments have found that miRNA participates in disease

development by regulating trophoblast cell proliferation,

migration, and apoptosis. For example, miR-515-5P inhibits the
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proliferation, migration, and invasion of HTR-8/SVneo in

trophoblast cells by reducing HDAC2 levels (153). MiR-23a

inhibits HDAC2 and activates NF-kB, hindering the migration of

trophoblast cells and promoting apoptosis (154). MiR-199a-5p

inhibits trophoblast cell invasion by suppressing VEGFA

expression (155). In addition, Fu et al. (156) have outlined the

role of ncRNAs in pregnancy-related complications, which will not

be described in detail here. The results indicate that ncRNA

significantly contributes to the pathogenesis of RSA and PE by

modulating crucial molecular pathways.
4.4 RNA methylation

N6-methyladenosine (m6A) RNA modification is a pivotal

regulatory mechanism in pregnancy-related disorders. In PE, in

vitro studies has found the methylation level of m6A RNA in the

placental trophoblast is significantly increased, and the

methyltransferase METTL3 participates in the pathogenesis by

regulating the expression of hnRNPC1/C2 (157). METTL14

upregulates FOXO3a expression through m6A dependent

mechanism, inhibiting proliferation and invasion of trophoblast

cells (158). At the same time, the m6A-modified circRNA in PE

placenta generally increases, while the m6A modification of

circPAPP2 is enhanced, but its expression is reduced. Its stability

is regulated by IGF2BP3 (159). In gestational diabetes (GDM), the

researchers found that the overall mRNA m6A methylation level in

the fetal liver of the mouse was significantly increased by

constructing a GDM mouse model, and in vitro experiments

revealed that RBM15 mediated m6A modification affected the

insulin sensitivity of offspring by regulating the expression of

CLDN4, leading to metabolic syndrome (160). Compared with

normal early pregnant women, the m6A methylation level in

placental villus tissue of RM patients was significantly reduced,

while ALKBH5 expression was not explicitly regulated. In vitro

experiments have shown that knocking down ALKBH5 promotes

trophoblast invasion, while overexpression inhibits invasion. It may

be that ALKBH5 governs the stability of CYR61 mRNA through a

dependent mechanism, thereby affecting the function of the

trophoblast (132). In addition, In vitro studies have found that

reduced m6A modification mediated by METTL3 can increase

ZBTB4 expression, impair the invasive ability of the trophoblast

layer, and lead to adverse pregnancy outcomes (161). Suqi Wu et al.

(162) further elaborated on the role of m6A modification in

maternal-fetal crosstalk and its potential mechanisms in

pregnancy-related diseases. These findings suggest that m6A

modification plays an important role in pregnancy-related

diseases by regulating different target genes. However, the

complex regulatory network of m6A modification and its specific

functions under different pathological conditions still needs further

exploration. Future research should combine multi-omics analysis

and in vivo experiments to deeply reveal the dynamic regulatory

mechanism of m6A modification at the maternal-fetal interface.
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5 Conclusion and prospect

Successful pregnancy depends on the dynamic balance of

multiple immune factors in the maternal-fetal interface immune

microenvironment (3). The production of maternal autoimmune

antibodies and the imbalance of immune regulation at the

maternal-fetal interface are important factors affecting embryo

implantation and leading to RSA. In recent years, epigenetic

research has revealed the key roles of DNA methylation, histone

modification, ncRNA and RNA methylation in immune regulation

at the maternal-fetal interface. Especially DNA methylation, as the

most promising and sensitive biological marker in epigenetic

modifications, its abnormalities are not only closely related to the

occurrence of various immune-related diseases but can also affect

the immune tolerance at the maternal-fetal interface, leading to the

maternal immune system producing a defensive rejection response

to the embryo (13, 54). Research on DNA methylation in oncology

has shown that it occurs earlier than gene mutations and can

directly obtain relevant genetic material from tissues, providing

the possibility for early prevention and treatment of diseases. The

pathogenesis of immune-type RSA is similar to that of tumors,

characterized by immune cell dysfunction and immune response

suppression. With the deepening of epigenetic research, DNA

methylation is expected to become a key breakthrough point for

targeted diagnosis and precise treatment of immune type RSA,

promoting the rapid development of reproductive medicine.

The epigenetic study of immune regulation at the maternal-fetal

interface provides a new perspective for analyzing pregnancy’s

physiological and pathological mechanisms. By revealing the role of

epigenetic modifications in the maternal-fetal interface immune

microenvironment, researchers can gain a deeper understanding of

the pathogenesis of pregnancy-related diseases and identify effective

targets for immunotherapy. For example, dynamic changes in DNA

methylation and histone modification may become key nodes in

regulating maternal-fetal interface immune tolerance. In addition, the

role of ncRN (such as miRNA and lncRNA) in regulating immune cell

function at the maternal-fetal interface is gradually revealed. These

findings lay a theoretical foundation for developing intervention

strategies for pregnancy-related diseases based on epigenetics.

The fundamental causes of many placental diseases are still

unclear. However, it is now widely believed that immune

dysregulation at the placental interface can lead to many diseases

(135, 163). Meanwhile, compared to genetic changes, epigenetic

abnormalities are more straightforward to reverse. Drugs targeting

specific epigenetic mechanisms involved in gene expression

regulation, and even some nutrients, may become emerging tools

for disease prevention or treatment. In this review, some evidence

suggests that epigenetic modifications of inhibitory compounds or

regulation of noncoding RNA expression through genetic tools may

alleviate placental pregnancy-related diseases caused by immune

dysregulation at the placental interface. These will provide new

ideas for precise prevention and targeted treatment of diseases

related to placental pregnancy.
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Although significant progress has been made in the study of

ep igene t i cs in the materna l - fe ta l in ter face immune

microenvironment, some limitations remain. Existing research has

focused chiefly on single epigenetic modifications (such as DNA

methylation or specific noncoding RNA). In contrast, research on the

interactions and synergistic regulatory mechanisms between multiple

epigenetic modifications is still insufficient. In addition, most studies

rely on in vitro cell experiments or animal models, which make it

difficult to fully simulate the complex immune microenvironment of

the human maternal-fetal interface. However, a great deal of further

research is still needed. Examples include (1) exploring how

dysregulation of immunoregulation at the placental interface leads

to epigenetic alterations in specific genes; (2) identifying human

susceptibility genes in epigenetic alterations induced by dysregulation

of immunoregulation at the placental interface; (3) demonstrating

whether epigenetic alterations can be used as a biomarker for the

early detection of, and therapeutic targeting for, pregnancy-associated

diseases induced by dysregulation of immunoregulation at the

placental interface; (4) developing novel inhibitors targeting

epigenetic modifications;and (5) In-depth study of the interaction

network and synergistic regulatory mechanism among various

epigenetic modifications.
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