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Pediatric osteosarcoma, the most prevalent primary malignant bone tumor in

children, is marked by aggressive progression and a generally poor prognosis.

Despite advances in treatment, including multi-agent chemotherapy, survival

rates remain suboptimal, with metastasis, particularly to the lungs, contributing

significantly to mortality. The tumor microenvironment plays a crucial role in

osteosarcoma progression, with immune cells such as tumor-associated

macrophages and T lymphocytes significantly influencing tumor behavior. The

immunosuppressive environment, dominated by M2 macrophages, contributes

to immune evasion and poor therapeutic outcomes, though recent findings

suggest the potential for reprogramming these cells to enhance immune

responses. This review provides a comprehensive overview of the immune

landscape in pediatric osteosarcoma, with a focus on the role of immune cells

and their interactions within the tumor microenvironment (TME). It examines the

impact of immune checkpoints, genetic mutations, and inflammatory pathways

on osteosarcoma progression, highlighting their contribution to tumor immune

evasion and disease advancement. Additionally, emerging immunotherapeutic

strategies, such as immune checkpoint inhibitors, macrophage reprogramming,

and antibody-based therapies, are summarized in detail, showcasing their

potential to improve therapeutic outcomes.
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1 Introduction

Pediatric osteosarcoma is the most common primary malignant

bone tumor in children, representing a major challenge in pediatric

oncology (1). It typically originates in the metaphyseal regions of

long bones, notably the distal femur (43%), proximal tibia (23%),

and humerus (10%) (2). The disease is highly aggressive,

progressing rapidly with poor prognosis and high mortality rates

despite treatment advancements. Pulmonary metastasis is the

predominant site of distant spread, occurring in over 85% of

metastatic cases, followed by bone metastases (3). Recurrence and

metastasis are the main factors contributing to mortality and poor

outcomes in pediatric osteosarcoma (3). Over the past four decades,

multi-agent chemotherapy has yielded only modest survival

improvements (4–7). Although risk factors for recurrence, such as

tumor location and histological response to neoadjuvant

chemotherapy, have been identified (2, 8, 9), risk-adapted

therapies have largely failed to enhance outcomes (5, 10, 11).

Consequently, there is an urgent need to identify new, modifiable

prognostic factors to guide treatment strategies and develop novel

therapies (12, 13).

Inflammation is a key feature in cancer biology, with the tumor

microenvironment (TME) central to tumor progression and

metastasis (14, 15). Immune cell interactions within the TME are

pivotal, as evidenced in melanoma and breast cancer, where

immune profiles correlate with patient outcomes and therapy

responses (16, 17). The osteosarcoma TME comprises immune

cells, osteoblasts, endothelial cells, stromal cells, extracellular

matrix, and signaling molecules (14). Predominantly, tumor-

associated macrophages (TAMs) with an M2 phenotype are

present, alongside T lymphocytes, myeloid cells, and dendritic

cells (18, 19). While M2 TAMs generally associate with poor 5-

year event-free survival, some studies suggest they may reduce

metastasis and improve survival in specific contexts (20). Thus,

targeting immune components in the osteosarcoma TME emerges

as a promising therapeutic strategy (21).

This review summarizes the current understanding of the

immune microenvironment in pediatric osteosarcoma, exploring

the potential immunotherapies and prognostic biomarkers that may

guide future treatment approaches. By elucidating the role of

immune cells, and their influence on disease progression,

this review provides new insights into the pathogenesis of

osteosarcoma and highlight opportunities for developing more

effective and individualized therapies.
2 Immune microenvironment in
pediatric osteosarcoma

2.1 The role of the immune system in
osteosarcoma development

The immune system plays a crucial role throughout all stages of

diseases (22, 23), with immune dysregulation significantly
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contributing to cancer initiation and progression (24). In OS, the

immune system interacts with the TME in a complex manner.

Tumor-infiltrating T cells, which are integral to anti-tumor

immune responses, are activated within the TME (25, 26).

However, these T cells often upregulate inhibitory receptors on

their surface. When these receptors bind to corresponding ligands

expressed by tumor cells, immune activity is suppressed. This

immune suppression leads to a diminished anti-tumor immune

response, allowing tumor cells to escape immune surveillance (27).

Immune checkpoint blockade (ICB) therapy, which aims to disrupt

these receptor-ligand interactions, has shown promise in enhancing T

cell function and improving the immune system’s ability to target and

eliminate cancer cells (28). Numerous clinical studies have

demonstrated the efficacy of ICB in treating a variety of cancers

(29–31), further stimulating research into the immune landscape of

osteosarcoma. These findings underscore the importance of the TME

in osteosarcoma, as it is closely associated with clinical outcomes,

prognosis, and the response to immunotherapy (32, 33).

Understanding the immune system’s role within the TME of

osteosarcoma is critical for advancing therapeutic strategies aimed

at improving outcomes for patients with this aggressive bone

tumor (34).
2.2 Major infiltrating immune cell types in
pediatric osteosarcoma

The immune microenvironment in osteosarcoma is complex,

characterized by diverse immune cell infiltration, though complete

characterization remains elusive (35–37). Macrophages and T cells

are the predominant immune cells within osteosarcoma (38–41).

Elevated levels of infiltrating macrophages and CD8+ T cells

correlate with reduced metastasis and improved survival in

osteosarcoma patients (42–44). Conversely, increased infiltration

of antigen-presenting cells, such as dendritic cells, correlates with

poorer clinical outcomes (45). Natural killer (NK) cells play a

critical role in innate immunity by directly killing tumor cells

through stress-induced ligands and absence of MHC class I

molecules on tumor surfaces (46). However, the osteosarcoma

microenvironment often impairs NK cell function through

various immunosuppressive mechanisms, including the secretion

of inhibitory cytokines and the expression of immune checkpoint

molecules (47). Enhancing NK cell activity through cytokine

therapy or adoptive cell transfer is being explored as a potential

therapeutic strategy in pediatric osteosarcoma (46).

Besides, osteosarcoma cells release PD-L1 to suppress immune

responses (48) and indoleamine 2,3-dioxygenase (IDO) inhibiting

neoantigen generation by dendritic cells (DCs), facilitating immune

escape (49). DCs are essential for antigen presentation and

T cell initiation but are compromised by the tumor-induced

immunosuppressive environment, such as TGF-b and IL-10,

which inhibit DC maturation and antigen-presenting capacity,

reducing effective T cell activation (50). Strategies to restore

DC function, including DC vaccines and agents blocking

immunosuppressive signals, are under investigation to enhance
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anti-tumor immunity in osteosarcoma (50). Additionally, all-trans

retinoic acid (ATRA) suppresses macrophage M2 polarization,

inhibiting lung metastasis (51). Signaling pathways like VEGF, IL-

10A, TGF-b, and STAT3 modulate the immunosuppressive

microenvironment by affecting suppressive cells, macrophages,

and stromal fibroblasts (52). These findings underscore the

pivotal role of the immune microenvironment in osteosarcoma

prognosis and therapeutic outcomes.

Further analysis highlights both homogeneity and heterogeneity

within the osteosarcoma immune microenvironment (53). This may

partly explain the limited efficacy of current immunotherapies in

osteosarcoma, as the TME is dominated by immunosuppressive M2

or non-functional M0 macrophages, hindering effective immune

responses. Patients with CD8+ T cell infiltration may derive greater

survival benefits from immunotherapies. Thus, inducing the

transition of M0 or M2 macrophages to the pro-inflammatory M1

phenotype represents a promising strategy to enhance anti-tumor

immune responses in pediatric osteosarcoma (54). Understanding

immune cell dynamics within the osteosarcoma TME offers new

avenues for more effective immunotherapeutic approaches.
2.3 Immune-related mechanisms in
pediatric osteosarcoma

Understanding the immune-related mechanisms is crucial for

developing targeted immunotherapies for pediatric osteosarcoma.

Recent studies have identified differential expression of immune-

related genes (IR-DEGs) within the TME, predominantly upregulated

and enriched in various immune pathways (27). Macrophages play a

pivotal role in the TME by interacting with other immune cells,

promoting tumor development and progression while also

contributing to tumor suppression through phagocytosis (55).

Furthermore, T-cell cytotoxicity is vital for eliminating tumor cells,

with tumor-infiltrating macrophages modulating T-cell activity,

thereby impacting cancer prognosis and immunotherapy efficacy

(56–58). Genetic mutations in key tumor suppressor genes, such as

TP53, ATRX, and RB1 are extensively associated with osteosarcoma

(59–61). Wu et al. found that mutations in these genes are more

frequent in low-immunity groups, correlating with increased

metastasis (27). Sexual dimorphism in immune responses has been

observed, with significant differences in pathways related to

macrophages, T-cells, B-cells, Th1, Th2, and the complement

system (62, 63). Additionally, sex-specific differences are noted in

the PD-1/PD-L1 immunotherapy pathway and signaling pathways

such as calcium, p53, and cell cycle regulation, suggesting gender-

tailored therapies may enhance outcomes (62).

Long non-coding RNAs (lncRNAs) are crucial regulators in

osteosarcoma, affecting immune cell infiltration in the TME by

modulating immune-related gene expression. A novel modeling

algorithm (64) indicated that metastatic osteosarcoma patients have

reduced activation of memory CD4+ T cells, monocytes, mast cells,

and neutrophils compared to localized cases. irlncRNAs) may
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influence immune responses by regulating chemokine receptors like

CXCR2 in neutrophils (65), and facilitating non-classical monocyte

migration to the lungs, a primary metastasis site (66, 67). Hypoxia,

common in malignant tumors, significantly impacts osteosarcoma

progression by inducing immune cell death and impairing immune

responses within the TME (68), including T-cell and NK cell

activation, thereby fostering an immunosuppressive environment

(69, 70). Moreover, hypoxia enhances VEGF expression, promoting

tumor advancement (71). In conclusion, the immune landscape of

pediatric osteosarcoma is complex, involving macrophages, T-cells,

genetic mutations, gender differences, hypoxia, and lncRNAs,

collectively contributing to tumor progression and immune

evasion, thus offering novel strategies for improving osteosarcoma

prognosis (Figure 1).
3 Advances in immunotherapy for
pediatric osteosarcoma

Osteosarcoma treatment traditionally encompasses chemotherapy,

surgery, and radiation, with methotrexate-based chemotherapy

forming the cornerstone of systemic therapy, supplemented by

agents such as doxorubicin, and cisplatin. Immunotherapy, an

innovative approach in cancer treatment, aims to bolster the

immune system’s capability to combat cancer progression and

establishment (72).
3.1 L-MTP-PE

The most compelling evidence for immune modulation in

osteosarcoma comes from the use of mifamurtide [liposomal

muramyl tripeptide phosphatidylethanolamine (L-MTP-PE)] (72).

Approved for use with standard treatment regimens in non-

metastatic osteosarcoma, it raised the 6-year survival rate from

70% with chemotherapy alone to 78% (73–75). L-MTP-PE activates

macrophages and monocytes, leveraging the immune system’s

cancer-fighting capabilities (74). Punzo et al. observed a

slowdown in OS progression through the activation of

macrophages by L-MTP-PE and notably, its direct action on

MG63 cells. They demonstrated not only the anti-tumor activity

of L-MTP-PE in OS but also induced a shift in macrophage

phenotype from M1/M2, promoting a balance between pro-

inflammatory and immunoregulatory functions (76). L-MTP-PE

also influences bone metabolism, inducing anti-osteoporotic effects

in children undergoing chemotherapy for osteosarcoma (77).
3.2 Antibody therapies in
pediatric osteosarcoma

Antibody therapies like olaratumab, in combination with

doxorubicin, has been approved as first-line for soft tissue sarcomas
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(78), and carotuximab with pazopanib in Phase III trials for

angiosarcomas (79), are gaining ground in osteosarcoma treatment.

Glembatumumab-vedotin targets osteoactive substances overexpressed

on osteosarcoma cells, showing cytotoxic effects in both osteosarcoma

and breast cancer (80–83). Trastuzumab, initially for HER2+ breast

cancer, targets HER2 tyrosine kinase activity critical for cell

proliferation, which is present also in osteosarcoma cells, indicating

its potential for osteosarcoma therapy (84, 85). Research with

nivolumab in humanized mouse models has revealed that while the

primary tumor volume and growth rate of osteosarcoma matched the

control group, the rate of lung metastases was significantly reduced,

underscoring the potential of targeting the tumor microenvironment

with immunotherapy (54).
3.3 Innovative immunotherapy strategy

Recent advances in immunotherapy have shown promise in the

treatment of pediatric osteosarcoma, leveraging both innovative

antibody technologies and the enhancement of immune system

responses. A novel approach involves the use of bispecific antibodies,

specifically anti-CD3 x anti-GD2, which recruit T cells to significantly

enhance the tumor-killing effects of anti-GD2 antibodies (86).

Additionally, the combination of chemotherapy and immunotherapy,

such as irinotecan and temozolomide with denosumab, has

demonstrated significant activity in neuroblastoma, suggesting its

potential applicability in osteosarcoma (87, 88).
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3.4 Chimeric antigen receptor
T-cell therapy

CAR-T therapy represents a cutting-edge immunotherapeutic

approach that has revolutionized the treatment of certain

hematological malignancies and is now being explored in solid

tumors, including pediatric osteosarcoma. CAR-T therapy involves

the genetic modification of a patient’s T cells to express receptors

that specifically target tumor-associated antigens (89). Potential

targets for CAR-T therapy include HER2, GD2, and B7-H3, which

are overexpressed on osteosarcoma cells (90). Preclinical studies

have demonstrated the efficacy of CAR-T cells in recognizing and

eliminating osteosarcoma cells in vitro and in vivo (91). Clinical

trials are currently underway to evaluate the safety and efficacy of

CAR-T cell therapy in pediatric osteosarcoma patients (92).

Ongoing research is focused on enhancing the persistence and

infiltration of CAR-T cells within the TME in osteosarcoma, as well

as overcoming the immunosuppressive barriers that limit their

efficacy (92).
3.5 Combinations of immunotherapy
and chemotherapy

Recent strategies include liposomal and aerosolized drug

formulations such as sustained-release lipid inhalation targeting

cisplatin and aerosolized granulocyte–monocyte colony-stimulating
FIGURE 1

Immune modulation mechanisms within the pediatric osteosarcoma TME.
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factor (GM-CSF) alongside NK cell infusions and aerosol IL-2,

enhancing local chemotherapy efficacy for lung metastases in

metastatic osteosarcoma (93). IL-2 activates lymphocytes into

lymphokine-activated killer (LAK) cells, effective against multidrug-

resistant cells and targeting lung metastasis sites (94, 95), underlining

the potential of IL-2 and LAK/NK cell-based therapies in managing

pediatric osteosarcoma lung metastases. In addition, denosumab,

targeting the receptor activation of nuclear factor kappa-b ligand

(RANKL), reduces fracture risks in tumor metastases and showed a

99% inhibition in giant bone cell tumor progression in Phase II

studies (96, 97). The RANK-L/RANK/osteoprotegerin (OPG)

pathway plays a critical role in osteosarcoma, with studies

indicating its involvement in tumor progression and potential as a

therapeutic target (98–101). Despite these advances, challenges

remain, particularly in managing the drug’s impact on standard

chemotherapy effectiveness and deciphering the mechanisms

behind resistance to immunotherapy (102–104). Thus, there is a

pressing need to identify effective combinations of immunotherapy
Frontiers in Immunology 05
and conventional treatments to overcome resistance pathways and

enhance therapeutic outcomes in pediatric osteosarcoma.
4 Prognostic factors in
pediatric osteosarcoma

4.1 Clinical and traditional prognostic
indicators in pediatric osteosarcoma

Accurate prediction of prognosis is related to determining the

best treatment plan for an individual (105, 106). Therefore, accurate

prognostic indicators are crucial for optimal treatment strategies in

pediatric osteosarcoma. Traditional markers like Enneking surgical

standards and alkaline phosphatase often show variability across the

same tumor stages, however lacking precision (107–110). Histological

subtype and tumor stage are considered inaccurate and inadequate

prognostic parameters (3). Critical adverse prognostic factors include
TABLE 1 Prognostic marker in pediatric osteosarcoma.

Category Specific Factor(s) Association with Prognosis

Clinical and Traditional Indicators Enneking surgical standards, Alkaline phosphatase Variable across tumor stages, lacking precision

Histological subtype, Tumor stage Inaccurate and inadequate prognostic parameters

Age, Gender, Tumor size, Metastases at diagnosis, High
serum alkaline phosphatase levels, Involvement of the
visceral pleura, Chondroblastic subtype

Adverse prognostic factors; metastasis at diagnosis is a
major independent adverse prognostic factor; others also
associated with poor outcomes

Histological response to neoadjuvant chemotherapy Prognostic for both metastatic and non-metastatic patients

Delay in time to completion of chemotherapy (TCC) Independently associated with poor prognosis

Immune, Inflammatory, Metabolic, and
Genetic Biomarkers

Tumor-associated macrophages (TAMs), T cells, Immune-
Score, Tumor-Purity

Key roles in prognosis and efficacy of immunotherapies;
Higher Immune-Score correlates with better survival;
Higher Tumor-Purity correlates with lower survival rates

Systemic Immune-Inflammation Index (SII) Potent predictor of tumor prognosis

PAR, ApoB/ApoA1, ApoA1 levels PAR and ApoB/ApoA1 are independent prognostic factors
for 5-year overall survival; Lower ApoA1 levels associated
with worse survival through macrophage transformation
and enhanced tumor-promoting inflammation

Differentially expressed genes (GATA3, LPAR5, EVI2B,
RIAM, CFH)

Show prognostic potential

Mutations in TP53, ATRX, RB1; WNT6 levels due to low
DNA methylation

Associated with OS development, invasion, metastasis;
Higher mutation frequency in low-immunity group linked
to higher metastasis; High WNT6 levels associated with
poor prognosis

Circulating tumor DNA (ctDNA); miR-29b and miR-422 ctDNA provides prognostic information in localized bone
tumors; miR-29b and miR-422 are independent prognostic
markers for overall survival, with downregulation linked to
poor prognosis

Four-gene signature associated with hypoxia (EFNA1,
P4HA1, STC2, MAFF); Exosomes expressing MMP-1 and
MMP-13; Circulating angiogenic factors; VEGF-A
expression in biopsy samples

Hypoxia gene signature is an important prognostic
predictor; MMP-expressing exosomes are therapeutic
targets or biomarkers; Circulating angiogenic factors
correlate with poor prognosis; VEGF-A is an independent
prognostic factor for poor survival
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1548527
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1548527
age, gender, tumor size, metastases at diagnosis, and poor

chemotherapy response, highlighting the insufficiency of traditional

prognostic methods (111–115). Notably, metastasis at diagnosis is a

major independent prognostic factor (116, 117). Other reported

adverse factors include high serum alkaline phosphatase levels,

involvement of the visceral pleura. Additionally, the histological

response to neoadjuvant chemotherapy is recognized as a

prognostic factor for both metastatic and non-metastatic patients

(93). Delay in time to completion of chemotherapy is independently

associated with poor prognosis in children with osteosarcoma (118).
4.2 Immune, inflammatory, metabolic, and
genetic prognostic factors

The immunological characteristics of the osteosarcoma TME

are valuable for prognosis. TAMs and T cells play a key role in

determining cancer prognosis and the efficacy of immunotherapies

(27). Inflammation markers such as the Systemic Immune-

Inflammation Index (SII) are potent predictors of tumor

prognosis, offering new directions for predicting survival at

different time points and improving long-term survival rates (3).

A higher Immune-Score correlates with better survival due to

greater immune infiltration, whereas higher Tumor-Purity

correlates with lower survival rates (27). Metabolic factors also

significantly impact prognosis. Ma et al. have shown that

preoperative platelet-to-albumin ratio (PAR) and apolipoprotein

B-to-apolipoprotein ratio (ApoB/ApoA1) are independent

prognostic factors for 5-year overall survival (105). On the genetic

front, Yang et al. identified 69 DEGs related to metastasis and

immune infiltration, with GATA3, LPAR5, EVI2B, RIAM and CFH

demonstrating prognostic potential (119). Mutations in TP53 and

high levels of WNT6, resulting from low DNA methylation, are

associated with poor pediatric osteosarcoma prognosis (120, 121).

Additionally, circulating tumor DNA (ctDNA) detected by next-

generation sequencing (NGS) offers novel prognostic insights for

localized bone tumors (122). The multivariate Cox model identified

miR-29b and miR-422 as independent prognostic markers, where

their downregulation predicts poor outcomes, underscoring their

value in pediatric osteosarcoma prognosis (123).

In addition, the presence of a four-gene signature associated with

hypoxia (EFNA1, P4HA1, STC2, and MAFF) correlates with clinical

and molecular features and is an important prognostic predictor in

pediatric osteosarcoma patients (71). Human osteosarcoma cells have

exosomes that express specific metalloproteinases (MMP-1 and -13)

that are involved in cell recruitment and cancer cell colonization and

are therefore good therapeutic targets or good biomarkers for prognosis

(72). There is a strong correlation between circulating angiogenic

factors and poor prognosis (124). In a Cox proportional hazards

model, VEGF-A expression in biopsy samples was confirmed to be

an independent prognostic factor for poor survival in osteosarcoma

(125) (Table 1). Integrating clinical, immune, inflammatory, metabolic,

and genetic prognostic factors enables personalized treatments and

better risk stratification for pediatric osteosarcoma. Challenges include
Frontiers in Immunology 06
standardizing biomarker assessments, advanced bioinformatics,

interdisciplinary collaboration, large-scale validation, ethical issues,

and cost-effectiveness. Overcoming these barriers is essential

for enhancing patient outcomes through targeted therapies

and immunotherapies.
5 Conclusions

In conclusion, pediatric osteosarcoma remains a challenging

malignancy with poor prognosis despite advances in treatment. The

TME, particularly the immune landscape, plays a crucial role in disease

progression and metastasis. TAMs, T lymphocytes, and other immune

cells interact within the TME, influencing both immune evasion

and therapeutic response. Emerging immunotherapies, including

immune checkpoint inhibitors and novel antibody treatments, show

promise in enhancing anti-tumor immunity. However, overcoming

immunosuppressive factors, such as M2 macrophage polarization and

immune checkpoint upregulation, is essential for improving outcomes.

Identifying prognostic biomarkers within the TME could guide

individualized treatment strategies and ultimately improve survival

rates in pediatric osteosarcoma patients. Furthermore, future research

should prioritize optimizing specific immunotherapeutic strategies,

such as enhancing the efficacy of immune checkpoint inhibitors and

macrophage-targeted therapies; developing personalized treatment

plans tailored to individual patient’s immune profiles and genetic

backgrounds; and designing robust clinical trials to evaluate the

safety and effectiveness of these novel approaches.
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