
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
REVIEW article
Front. Immunol.
Sec. Inflammation
Volume 16 - 2025 | doi: 10.3389/fimmu.2025.1548206
This article is part of the Research Topic Role of Extracellular Vesicles in Inflammation View all 4 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Neural stem cells (NSCs) possess pluripotent characteristics, proliferative capacity, and the ability to self-renew. In the context of neurological diseases, transplantation of NSCs has been shown to facilitate neurological repair through paracrine mechanisms. NSC-derived small extracellular vesicles (NSC-sEVs), a prominent component of the NSC secretome, play a crucial role in modulating various physiological and pathological processes, such as regulating the NSC microenvironment, promoting endogenous NSC differentiation, and facilitating the maturation of neurons and glial cells. Moreover, NSC-sEVs exhibit reduced immunogenicity, decreased tumorigenic potential, and enhanced ability to traverse the blood-brain barrier. Consequently, NSC-sEVs present novel therapeutic approaches as non-cellular treatments for neurological disorders and are poised to serve as a viable alternative to stem cell therapies. Furthermore, NSC-sEVs can be manipulated to enhance production efficiency, improve biological activity, and optimize targeting specificity, thereby significantly advancing the utilization of NSC-sEVs in clinical settings for neurological conditions. This review provides a comprehensive overview of the biological functions of NSC-sEVs, their therapeutic implications and underlying molecular mechanisms in diverse neurological disorders, as well as the potential for engineering NSC-sEVs as drug delivery platforms. Additionally, the limitations and challenges faced by NSC-sEVs in practical applications were discussed in depth, and targeted solutions were proposed.
Keywords: neural stem cell, Small extracellular vesicles, NSC-derived small extracellular vesicles, Neurological Diseases, neuroprotective
Received: 19 Dec 2024; Accepted: 28 Mar 2025.
Copyright: © 2025 Wang, Chen, Pan, Sun, He, Qiu, Hu, Wu, Xi, Hu and Jiao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Rong Hu, Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
Zhigang Jiao, Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.