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Introduction: The immune-mediated rejection of transplanted organs is a complex

interplay between T cells and B cells, where the recognition of HLA-derived epitopes

plays a crucial role. Several algorithms of molecular compatibility have been

suggested, each focusing on a specific aspect of epitope immunogenicity.

Methods: Considering reported death-censored graft survival in the SRTR dataset,

we evaluated four models of molecular compatibility: antibody-verified Eplets,

Snow, PIRCHE-II and amino acid matching. We have statistically evaluated their

co-dependency and synergistic effects between models systematically on 400,935

kidney transplantations using Cox proportional hazards and XGBoost models.

Results: Multivariable models of histocompatibility generally outperformed

univariable predictors, with a combined model of HLA-A, -B, -DR matching,

Snow and PIRCHE-II yielding highest AUC in XGBoost and lowest BIC in Cox

models. Augmentation of a clinical prediction model of pre-transplant

parameters by molecular compatibility metrics improved model performance

particularly considering long-term outcomes.

Discussion:Our study demonstrates that the use of multiple specializedmolecular

HLAmatching predictors improves prediction performance, thereby improving risk

classification and supporting informed decision-making in kidney transplantation.
KEYWORDS

molecular matching, XGBoost, Snow, PIRCHE, clinical prediction model, kidney
transplantation, epitope matching
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1 Introduction

Recognition of donor tissue in transplantation poses a

significant challenge for long-term survival of kidney grafts (1, 2).

A major concern is the development of antibody-mediated rejection

(ABMR), an immune-mediated process driven by HLA antibodies

that target mismatched HLA proteins on the transplanted organ.

This immune response can lead to graft dysfunction and, if left

unaddressed, graft failure. ABMR has gained prominence as a

leading cause of kidney graft loss, highlighting the significance of

HLA antibodies in post-transplant complications (reviewed in (3)).

In recent years, various approaches have emerged to assess the

recipient’s probability of developing anti-donor HLA antibodies

and achieving histocompatibility (4). These HLA antibodies,

formed as a result of the recipient’s immune system recognizing

foreign HLA antigens on transplanted tissue, can lead to a range of

clinical problems after transplantation, including ABMR.

A detailed comprehension of how antibodies interact with

mismatched HLA holds paramount importance in enhancing the

matching between patients and donors, consequently improving

clinical outcomes. Within this context, the identification of

polymorphic amino acids situated on the surface of HLA proteins

prone to incite an antibody response, has been manually delineated

for a limited number of experimental crystal structures, giving rise

to the concept of Eplets. This notion serves as the basic principle for

the HLAMatchmaker algorithm (5). Subsequent advancements,

such as EMS3D or HLA-EMMA, have further characterized HLA

protein differences by considering physiochemical properties such

as electrostatic dissimilarity or solvent accessible surface area (6–8).

Eplet mismatch loads between patients and donors has been shown

to demonstrate correlations with the formation of DSA (9, 10), graft

rejection and organ loss (11). In addition, the use of EMS3D and

HLA-EMMA models have also demonstrated utility in risk

stratification for DSA and ABMR in the context of heart

transplantation (12, 13).

The expanded availability of HLA crystal structures derived

from a larger variety of alleles and improvements in the field of

protein folding prediction opened opportunities to further fine-tune

studies on accessibility of polymorphic amino acids on mismatched

HLA by HLA-specific antibodies. The recently developed Snowflake

algorithm used these new developments to analyze the surface area

of mismatched amino acids while incorporating HLA protein-

specific structural disparities (14, 15). The Snowflake concept was

extended with the Snowball algorithm, which predicts local ellipsoid

protrusion ranking to more robustly define antibody-accessible

amino acid positions (together “Snow”) (16).
Abbreviations: ABMR, antibody-mediated rejection; AIC, Akaike information

criterion; ANN, artificial neural networks; AUC, area under the curve; BIC,

Bayesian information criterion; DSA, donor-specific HLA antibodies; HLA,

human leukocyte antigen; iAUC, integral AUC; OPTN, Organ Procurement

and Transplantation Network; PIRCHE, Predicted Indirectly ReCognizable HLA

Epitopes; SRTR, Scientific Registry of Transplant Recipients; VIF, variance

inflation factors; HLA, epitope, antibodies, deep-learning, XGBoost, neural

network, protrusion, prediction model.
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The development of donor HLA-specific antibodies is the result

of a coordinated interplay between B cells and T cells, in which HLA-

restricted antigen presentation by the B cell to a CD4-positive T-

helper cell is essential (17, 18). The presented allo T-cell epitopes

involved herein are derived from the B-cell targeted antigen,

following the concept of linked recognition. To incorporate these

concepts into risk stratification for HLA-specific antibody

development, the PIRCHE algorithm was developed (19, 20).

PIRCHE is a computational tool that quantifies the potential

disparity between the HLA molecules of the donor and recipient at

the level of T-cell epitopes. By quantifying these epitope mismatches,

PIRCHE provides insights into the risk of developing HLA-specific

antibodies after transplantation. Various retrospective studies have

demonstrated associations between PIRCHE and transplant outcome

(10, 21, 22). Consequently, PIRCHE aids in identifying patients who

might be at a higher risk of immune responses against the

transplanted organ due to HLA mismatches (23).

While HLA B- and T-cell epitope estimation algorithms have

shown their individual predictive capacity, as outlined above, the

concept of linked recognition suggests that an integrated approach

enhances the precision of the risk classifications (13, 24–26). It is,

however, not yet clear which biological factors play the most

relevant roles in histocompatibility classification. We therefore

evaluated the predictive performance of numerically combining

different molecular compatibility algorithms accounting for the

concept of linked recognition. To this end, we systematically

analyzed Snow, amino acid mismatches, Eplets and PIRCHE for

their impact on outcome by reanalyzing the publicly available

dataset of 542,621 kidney transplants from the Scientific Registry

of Transplant Recipients (SRTR). Moreover, we integrated and

optimized the Snow and PIRCHE prediction algorithms and

identified the most precise configurations to maximize risk

stratification performance. Our data show that specialized B-cell

and T-cell epitope predictions provide independent information on

immunological risk classification, and that combinations of these

predictors to supplement transplant characteristics provides further

insights into histoincompatibility-driven risk.
2 Materials and methods

This study used data from the Scientific Registry of Transplant

Recipients (SRTR). The SRTR dataset includes data on all donors,

wait-listed candidates, and transplant recipients in the US,

submitted by the members of the Organ Procurement and

Transplantation Network (OPTN). The Health Resources and

Services Administration (HRSA), U.S. Department of Health

and Human Services provides oversight to the activities of the

OPTN and SRTR contractors. The data reported here have been

supplied by the Hennepin Healthcare Research Institute (HHRI)

as the contractor for the SRTR. The interpretation and reporting

of these data are the responsibility of the author(s) and in no way

should be seen as an official policy of or interpretation by the

SRTR or the U.S. Government. The study has been approved by

the ethics committee of Virginia Commonwealth University

(HM20030074).
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The cohort considered a total of 542,621 kidney transplantation

patients (data lock 2022-12-22). Low resolution HLA-A/-B/-DR

typings of recipients and donors were used to apply molecular

matching methods. Donor age, African American recipient, donor

ethnicity, CMV mismatch, donor type and retransplantations were

considered as known potential risk factors for model augmentation,

forming a clinical reference model (27–32). Furthermore, recipient

age (33) and Tacrolimus-based maintenance therapy (reviewed by

(34)) were considered as known protective factors for model

augmentation predicting death-censored graft survival. After data

aggregation and filtering for missing data, a total of 400,935 cases

were considered in statistical models (Figure 1).

Considering the overall SRTR dataset contains different epochs of

kidney allocation, a subgroup analysis was performed for

transplantations carried out between December 4th 2014 and

December 3rd 2016 (i.e. two years), which reflects the

implementation of a significant update to OPTN’s kidney allocation

system (KAS). This subgroup consisted of 31,479 transplantations.

Four metrics of HLA molecular compatibility were considered

within this study: Snow, amino acid mismatches, Eplets and

PIRCHE-II, explained in the following.
2.1 Snow matching model

The Snow algorithm (version 1.1) was utilized in this study to

estimate the B-cell immunogenicity of mismatched HLA amino

acids. It consists of two modules; Snowflake and Snowball. The

Snowflake module evaluates the surface area of amino acids by a

neural network that is trained on amino acid configurations and

their respective surface area identified in publicly available crystal

structures complemented by predicted HLA structures

(Figure 2A.1). Amino acids exceeding a specified surface area

threshold are considered exposed (Figure 2A.2). Exposed donor

amino acids not present in the recipient’s self HLA proteins

increases the Snowflake score by one. Notably, the Snowflake
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model takes the variability of surface area across HLA proteins

into account, yielding protein-specific surface maps (14). For the

present study, the Snowflake prediction pipeline was extended to

additionally include the loci HLA-DRB1 and -DQB1 (16).

Considering solvent-accessible surface area alone without

normalizing for respective amino acid size underestimates

accessibility for small amino acids like glycine and overestimates

it for large amino acids like tryptophan. To enhance the accuracy of

prediction of antibody accessibility, the Snowball module has been

suggested (16). Snowball employs a local ellipsoid protrusion

ranking of amino acid positions. During the process, ellipsoids

are iteratively fitted to substructures of atoms found in close

proximity (within 15Å) to the current center atom (Figure 2A.3).

The protrusion of atoms is subsequently ranked based on the

ellipsoid’s axes, with the furthest atom receiving a rank of 1.0 and

the atom centered in the ellipsoid receiving a rank of 0.0. By

calculating the median of protrusion ranks for each structure’s

atom and determining the maximum of atomic protrusion medians

for each residue, the amino acid protrusion rank is defined. The

Snow algorithm considers amino acid positions as exposed if they

surpass both the Snowflake (surface area) and Snowball

(protrusion) thresholds. Distinct, exposed donor amino acids

mismatched with recipient self-HLA, increment the Snow score

by one (Figure 2A.4, also named PIRCHE-B) (16). Mismatches

derived from homozygous alleles are only counted once. The Snow

matching algorithm is available via http://www.pirche.com for

research purposes.
2.2 Amino acid matching

The sum of interlocus Class I and intralocus Class II amino acid

configurations of donor HLA not present at the corresponding

location in patient HLA was considered as the total number of

amino acid mismatches. To that extent, the Snow algorithm was

used without filtering amino acid mismatches by either surface area

or protrusion.
2.3 Eplet matching

Eplet matching was carried out considering both all and

antibody-verified Eplets listed in the HLA Eplet Registry (http://

www.epregistry.com.br, accessed June 2022), respectively (35).

Interlocus donor HLA-specific Eplets not present in the recipient’s

self HLA-specific Eplets were considered as mismatched Eplets. The

number of such Eplet mismatches is considered as Eplet mismatch

score (6).
2.4 T-cell epitope matching

Donor HLA-derived T-cell epitopes presented by recipient

HLA Class II were calculated by two versions of the PIRCHE-II

prediction pipeline; the previously described PIRCHE-II version 3

and the newly released PIRCHE-II version 4.2 (36). PIRCHE
FIGURE 1

The subset of the SRTR kidney transplant dataset considered for
statistical models.
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version 3 (reviewed in (37)) counts the number of HLA-derived

unique allo core peptides with a binding affinity below 1000nM as

predicted by netMHCIIpan 3.2 (38), denoted as PIRCHE-II score

(PIRCHE_II_v3). Following the previously suggested approach of

normalizing PIRCHE-II scores by the respective presenting

molecules’ predicted peptide binding promiscuity, a corrected

PIRCHE-II score (PIRCHE_IIc_v3) was calculated (39).

PIRCHE version 4 was configured to use a newly developed

peptide-HLA binding predictor named Frost for peptide binding by

HLA-DRB1. In short, Frost predicts peptide binding using an

optimum ensemble of 128 Artificial Neural Networks (ANN)

selected from 512 randomly-initialized ANNs that had been trained

and tested using binding data from the IEDB database csv export

(https://www.iedb.org, accessed 2023/03/20) (40). These ANNs input

BLOSUM-62 (41) encoded amino acids from a putative binding core,

as well as encoded amino acids from the binding groove

configuration of the presenting HLA-DRB1, considering two

hidden layers of rectified linear units with Adam optimization (42).

Twenty-five relevant binding groove positions were defined in HLA-

DRB1 by identifying polymorphic amino acid residues in close

proximity (< 4Å) with the bound peptide based on 22 HLA-DRB1

structures from the RCSB PDB (http://www.rcsb.org) (Figure 2B.1)

(43). The ANNs are trained to minimize error from normalized and

allele-specific binding affinities based on IC50 values (Figure 2B.2).
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The final ANN ensembles performed 1000 training iterations, which

proved to be the best performing configuration.

Frost predicts a 9-mer binding core and an allele-specific binding

affinity for every possible 15-mer peptide derived from HLA-A, -B,

-C, -DRB1 and -DQB1. Subsequently, a binding rank is calculated by

comparing the normalized affinity to predicted affinities of random

15-mers derived from human proteins considering the Uniprot

protein database (44). The 128 ensemble ANNs vote on a predicted

binding core, and a final binding rank is defined as the geometric

mean of ranks from those networks which agree on the majority core.

Model inference by the selected ensemble allows estimating binding

affinity for proteins or peptides that haven’t been part of the training

data (Figure 2B.3). The number of unique core peptide binders below

a given permille rank threshold is considered as PIRCHE-II score

(PIRCHE_II_v4, also named PIRCHE-T2). Peptides derived from

homozygous donor loci are only counted once. As Frost incorporates

binding affinity ranking, no binding promiscuity post processing

is performed.

All PIRCHE-II analyses considered HLA-A, -B, -C, -DRB1 and

-DQB1 presented by HLA-DRB1. PIRCHE versions 3 and 4.2

considered HLA protein sequences as reported by IPD-IMGT/

HLA version 3.47 and 3.54, respectively (45). In case of missing

exons, sequences were completed by an iterative nearest neighbor

approach as previously described (46).
FIGURE 2

PIRCHE and Snow molecular compatibility algorithms. Construction of Snow (A.1-4) and PIRCHE-II (B.1-3) molecular matching algorithms. The
Snow predictor fetches crystal structures of the Protein Data Bank (RCSB PDB, www.rcsb.org) and augments these with predicted protein structures
(A.1). For these HLA structures, Snowflake applies a rolling ball algorithm to predict surface area (A.2), while Snowball uses repeatedly fitted ellipsoids to
predict residue protrusion (A.3). Neural networks trained on surface and protrusion data extrapolate the data to allow protein-specific antibody-
accessible amino acid residue matching (A.4). Based on HLA crystal structures, amino acid residues forming the binding HLA groove are identified for
HLA-DR (B.1). Experimental peptide HLA binding data curated in the Immune Epitope Database (IEDB, www.iedb.org) trains a neural network predictor
(B.2). Peptide and protein-specific binding affinity is inferred by a trained ensemble of neural networks to support prediction of donor-derived recipient
HLA-bound peptides (B.3).
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2.5 Imputation of protein-level typings

In order to convert the available low resolution HLA typing data

into protein-level typings, the previously described multiple

imputation approach was applied (47, 48). The reported race/

ethnicity of an individual was mapped to either of the reported

populations within the 2007 NMDP haplotype dataset

(Supplementary Table S1) (49). HLA-C and -DQ alleles were

imputed based on the available HLA-A, -B and -DR typing. The

converted high-resolution haplotype pairs were filtered to a

normalized threshold of 1%. For each high-resolution recipient-

donor combination, molecular compatibility scores were calculated

and aggregated by weighted summation of the respective pair’s

frequency. This process has been automated and integrated as a

web-service (http://www.pirche.com).
2.6 Statistical models

Death-censored graft survival was considered in two statistical

survival models. Firstly, commonly used and well-understood Cox

proportional hazard analyses were applied. Bayesian Information

Criterion (BIC) was calculated on all models to identify optimal

models. Lacking an external validation data set, Cox models fitted on

70% of the dataset (training data) were formed, using the remaining

30% of the data as test data for AUC calculation. The integral of

AUCs (iAUC) were calculated considering the AUC at the 25th, 50th

and 75th percentiles of follow-up time considering Uno’s suggested

AUC estimator using the R package ‘survAUC’ (50, 51). To evaluate

multicollinearity, variance inflation factors (VIF) were calculated for

each models’ variables. Given that Cox models expect linear

correlations but PIRCHE scores have been shown to be superlinear,

log transformation of PIRCHE-II scores were performed as suggested

previously by Lachmann et al. (10) To that extent, the uncorrected

and corrected PIRCHE-II scores were incremented by one to prevent

infinite values, followed by calculating the natural logarithm

(PIRCHE_II_v3_log, PIRCHE_IIc_v3_log, PIRCHE_II_v4_log).

Similarly, log-transformation was applied to Snow, amino acid and

Eplet matching.

Secondly, the tree-based gradient boosting system XGBoost was

applied as a representative of more recent learning algorithms (52).

In particular, XGBoost was selected for delivering powerful

predictions with acceptable computational efficiency, providing a

freely accessible Python library and its comprehensive

documentation. Accelerated failure time models with negative log

likelihood models were trained on 70% of the dataset and evaluated

on the remaining 30% of the data. Prediction performance was

evaluated by iAUC and variable importance. Harrel’s Concordance

Index was calculated for informational purposes only (53).

Hyperparameters were systematically tested for number of trees

(16 to 512, following the power of two) and maximum tree depth (2

to 12, with one increments), yielding 661 trained models per

variable set. Early-stopping of training was allowed if model

performance has not improved for a number of consecutive trees
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(0.5 times the maximum number of trees). A maximum number of

512 bins per feature was selected to compensate for the wide range

of molecular matching scores. Variable importance was evaluated

by gain metric. Log transformation was not applied, given the non-

parametric nature of decision trees.

Model robustness was considered by ten repeats per model

building, using different random seeds, which impacts both the

initial split of training and test data, and following probabilistic

decisions. BIC values of Cox models were scaled per random split to

compensate for random seed-specific BIC magnitude. The

corresponding median BIC was considered for ordering model

performance. For XGBoost models, ensembles of the top 5 best-

performing models considering iAUC of all tested hyperparameter

configurations per random split were considered for competing

model analyses.

Cox models were built and evaluated in R software (R 4.2.2, R

Foundation for Statistical Computing, https://www.r-project.org).

XGBoost models were built and evaluated in python (Python 3.10,

Python Software Foundation, https://www.python.org/). Additional

libraries have been listed in Supplementary Table S2.
2.7 Threshold optimization

Snow and PIRCHE-II configurations were systematically

analyzed considering the Akaike Information Criterion (AIC), with

Snowflake solvent accessibility and Snowball protrusion ranks

ranging from 0.00 and 1.00. To limit computational runtime, Snow

thresholds were incremented in 0.10 steps, with 0.02 increments

between 0.20 and 0.70 (Snowflake) and 0.30 and 0.80. (Snowball),

respectively. Threshold tuples of Snow were denoted as e.g. 0.22/0.54,

which indicates a mismatched amino acid was considered as solvent

accessible if the predicted Snowflake surface area score was above 0.22

and the Snowball protrusion rank was above 54%. PIRCHE‰ ranks

ranged from 5 ‰ to 500 ‰ with a superlinear distribution

(PIRCHErank = [5, 10, 15, 20, 30, 40, 50, 75, 100, 150, 200, 250,

300, 400, 500]). Threshold triples of Snow and PIRCHE-II

additionally denote the binding affinity rank of T-cell epitopes. In

the threshold triple of e.g. 0.22/0.54/100, T-cell epitopes were

considered as PIRCHE-II if their binding affinity rank was below

100‰ (i.e. 10%). Graft survival-specific optimal cutpoints for

PIRCHE-II and Snow scores were estimated by maximally selected

rank statistics as provided by the R survminer package.
3 Results

From the complete SRTR dataset, 400,935 kidney transplant

cases were included in our analyses. Transplantations in this cohort

were carried out between 1991 and 2022 (median 2010) and had a

median follow-up time of 4.85 years (25th percentile: 1.98 years,

75th percentile: 8.97 years) with 76,077 reported graft losses (20%).

Descriptive statistics of cohort demographics and distributions of

molecular matching metrics are provided in Table 1; Figure 3.
frontiersin.org

http://www.pirche.com
https://www.r-project.org
https://www.python.org/
https://doi.org/10.3389/fimmu.2025.1548934
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Niemann et al. 10.3389/fimmu.2025.1548934
3.1 Threshold analysis for the SRTR cohort

Threshold analysis identified a Snowflake/Snowball

configuration of 0.00/0.00 yielding optimal AIC (Supplementary

Figure S1). Notably, this threshold configuration rendered the Snow

algorithm identical to the number of donor amino acid mismatches.

For PIRCHE version 4, the optimal AIC was reached at a

comparatively weak binding affinity rank of 300‰, which is in

line with previously reported weak optimal binding affinity cutoffs

(10). When considering a multivariable model of both Snow and

PIRCHE, more restrictive thresholds of the Snow model appeared

beneficial, whilst the PIRCHE binding rank remained stable. The

optimal AIC was reached at the Snowflake/Snowball/Frost

threshold triple of 0.26/0.68/300 and improved over the

individual models’ optimal AICs. Including HLA-A, -B and -DR

serological matching to the multivariable model outperforms the

previous model. The optimal threshold triple of 0.70/0.66/300 is

only slightly better than 0.26/0.68/300, thus the latter configuration

was considered as optimal Snow configuration in the proceeding

analyses. Threshold analysis revealed the previously presented

Snowflake algorithm (i.e. Snowball threshold fixed at 0.00) being

outperformed by Snow in models combined with PIRCHE and

HLA-A, -B and -DR matching. Performing three consecutive

optimal cut point analyses per metric, optimal PIRCHE-II

(version 4, 300‰) intervals are [0-23), [23-45), [45-69), [69-∞)

(Supplementary Figure S2), optimal Snow (0.26/0.68) intervals are

[0-17), [17-35), [35-47), [47-∞) (Supplementary Figure S3) and

optimal antibody-verified Eplet intervals are [0-6), [6-16), [16-22),
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[22-∞) (Supplementary Figure S4). Supporting its validity, the

optimal Snow configuration includes also the highly exposed

amino acid positions of the majority of reported antibody verified

Eplets (HLA-Class I, 50/74 = 67.6%; HLA-DRB1, 12/17 = 70.6%;

HLA-DQB1, 21/31 = 67.7%; Supplementary Figure S5).
3.2 Competitive model analysis

The competitive model analysis revealed significant correlation of

molecular matching scores and graft survival. Cox regression

identified PIRCHE-II version 4 as the best univariable

histocompatibility metric predicting graft survival (median iAUC =

0.5436), outperforming PIRCHE-II version 3, sum of A/B/DR

mismatches (A_B_DR), Eplet, amino acid and Snow matching

based on optimal BIC and iAUC (Figure 4). Molecular

incompatibility loads appear superlinear with a dampened increase

in hazard at high load scores, justifying log-transformation of these

metrics (Supplementary Figure S6). Log-transformation improved

BIC for all molecular matching metrics (Supplementary Figures S7,

S8) with little to no impact on iAUC. Log-transformed antibody-

verified Eplet load had a beneficial BIC over log-transformed all Eplet

load. This effect persisted in multivariable models combined with

PIRCHE (Supplementary Figure S7). Consequently proceeding

analyses considered antibody-verified Eplets exclusively. All tested

univariable models were statistically significantly correlated with graft

survival (Supplementary Figure S9). The multivariable model of

HLA-A, -B and -DR (A+B+DR) mismatches outperformed the

univariable model of the summed number of mismatches on all

three loci. Combining histocompatibility metrics in multivariable

models generally outperformed models considering only their

respective model components univariably. For example, Eplet

matching combined with HLA-A, -B and -DR matching had a

lower BIC and higher iAUC than either Eplet matching or HLA-A,

-B and -DR matching alone. Considering only metrics of

histocompatibility, competitive model analysis revealed the optimal

BIC for a Cox model considering HLA-A, - and -DRmatching, Snow

and PIRCHE-II version 4 with a median iAUC of 0.5392.

Considering Snow and Eplets in multivariable models

simultaneously revealed elevated VIF for Eplet scores, suggesting

their codependency (Supplementary Figure S9). Consequently, these

covariate combinations were excluded from the analysis.

Using the identified optimal cutpoints, estimated 10 year graft

survival incidence was calculated for risk strata pairs of PIRCHE-II

and Snow (Figure 5A), and PIRCHE-II and Eplets (Figure 5B),

respectively. Notably within each risk group of a metric (i.e. within a

column or within a row), a gradient in graft survival can be observed

based on the respective second metric, indicating the additive value

of the considered metrics for one another.

The clinical reference model (i.e. whether donor and patient are

black, Tacrolimus maintenance immunosuppression, patient and

donor age, living donor, CMV mismatch and the number of pre-

transplants) outperformed histocompatibility models in predicting

graft survival based on improved BIC and median iAUC of 0.6558.

The addition of histocompatibility metrics further improved the

model based on BIC, whilst iAUC remained similar. The optimal
TABLE 1 Demographic data of the 400,935 cases considered in the final
histocompatibility analyses.

Variable Percentage

Patient male 60.57%

Living donor transplantation 33.37%

Donor black 11.91%

Recipient black 24.44%

Tacrolimus maintenance 74.00%

CMV mismatch (Donor pos, Patient neg) 16.99%

First transplants 86.71%

Variable Median (IQR)

Recipient age 51 (22)

Donor age 40 (23)

A-B-DR mismatches 4 (2)

PIRCHE-II v3 70.28 (58.06)

PIRCHE-II v4 (300‰) 56.00 (35.60)

Snow (0.26/0.68) 12.61 (9.52)

Amino acid mismatches 41.29 (26.51)

Antibody-verified Eplet mismatches 17.10 (10.59)

All Eplet mismatches 47.28 (25.76)
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BIC was reached by augmenting the clinical reference model with

HLA-A, -B, and -DR matching, Eplets and PIRCHE (Figure 4), with

a very similar BIC in a model that exchanged Eplets by Snow.

Considering locus-specific molecular matching scores showed only

little impact on BIC. Additional model combinations were tested

and its results provided in Supplementary Figures S7, S8.

Notably, the histocompatibility-augmented clinical models had

a slightly worse short-term prediction performance at 1.98 years

post transplantation. Opposed to that however, an increase in the

long-term prediction performance could be observed for the clinical

models that include histocompatibility and molecular matching

metrics at 8.97 years post transplant (Figure 6).

XGBoost models were trained and hyperparameters were

evaluated systematically considering C index (Supplementary

Figures S11-S13) and iAUC (Supplementary Figures S14-S16).

Optimal hyperparameter configurations per model and random

split were selected for further analyses with median iAUC ranging

between 0.545 for PIRCHE version 3 and 0.557 for an

encompassing model of HLA-A, -B, -DR matching, Snow and

PIRCHE. The model of known clinical risk factors improved

further by joining it with HLA-A, -B, -DR matching, Eplets and

PIRCHE, which resulted in C index and median iAUC of 0.680

(Figure 7). Similar performance was also observed when exchanging

Eplets by Snow or ignoring molecular compatibility and relying

solely on HLA-A, -B, -DR matching. Opposed to the Cox models,

clinical XGBoost models augmented by histocompatibility metrics

improved AUC time-independent (Supplementary Figure S17).

Variable importance of the best-performing XGBoost ensemble

indicated that living donation was the most important variable,

followed by recipient being black, Tacrolimus maintenance, donor

age, number of previous transplantations, HLA-DR mismatch,

recipient age, donor being black, CMV mismatch, PIRCHE,

Snow, and HLA-B and -A mismatch (least important) (Figure 8).
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Notably, although HLA-A and Snow were least important in the

model by an order of magnitude, their importance was still

increased compared to an artificially added random variable,

indicating their relevance (Supplementary Figure S18). The

comparatively low importance of histocompatibility over other

clinical parameters can to some extent be attributed to dividing

histocompatibility into five individual input variables. In models

that only consider one histocompatibility estimator, the variable

importance of the respective metrics is still at a low level, but in the

same order of magnitude as the recipient age (Supplementary

Figure S19).

XGBoost models appeared to have a slightly better performance

based on iAUC of up to 3%. This improved performance applied

both for the histocompatibility-only models and the combined

histocompatibility and clinical parameter models.
3.3 KAS 2014 subgroup analysis

The 2014 KAS subgroup considered 31,479 patients with a median

follow-up time of 5.84 years (25th percentile: 4.28 years, 75th

percentile: 6.16 years) with 3,496 reported graft losses (9%). Complex

Cox models aggregating multiple concepts of histocompatibility mostly

lack statistical significance (Supplementary Figure S20), although the

individual metrics performed well in univariable analysis. Paired with

clinical parameters a high scatter of iAUC can be observed

(Supplementary Figure S21), suggesting underpowered models.

Similarly, XGBoost models did not benefit from more complex

histocompatibility models with HLA-A, -B, -DR matching being the

strongest predictor of histocompatibility. Augmenting the clinical

reference model with molecular matching did not improve them

(Supplementary Figure S22). However, variable importance indicates

that also XGBoost models suffer from insufficient power, with all
FIGURE 3

Histograms of the considered histocompatibility metrics reveal a comparable distribution pattern across all, albeit with very different numeric ranges.
Median is given as a purple vertical line.
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parameters except from living donation and recipient being black not

clearly exceeding the importance of a random control variable

(Supplementary Figure S23).
3.4 Model inference

Ensembles of Cox and XGBoost models were used to infer risk for

all individuals. Patients of the full cohort were split into risk quartiles
Frontiers in Immunology 08
and KaplanMeier plots of death-censored graft survival were generated

(Figure 9). Given matching by HLA-A, -B and -DR is a coarse scale

compared to the fine-grained molecular compatibility metrics, dividing

patients considering the HLA-A, -B, and -DRmatchingmodel into risk

quartiles did not yield equi-sized groups, with denser populated high-

risk groups (Figures 9A, B). Conversely, models including Snow and

PIRCHE matching yielded equi-sized groups with fewer patients being

assigned the high-risk group and more patients being assigned the

lower risk groups (low risk: delta = 6,375, intermediate-low risk: delta =
FIGURE 4

Butterfly plot of model performance of Cox models in terms of scaled BIC (green, left, lower is better, limitless numeric ordinal scale) and iAUC
(purple, right, higher is better, range from zero to one). Each data point corresponds to a model fitted to 70% of the data and evaluated against the
remaining 30% of the data. Top panel considers models only consisting of histocompatibility metrics, bottom panel considers models of known
clinical risk factors in conjunction with histocompatibility metrics. The best histocompatibility model considers HLA-A, -B, -DR mismatching, Snow
and PIRCHE-II. The best clinical models considered HLA-A, -B and -DR mismatch, PIRCHE and ABv Eplets or Snow, respectively. Boxplots depict the
median (horizontal line), first to third quartile (box); the highest and lowest values within 1.5× IQR (whiskers) and outliers (circles), respectively.
FIGURE 5

Estimated 10 year graft survival depending on PIRCHE-II category and Snow (A) or PIRCHE-II and Eplet category (B), considering optimal cutpoints
of the respective metrics (higher graft survival = green, lower graft survival = magenta). Numbers of patients per group are provided in braces.
Example: Transplantations carried out with 6-16 Eplet mismatches have a 10 year graft survival ranging between 75.8% and 67.9%, depending on the
PIRCHE-II being < 23 or ≥ 69.
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27,162) groups (Figures 9C, D). Despite these differences, Cox models

including molecular matching distinguished graft half-life slightly

better compared to HLA-A, -B, -DR matching (Figure 9G) (16.78y

vs 17.47y, 17.65y vs 17.88y, 19.01y vs 18.76y, 22.88y vs 22.72y, for high,

int-high, int-low and low risk, respectively). Although XGBoost models

including molecular matching appeared to predict high-risk patients

best, the advantage of the additional parameters appeared less

pronounced (Figures 9B, D). Both in Cox and XGBoost models, the

higher resolution scale of molecular matching appears to allow for

better discrimination of patients in the lower and higher risk groups,

reflected by the more even distribution of patients (Figures 9A–F).
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4 Discussion

The immunological concept of linked recognition suggests the

value of combining molecular compatibility models, as reported

previously (24–26). The present study pioneers the application of

simultaneous threshold analysis to optimally calibrate and combine

molecular histocompatibility algorithms, offering a novel approach to

aggregating specific pathways of HLA allorecognition for outcome

prediction. Our findings underscore the importance of tuning these

algorithms in conjunction. They suggested optimal configurations

and thresholds for correlation with death-censored graft survival after
FIGURE 7

XGBoost model performance. Butterfly plot of fifty best XGBoost models’ performance in terms of C index (green, left, larger is better, ranging from
zero to one) and iAUC (purple, right, larger is better, ranging from zero to one). Top panel considers models only consisting of histocompatibility
metrics, bottom panel considers models of known clinical risk factors in conjunction with histocompatibility metrics. Boxplots depict the median
(horizontal line), first to third quartile (box); the highest and lowest values within 1.5× IQR (whiskers) and outliers (circles), respectively.
FIGURE 6

Distribution of repeated Cox models’ AUC at 1.98 years (green), 4.85 years (blue) and 8.97 years (magenta, corresponding to the 25th, 50th and 75th
percentiles of the observation period) indicate higher performance of the histocompatibility-augmented models in long-term prediction. Boxplots
depict the median (horizontal line), first to third quartile (box); the highest and lowest values within 1.5× IQR (whiskers) and outliers
(circles), respectively.
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kidney transplantation. Based on these optimal configurations, Cox

and XGBoost models were trained on the continuous molecular

matching metrics. A key strength of our study lies in its consideration

of multiple molecular matching algorithms simultaneously within a

large-scale kidney transplantation cohort. Moreover, with the

substantial patient count in the SRTR dataset, we were empowered

to conduct systematic threshold analyses.

Four distinct molecular compatibility algorithms were applied:

Eplet matching considering antibody-verified Eplets (5, 54), amino

acid matching restricted by protein-specific amino acid surface area

and repeated localized protrusion rank (Snow) (16), prediction of

indirectly recognizable HLA-derived T-cell epitopes (PIRCHE)

(37), and the number of amino-acid mismatches, which also has

been previously shown to associate with graft survival (55). Our

results show that all four algorithms have a strong correlation with

death-censored graft survival (Figures 4, 7). This observation

confirms previous reports of indirect T-cell epitope matching and

Eplet matching in predicting graft survival in the SRTR dataset,

respectively (56, 57). BICs, C statistics and iAUCs improved in

multivariable histocompatibility models using both Cox and

XGBoost models (Figures 4, 7), suggesting additive value of the

metrics. However, molecular mismatch load scores ignoring specific

epitopes’ immunogenicity is a known limitation (58). Furthermore,

the clinical impact of mismatches was shown to vary between HLA

loci, with strongest correlations between incompatible HLA-DQ

and immunological events (10). As such, future iterations of these

algorithms considering immunogenicity-modeling are expected to

improve performance.

Optimal configurations for Snow and PIRCHE in univariable and

multivariable models were identified. The observed shift towards a

more restrictive Snow configuration in multivariable models
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underscores amino-acid matching and to some extent classic antigen

matching being good generalist models to predict impact of both the

antibody pathway and indirect allorecognition pathway

simultaneously, due to their inherent co-dependency on the HLA

amino-acid sequences. A possible explanation could be that in

simultaneous models, the individual predictors are allowed to

specialize for the antibody pathway and indirect pathway,

respectively. Considering donor-specific HLA antibody development

as the observed variable, our presented optimal configurations of Snow

and PIRCHE were applied and validated in an independent cohort of

kidney transplant as reported by Chou-Wu et al (59).

Antibody epitope (i.e. Eplets or Snow) and indirect T-cell

epitope models (i.e. PIRCHE) outperformed the predictive

performance of amino-acid matching when applied in

conjunction. This observation confirms the increased value of

considering specialized prediction models for the different

pathways of allorecognition. In Cox models combining Snow and

Eplets, elevated variance inflation factors for Eplet and Snow scores

confirm the conceptual and statistical similarity between the models

(Supplementary Figure S7), which discourages their simultaneous

use in the same statistical model. Consequently, combining either

PIRCHE and Eplets or PIRCHE and Snow yields comparable

prediction performance both in histocompatibility-only and

combined clinical and histocompatibility models (Figures 4, 5, 7).

The analysis of known risk factors in kidney transplantation

revealed additive value of combining molecular compatibility scores

next to conventional HLA matching, both for Cox models and

XGBoost models, confirming their importance for immunologic

risk assessment. The performance of various model building

frameworks to predict kidney allograft outcome has been reported

to be in the same order of magnitude (60). However, a slight
FIGURE 8

Variable importance based on gain metric (higher is better) of XGBoost model ensemble considering HLA-A (least important), -B, -DR matching,
Snow, PIRCHE-II (PIRCHE_II_v4), donor being black (d_black), recipient being black (r_black), Tacrolimus maintenance (on_TAC), donor age (d_age),
recipient age (r_age), living donor transplantation (LD, most important), CMV mismatch (CMV_MM) and number of previous transplantations
(prev_tx_nmbr). Boxplots depict the median (horizontal line), first to third quartile (box); the highest and lowest values within 1.5× IQR (whiskers) and
outliers (circles), respectively.
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advantage of neural network-based models in predicting survival

after liver transplantation has been reported (61). In our experiments

XGBoost models appeared to have a better prediction performance

with slightly higher iAUC than Cox models. This can likely be

attributed to the non-parametric nature of tree-based learning

algorithms, which maps the non-linear histocompatibility metrics

better to immunologic risk. To account for overfitting, we’ve applied

BIC over the Akaike Information Criterion, which penalizes excessive

model sizes more heavily. Given the lack of a sufficiently powered

external validation cohort in a similar population, we repeatedly

trained and evaluated models considering randomly split data. We
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used Cox and XGBoost only as exemplary statistical frameworks for

the purpose of evaluating relative improvements and interaction of

molecular compatibility scores and did not aim to provide a

comprehensive prediction model of clinical factors impacting post-

transplant care decisions. Opposed to the iBox model (62), which

primarily considers clinical parameters of the follow-up period, our

models solely rely on pre-transplantation parameters, suggesting

consideration of molecular matching in organ allocation and

policy-making.

Although Cox models’ BIC improves when adding molecular

compatibility scores to the reference prediction model of clinical
FIGURE 9

Kaplan Meier plots of selected Cox (A, C, E) and XGBoost (B, D, F) models predicting risk of early graft loss and their corresponding median graft
survival (G). Color indicates the risk predicted by the model ranging from low (purple) to high (green). Labels indicate the number of patients
assigned to the respective risk category, panels indicate the respective model building framework, points indicate the median, error bars indicate the
95% confidence interval of the median graft survival.
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parameters, the iAUC barely changes (Figure 4). However,

evaluating the time-dependent AUC reveals that long-term

prediction improves in models considering histocompatibility,

which offsets the better short-term prediction of models absent of

histocompatibility (Figure 7). The long-term advantage may also

explain the limited impact of molecular matching seen in the 2014

KAS subgroup, given these patients had much shorter observed

follow-up periods and fewer reported events. The domain-specific

information contained in the HLA nomenclature and alleles’

serology continues being a major factor, confirming earlier results

(63). However, with more covariates and non-parametric modeling,

their additive value for prediction appears to decrease.

Our study’s retrospective nature and reliance on the SRTR

dataset, which includes only low-resolution HLA typing

information, may introduce biases or limitations in the findings.

The imputation method for converting low-resolution HLA typing

data to high-resolution typing, despite generally performing well

(48), could introduce inaccuracies affecting the predictive

performance of the models. Additionally, while our manuscript

extensively validates the statistical performance of combining

different histocompatibility models, it also underscores the

complex multifactorial nature of predicting graft survival, which

is clearly not exclusively affected by immunologic reasons. Although

higher levels of histocompatibility appear beneficial for long-term

graft survival, the models’ clinical utility may be stronger for

predicting upstream events, such as antibody formation and graft

pathology. Lastly, the practical implications of implementing these

findings in clinical settings remain to be further explored, namely

how these advanced molecular compatibility scores can be

integrated into organ allocation systems, their potential in

identifying patients for reduced intensity immunosuppression and

their health economic value for personalized diagnostic

monitoring schedules.

In summary, we demonstrated that combining the PIRCHE,

and Snow or Eplet molecular compatibility algorithms with

conventional HLA matching adds value in predicting kidney graft

survival. We found optimal configurations being dependent on the

combination of predictors and provided thresholds for univariable

and multivariable models to best characterize contributions to

outcomes. This suggests that combined specialized predictor

models can improve antigen-level matching, and supports the

hypothesis of linked recognition. It highlights the importance of

simultaneously modeling and accounting for individual pathways of

allorecognition. Further studies are needed to quantify the

predictive performance of simultaneous histocompatibility models

for immunologic events.
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