Skip to main content

ORIGINAL RESEARCH article

Front. Immunol.

Sec. Microbial Immunology

Volume 16 - 2025 | doi: 10.3389/fimmu.2025.1549564

The Role of Fusobacterium nucleatum in Macrophage M2 Polarization and NF-κB Pathway Activation in Colorectal Cancer

Provisionally accepted
Chunshan Quan Chunshan Quan *Wei Zheng Wei Zheng Yuxin Wang Yuxin Wang Haoyang Sun Haoyang Sun Nana Bao Nana Bao Shuai Ge Shuai Ge
  • Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian, China

The final, formatted version of the article will be published soon.

    Fusobacterium nucleatum is strongly linked to colorectal cancer (CRC) progression, but its mechanisms for influencing macrophage polarization and tumor development are not well understood. We established an in vitro model of F. nucleatum infection in RAW264.7 macrophages to investigate these processes. Macrophage polarization was evaluated using scanning electron microscopy (SEM), real-time quantitative PCR (RT-qPCR), and immunofluorescence staining. RNA sequencing (RNA-Seq) identified differentially expressed genes (DEGs) and enriched pathways, focusing on the role of the NF-κB signaling pathway in macrophage polarization. F. nucleatum infection induced M2 polarization in RAW264.7 macrophages, as confirmed by SEM analysis and RT-qPCR validation. A total of 2,029 DEGs were identified after F. nucleatum infection, with 763 upregulated and 1,266 downregulated. GO and KEGG enrichment analysis showed that cytokine-cytokine receptor interaction, TNF signaling, and NF-κB signaling pathways are upregulated in macrophages after F. nucleatum infection, indicating enhanced cytokine activity and immune response. Key genes (Nfkb1, Nfkb2, Malt, Lta, Ltb, Tnf) and proteins (P50, P100) in the NF-κB pathway are upregulated, indicating the crucial role of the NF-κB pathway in M2 macrophage polarization. This study offers crucial evidence regarding the role of the NF-κB signaling pathway in modulating F. nucleatum-induced macrophage M2 polarization, underscoring its significance in the progression of colorectal cancer.

    Keywords: Fusobacterium nucleatum, colorectal cancer, Macrophage polarization, NF-κB signaling pathway, Trascriptome

    Received: 21 Dec 2024; Accepted: 12 Mar 2025.

    Copyright: © 2025 Quan, Zheng, Wang, Sun, Bao and Ge. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Chunshan Quan, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    94% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more