
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Immunol.
Sec. Cancer Immunity and Immunotherapy
Volume 16 - 2025 | doi: 10.3389/fimmu.2025.1549656
The final, formatted version of the article will be published soon.
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Background: Although immune checkpoint inhibitors (ICIs) represent a substantial breakthrough in cancer treatment, it is crucial to acknowledge that their efficacy is limited to a subset of patients. The heterogeneity and stemness of cancer render its response to immunotherapy variable, warranting the identification of robust biomarkers for evaluation.Methods: Publicly available Ovarian Cancer (OV) single-cell RNA (scRNA) sequence dataset was collected and analyzed to elucidate the intrinsic driver gene of OV cancer cells. Through genome-scale CRISPR screening of RNA sequencing data from Project Achilles, essential genes specific to OV were identified. A novel cancer stem cell index (CSCI) was developed and validated using multiple advanced algorithms and large-scale datasets, as well as corresponding clinical features, including 14 OV transcriptomic datasets, 7 pan-cancer ICI transcriptomic cohorts and one melanoma scRNA dataset derived from PD-1 treated patients.Results: Chromosomal 20q gain, 8q gain, and 5q loss have been identified as ovarian cancer-specific driving variations. By analyzing large-scale datasets of ovarian cancer transcriptomics, including scRNA and CRISPR cell line datasets, we have identified a gene set that influences tumor intrinsic drivers and stemness properties. We then developed the CSCI to predict the prognosis and response to immunotherapy in ovarian cancer patients using advanced machine learning algorithms. When applied to PD1/PD-L1 ICI transcriptomic cohorts, CSCI consistently and accurately predicts tumor progression and immunotherapy benefits, with a mean AUC greater than 0.8. Notably, compared to previously established signatures, CSCI demonstrates better predictive performance across multiple ovarian cancer datasets. Intriguingly, we discovered that amplification of CSE1L enhances the stemness of tumor-initiating cells, facilitates angiogenesis, and the formation of ovarian cancer, which can serve as a potential therapeutic target. Finally, experiments validated that CSE1L promotes progression, migration, and proliferation of ovarian cancer.Our study has uncovered a robust correlation between variations in cancer intrinsic drivers and stemness, as well as resistance to immunotherapy. This finding provides valuable insights for potential strategies to overcome immune resistance by targeting genes associated with stemness.
Keywords: Cancer stemness, Intrinsic heterogeneity, immunotherapy therapy, CSE1L, ovarian cancer
Received: 21 Dec 2024; Accepted: 16 Apr 2025.
Copyright: © 2025 Li, chen, Ji, Jiang, Wang, Gao, Chen, Tang, Li, Zhang, Qin, Xu, Wang, Han and Mei. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Lei Han, Binzhou Medical University Hospital, Binzhou, China
Jie Mei, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 611731, Sichuan Province, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Supplementary Material
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.