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Tregs in COVID-19 patients
Yanling Wen, Juanjuan Zhao* and Zheng Zhang*

Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third
People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science
and Technology, Shenzhen, Guangdong, China
Introduction: Regulatory T cells (Tregs) play a crucial role in maintaining immune

tolerance by suppressing immune responses against pathogens. The fluctuation

of Treg proportions in COVID-19 remains a topic of debate, and the mechanisms

triggering Treg activation in COVID-19 are still unclear. Understanding these

issues is essential for better managing immune responses in COVID-19 patients.

Methods: We collected a cohort of COVID-19 patients with varying disease

severity and stage to explore the transcriptomic and functional traits of Tregs in

these individuals. Using transcriptomic analysis, we evaluated the proportion and

functionality of different Treg subsets, specifically HLA_DR+ Tregs, across

different stages of COVID-19 patients.

Results: Our analysis revealed that the proportion of CCR7+ Tregs decreased as

the disease advanced, while the cell proportion of HLA_DR+ regs escalated with

the severity of the disease. Moreover, the transcription actor CARHSP1 exhibited

apositive correlation with the proportion of HLA_DR+ Tregs. Notably, the

heightened suppressive function of HLA_DR+ Tregs in severe COVID-19

patients, with interactions between PF4 and CXCR3, contributed to the

homeostasis of HLA_DR+ Tregs in severe COVID-19 patients. Furthermore, we

observed that Tregs in COVID-19 patients exhibited weakened TCR clonotype

expansion, and the suppression of HLA_DR+ Tregs with expanded TCR

clonotypes in severe COVID-19 cases did not show a significant increase

compared to asymptomatic and mild COVID-19 groups. The findings indicate

that Tregs may be activated through the bystander effect, as evidenced by the

analysis of TCR clonotype characteristics.

Discussion: Our research delineates the diversity of dynamic alterations in Tregs

and sheds light on potential mechanisms underlying Treg activation, providing a

theoretical foundation and offering treatment strategies for managing COVID-

19 patients.
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Introduction

Regulatory T cells (Tregs) are a subset of CD4+ T cells with high

expression of CD25 and FOXP3 (1). Tregs play a key role in

maintaining immune tolerance, which can prevent the onset of

autoimmune diseases (2) and inhibit the anti-tumor or anti-

pathogen immune responses (3). Tregs suppress immune responses

through several mechanisms (4): (1) secretion of immunosuppressive

cytokines (TGF-b, IL-10, and IL-35) (5, 6); (2) induction of effector

cell apoptosis via granzyme, and perforin; (3) disruption of immune

cell metabolism through IL-2 receptor, cAMP inhibition, and A2

adenosine receptor modulation; and (4) interaction with dendritic

cells to alter their function and maturation. Tregs are mainly divided

into two types: natural Tregs (nTregs) (7), which develop in the

thymus and are involved in providing tolerance to autoantigens (8),

and induced Tregs (iTregs), which are transformed from naïve CD4+

T cells, can be expressed in vivo and in vitro (9), and are mainly

involved in preventing local inflammation in the presence of

exogenous antigens.

As of 6 October 2024, SARS-CoV-2 has resulted in the death of at

least 7.07 million people (https://data.who.int/). Although the current

COVID-19 pandemic no longer constitutes a “Public Health

Emergency of International Concern,” SARS-CoV-2 infection is

still a serious threat to human health, especially to the elderly and to

patients with low immunity and other high-risk groups who are

infected are still likely to develop into a severe life-threatening

illness. A number of studies have revealed that immunological

perturbations are associated with COVID-19 severity, such as

increased immature myeloid suppressor cells (10, 11), T cells

lymphopenia (12), and cytokine storm (13, 14). The immune

system releases a large number of pro-inflammatory cytokines in

response to SARS-CoV-2 invasion. However, uncontrolled

inflammation can damage tissues such as the lungs, heart, liver,

and kidneys, potentially leading to respiratory failure or multiple

organ failure (15). During the SARS-CoV-2 infection process, Tregs

may play a dual role. On the one hand, Tregs play a crucial role in

regulating the immune response in COVID-19, preventing cytokine

storms and tissue damage. On the other hand, Tregs may also

inhibit innate and adaptive antiviral immune responses.

Currently, there is still controversy in the research community

regarding the variation in the proportion of Tregs in COVID-19

patients, primarily manifesting in two aspects. On the one hand,

there is the change in the proportion of Tregs in COVID-19 patients

compared to healthy individuals, and on the other hand, there is the

change in the proportion of Tregs in severe COVID-19 patients

compared to mild cases. Compared to healthy individuals, some

studies have found that the proportion of Tregs in patients with

COVID-19 does not show a significant difference (16–18).

However, some studies have suggested that the proportion of

Tregs was elevated in patients with COVID-19 (19–23), while

others indicate that the proportion of Tregs in COVID-19

patients was decreased (24, 25). Meanwhile, compared to mild

patients, some studies have suggested that there was no significant

difference in the proportion of Tregs in severe cases (16–19, 26).

However, some studies have indicated a significant increase in the
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proportion of Tregs in severe cases (21, 23), while others showed a

significant decrease in the proportion of Tregs in severe patients

when compared to mild patients (25, 27, 28). Some researchers have

suggested possible reasons for these different results, for instance,

the use of non-uniform Treg markers in different studies, varying

immune responses induced by infection with different variants of

SARS-CoV-2, the lack of standardized criteria to define disease

severity and Treg subtypes, patients being at different stages of the

disease (29), and the age of the patients. However, these

speculations are not supported by evidence.

Some studies have noted that Tregs are highly activated in

patients with critical COVID-19 and heightened suppression (30,

31). Hypoxia and high levels of lactic acid have been reported to

promote the function of Tregs in COVID-19 (32, 33). Galván-Peña

et al. proposed that IL-6 and IL-18 induce the Tregs phenotype in

severe COVID-19 patients in vitro (30), which has some limitations.

TNF/TNFR2 has been recently recognized to play an important role

in the function and survival of Tregs. However, the high expression

of TNFR2 in COVID-19 patients has not been reported. Therefore,

the factors inducing Tregs in COVID-19 remained unclear.

To address these issues, we conducted a longitudinal survey of

COVID-19 patients with various outcome categories, which include

asymptomatic, mild, and severe cases. Through the utilization of

droplet-based single-cell RNA sequencing (scRNA-seq) technology,

we constructed a comprehensive dynamic atlas of Tregs from

COVID-19 patients. This extensive analysis has yielded invaluable

insights into the controversy in research regarding the variation in

the proportion of Tregs and the activation mechanism of Tregs in

COVID-19 patients. These discoveries not only deepen our

understanding of these biological processes but also lay a

foundation for theoretical insights and therapeutic approaches in

managing COVID-19 patients.
Results

Expansion of HLA_DR+ Tregs in COVID-
19 patients

We downloaded scRNA-seq data from 48 PBMC samples from

Gang Xu et al. (34) which included five asymptomatic, five mild,

and eight severe COVID-19 patients and five healthy controls

(Figure 1A). PBMC samples from severe COVID-19 patients were

sampled before, during, and after the exacerbation of the disease.

Samples were collected approximately 1 week after the onset of

symptoms in the severe acute phase (SA), approximately 17 days

after the onset of symptoms in the severe progression phase (SP),

and approximately 1 month after discharge from the hospital in the

severe recovery phase (SR). At matched time points to severe

COVID-19, PBMC samples were also collected from mild

patients, comprising the acute (MA), progressive (MP), and

recovery (MR) phases of mild disease. Additionally, PBMC

samples from asymptomatic COVID-19 cases were collected

shortly after admission and 1 week later, representing the acute

(AA) and recovery (AR) phases of asymptomatic infection,
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respectively (Table 1). The WHO grading scale (WOS) was

employed to classify the severity of COVID-19, categorizing

patients into eight distinct groups based on varying levels of

disease severity. Asymptomatic patients received scores of 0-2,
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while those with mild COVID-19 were scored between 0-4.

Severe patients were classified with scores of 3-5 in SA, 5-7 in SP,

and 0 in SR. Detailed clinical information for all samples is listed in

Supplementary Table S1.
FIGURE 1

Tregs overrepresentation and Tregs subtypes in COVID-19 patients. (A) Overview of the experimental design. Tregs from PBMC samples of
asymptomatic, mild, and severe COVID-19 patients, at acute, progressive, and recovery stages, and healthy controls were assessed using single-cell
RNA-seq. The groups included: HC (healthy controls), AA (asymptomatic acute), AR (asymptomatic recovery), MA (mild acute), MP (mild progression),
MR (mild recovery), SA (severe acute), SP (severe progression), and SR (severe recovery). (B) The UMAP plot displays conventional T cells and Tregs
from the integrated CD4+ T cells. (C) The violin plot shows the expression level of specific genes in the Tregs. (D) Cell percentage of Tregs among
CD4+ T cells in eight COVID-19 patient groups and healthy controls. (E) Cell percentage of Tregs among CD4+ T cells in COVID-19 patients at
acute, progression, recovery stages, and healthy controls. (F) The UMAP plot displays four subclusters of Tregs, including CCR7+ Treg, CD69+ Treg,
HLA_DR+ Treg, and CTLA4+ Treg. (G) The heatmap plot shows the expression of cell-specific markers for four clusters of Tregs. (H) Cell
percentages of Treg subclusters among total Tregs in eight COVID-19 patient groups and healthy controls. P-values for pairwise comparisons were
calculated by unpaired two-tailed Student’s t-test, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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The scRNA-seq datasets were analyzed using the Seurat program,

and CD4+ T cells were isolated by CD3E, CD3D, CD3G, CD8A,

CD8B, and CD4 marker genes (Figure 1B, Supplementary Figures

S1A, B). CD4+ T cells were further re-clustered, and Tregs were

sorted out by CD3E, CD3D, CD3G, CD8A, CD8B, CD4, FOXP3, and

IL2RA genes (Figure 1C, Supplementary Figures S1C, D). We found

that the percentage of Tregs to CD4+ T cells in COVID-19 patients

was higher than that in healthy controls, especially in the AA, MP,

MR, SA, and SP groups (Figure 1D). Meanwhile, compared with

healthy controls at different stages, such as the acute phase,

progressive phase, and convalescent phase, the proportion of Tregs

in CD4+ T cells increased in COVID-19 patients, especially in the

acute stage and progressive stages (Figure 1E).

The sorted Tregs were re-clustered into four clusters and

annotated by marker genes, namely, CCR7+ Tregs (expressing

TCF7, CCR7, and IL7R), CD69+ Tregs (expressing CD69, JUN,

and JUNB), CTLA4+ Tregs (expressing IL2RA and CTLA4), and

HLA_DR+ Tregs (expressing HLA_DRB1, HLA_DRB5, and HLA-
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DPB1) (Figures 1F, G). Except for the AR group, the proportion of

CCR7+ Tregs in the other eight groups was lower in the healthy

controls, especially in the MR, SA, SP, and SR groups (Figure 1G).

Compared with the SP group, CD69+ Tregs were significantly

increased in the SR group. Compared with healthy controls, the

percentage of CD69+ Tregs in the eight groups did not change

significantly (Figure 1H). Except for the SA group, the proportion of

CTLA4+ Tregs in the other seven groups showed no significant

changes compared to healthy controls (Figure 1H). Interestingly,

the average proportion of HLA_DR+ Tregs in the eight COVID-19

patient groups was higher than that in the healthy controls, with the

highest proportion observed in the severe progression

group (Figure 1H).

Collectively, except for the MA group, the proportion of Tregs

in COVID-19 patients was slightly higher compared to healthy

individuals. After subdividing Tregs into four subclusters (CCR7+

Tregs, CD69+ Tregs, CTLA4+ Tregs, and HLA_DR+ Tregs), the

percentage of CCR7+ Tregs in the eight COVID-19 patient groups

was lower compared to the healthy controls, while the proportion of

HLA_DR+ Tregs in the eight COVID-19 patient groups was higher.
Positive correlation between the
expression of transcription factor CARHSP1
and proportion of HLA_DR+ Tregs

Through single-cell trajectory analysis using Monocle3, we

found that the differentiation and developmental trajectory of the

four subclusters of Tregs were in the following order: CCR7+ Treg->

CD69+ Treg-> CTLA4+ Treg-> HLA_DR+ Treg (Figure 2A,

Supplementary Figures S2A–D). The top 20 genes highly

expressed in early-stage Tregs mainly included LEF1, TCF7,

CCR7, MYC, and IL7R, while the top 20 genes highly expressed

in late-stage Tregs were mainly HLA_DRA, HLA-DPA1,

HLA_DRB5, and HLA_DRB1 (Figure 2B). In addition, most

suppressive genes were highly expressed in the final stages of

Treg development, with only NT5E in the middle stages

(Figure 2C). The above showed that HLA_DR+ Tregs at the end

of differentiation were a group of mature Tregs accompanied by a

high expression of suppressive genes.

In order to discover the key transcription factors that regulate

Treg development, we compared the differentially expressed genes

between early- and late-developing Tregs from each group, overlaid

the differentially expressed genes and transcription factor database

downloaded from AnimalTFDB (version 3.0) (35), and found 23

transcription factors involved in Treg development, including four

new transcription factors (ZNF581, ZNF207, ZFP36L1, and

CARHSP1) that have not been reported thus far (Figure 2D). The

expression of the four transcription factors was notably elevated in

Tregs at later stages and exhibited a positive correlation with the

expression of suppressive genes. Their expression profiles were

more similar to those of BATF, FOXP3, STAT1, and TOX

(Figure 2E). Moreover, we found that the expression of CARHSP1

was positively correlated with the proportion of HLA_DR+ Tregs

(R=0.62, P-value<0.001), while the expression of the other three
TABLE 1 The healthy controls (n = 5) and COVID-19 patients (n = 18)
enrolled in this study.

Sample NO. Severity Stages

Acute Progress Recovery

S1

Severe

Y Y

S2 Y Y Y

S3 Y Y

S4 Y Y Y

S5 Y Y Y

S6 Y Y

S7 Y Y

S8 Y Y

M1

Mild

Y Y Y

M2 Y Y

M3 Y Y Y

M4 Y Y Y

M5 Y Y Y

A1

Asymptomatic

Y Y

A2 Y Y

A3 Y Y

A4 Y Y

A5 Y Y

H2

Healthy
Contorls

H3

H4

H5

H6
Y, sampled; blank, not sampled.
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genes did not correlate with the ratio of HLA_DR+ Tregs (P-value

>0.05) (Figure 2F).

In addition, CARHSP1 can interact with CD74, which supports

the accumulation and function of regulatory T cells (36)
Frontiers in Immunology 05
(Supplementary Figure S2E). The genes related to HLA_DR were

involved in the network, indicating that the downstream genes of

CD74 may also regulate the generation of the genes associated with

HLA_DR (Supplementary Figure S2E).
FIGURE 2

Pseudo-temporal trajectory of Tregs. (A) The UMAP plot shows the pseudo-temporal developmental trajectory of Tregs through monocle3. (B, C) The
heatmap plots display the dynamic expression pattern of the top 20 highly expressed genes during the early and late periods along with the pseudo-
temporal trajectory of Tregs (B) and genes associated with suppressive function along with the pseudo-temporal trajectory of Tregs (C). (D) The bubble
heatmap plot shows the expression level of the differentially expressed transcription factors (TFs) between early periods and late periods from eight
COVID-19 patient groups and healthy controls. Colors indicate the expression level, while the size of the circles represents the proportion of expressed
cells. (E) Correlograms visualize the correlation between expression level of TFs and suppression genes in COVID-19 patients. (F) The correlation
between the gene expression level of four TFs and the cell percentage of HLA-DR+ Tregs, including CARHSP1, ZFP36L1, ZNF581, and ZNF207.
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To summarize, the CARHSP1 gene potentially regulates the

generation of HLA_DR+Tregs, a group of terminally differentiated Tregs.
Enhanced suppressive function of
HLA_DR+ Tregs in severe COVID-
19 patients

Pseudo-temporal analysis indicated that HLA_DR+ Tregs are a

group of terminally differentiated cells with strong suppressive
Frontiers in Immunology 06
functions. However, the characteristics of HLA_DR+ Tregs in

COVID-19 patients of different severity remain unknown.

Therefore, by comparing the suppression of HLA_DR+ Tregs

among HCs and eight groups of COVID-19 patients, we found

that HLA_DR+ Tregs from the SP group possessed the highest

suppressive score compared to the other groups and that in the

three stages of severe COVID-19 patients, it was slightly higher than

in other COVID-19 patients (Figure 3A). Notably, the suppressive

function of HLA_DR+ Tregs in asymptomatic patients and mild

patients showed no difference compared to healthy individuals
FIGURE 3

Immune characteristics of HLA-DR+ Tregs from HCs and eight COVID-19 patient groups. (A) The violin plot shows the suppressive score of eight
COVID-19 patient groups and healthy controls in the HLA_DR+ Tregs. (B) Heatmaps plot displays the expression distribution of the suppression gene
of eight COVID-19 patient groups and healthy controls in the HLA_DR+ Tregs. (C) Box plot shows the distribution of the suppressive score in Tregs
across mild, severe, recovery, and HCs by bulk RNA-seq. (D) The violin plot shows the HLA-DR score of eight COVID-19 patient groups and healthy
controls in the HLA_DR+ Tregs. (E) Heatmaps plot displays expression distribution of genes associated with HLA_DR score of eight COVID-19
patient group and healthy controls in the HLA_DR+ Tregs. (F) Box plots show the distribution of HLA-DR score in Tregs across mild, severe,
recovery, and HCs by bulk RNA-seq. (G) GSEA analysis of the pathway related to T cell activation in the HLA-DR+ Tregs. (H) The bubble heatmap
plot shows the expression level of selected genes associated with cytokine, chemokine receptor, chemokine ligand, TNF family ligand, and TNF
family receptor in the HLA-DR+ Tregs. P-values for pairwise comparisons were calculated by unpaired two-tailed Student’s t-test, *P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001.
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(Figure 3A). In addition, the SP group had a high suppressive score

of all Tregs, CCR7+ Tregs, CD69+ Tregs, and CTLA4+ Tregs in

severe COVID-19 patients (Supplementary Figures S3A–D).

Meanwhile, CTLA4, ENTPD1, TGFB1, LGALS1, EBI3, IL12A,

PRF1, GZMA, GZMB, IL2RA, and IL10 were highly expressed in

severe COVID-19 patients (Figure 3B). In addition, compared with

healthy subjects and mild and in recovery COVID-19 patients,

severe COVID-19 patients exhibited the highest suppressive score,

which was calculated from the downloaded bulk RNA-seq

data (Figure 3C).

Furthermore, we observed that COVID-19 patients exhibited

slightly higher HLA_DR scores compared to the healthy controls; the

MR group had the highest HLA_DR score among the mild COVID-

19 patients, and the SR group had the highest HLA_DR score among

the severe COVID-19 patients (Figure 3D). However, there was no

significant difference between the MR and SR groups regarding the

HLA_DR score (Figure 3D). HLA_DRB5, HLA_DRB1, and

HLA_DRA were expressed at higher levels in COVID-19 patients

compared to the healthy controls (Figure 3E). Additionally, MR and

severe COVID-19 patients showed higher expression levels of

HLA_DRB5, HLA_DRB1, and HLA_DRA relative to other COVID-

19 patients (Figure 3E). Furthermore, based on the analysis of the

downloaded bulk transcriptomic data, COVID-19 patients exhibited

higher HLA_DR scores compared to healthy individuals. Mild

COVID-19 patients had the highest HLA_DR score among the

COVID-19 patients. Meanwhile, HLA_DRB1 and HLA_DRB5 were

significantly highly expressed in the mild group compared to the

healthy controls (Figure 3F) but not in the severe and recovery groups

(Supplementary Figures S3I, J).

Furthermore, compared with healthy controls, upregulated

genes of HLA_DR+ Tregs from the MA, MP, MR, SA, and SR

groups were enriched in the T cell activation and regulation of the T

cell activation pathway, while the AA group of HLA_DR+ Tregs was

downregulated in T cell activation pathway and regulation of

inflammatory response pathway (Figure 3G). Meanwhile, we also

detected that the HLA_DR+ Tregs in the MA, MP, MR, SA, SP, and

SR groups highly expressed IL-32, which is a kind of pro-

inflammatory cytokine in humans and encoded by the IL32 gene.

CD27, TNFRSF14, TNFRS18, and TNFRSF4 were highly expressed

in the HLA_DR+ Tregs from severe COVID-19 patients

(Figure 3H). However, these genes were not highly expressed in

other Treg subsets from the severe COVID-19 patients

(Supplementary Figures S4A–D).

Taken together, compared to healthy individuals, severe

COVID-19 patients demonstrated stronger suppressive capabilities.
Enhanced interaction between PF4 of
CD14+ monocytes and CXCR3 of HLA_DR+

Tregs in severe COVID-19 patients

The effector program of T cells and their expression of

immunoregulatory molecules are closely linked to the function of

APCs, including dendritic cells (DCs), macrophages, and other

monocyte-derived cells. Tumor necrosis factor a (TNFa) promotes
Frontiers in Immunology 07
iTreg differentiation and function via the TNFR2 signaling pathway,

implying that TNFR2 is a critical immune regulator (37). In addition,

TNFa is mainly secreted by macrophages and monocytes, and other

cells, such as some subsets of T cells, NK cells, B cells, DCs,

cardiomyocytes, fibroblasts, and astrocytes, also generate it at low

levels (38, 39). Therefore, we took a closer look at what triggers

HLA_DR+ Treg activation in the myeloid cells of COVID-19 patients.

We explored the interaction of Tregs with other immune cells

such as B cells, T cells, myeloid cells, and NK cells (Supplementary

Figures S5A, B, Supplementary Table S2) using the CellphoneDB

program and found the interactions between CD14+ monocytes and

HLA_DR+ Tregs were weaker in the SA, SP, and SR groups in severe

patients than in the asymptomatic patients and mild patients, and

noted that the MA and MP groups had stronger interactions

between CD14+ monocytes and HLA_DR+ Tregs (Figure 4A,

Supplementary Table S3). We also observed the same

phenomenon in other myeloid cells, such as CD14+ CD16+

monocyte cells, CD16+ monocyte cells, and DCs (Figures 4B–D,

Supplementary Table S3). As a whole, the interactions between

myeloid cells and HLA_DR+ Tregs were reduced.

We further investigated the ligands and receptors involved in

the interaction between myeloid cells and HLA_DR+ Tregs. In the

interactions between CD14+ monocytes and HLA_DR+ Tregs,

ligand-receptor pairs including TNF_VSIR, TNF_TNFRSF1B,

TNF_TNFRSF1A, and TNF_RIPK1 were weakened in the SA, SP,

and SR groups (Figure 4E), while the ligand-receptor pair of

PF4_CXCR3 was enhanced in the eight COVID-19 patient

groups, except for the healthy controls (Figure 4E). We also

observed that ligand-receptor pairs, including TNF_VSIR,

TNF_TNFRSF1B, TNF_TNFRSF1A, and TNF_RIPK1, were

weakened in the interaction between CD14+ CD16+ monocyte

cells, CD16+ monocyte cells, DCs, and HLA_DR+ Tregs from the

severe COVID-19 patients, and the ligand-receptor pair of

PF4_CXCR3 was not significantly enhanced in severe COVID-19

patients (Figures 4F–H). Therefore, the ligand-receptor pair of

PF4_CXCR3 from the interaction between CD14+ monocytes and

HLA_DR+ Tregs may contribute to the activation of HLA_DR+

Tregs in COVID-19 patients.

Furthermore, we found that a proportion of CD14+ monocyte

cells was positively correlated with the inhibition of HLA_DR+ Tregs

(R = 0.44, P-value = 0.0018), as the proportion of CD14+ monocyte

cells increased, the suppression of HLA_DR+ Tregs increased

(Figure 4I), while other myeloid cells were negatively correlated

with the suppressive function of HLA_DR+ Tregs (Supplementary

Figures S5C–E). In addition, the expression level of CXCR3 of Tregs

was significantly higher in severe COVID-19 patients than in the

healthy controls in the bulk RNA-seq of Tregs (Figure 4J). Here, the

proportion of CD14+ monocyte cells and the expression level of

CXCR3 of Tregs in severe COVID-19 patients supported that the

ligand-receptor pair of PF4_CXCR3 promotes the activation of

HLA_DR+ Tregs in severe COVID-19 patients.

Collectively, the ligand-receptor pair of PF4_CXCR3, in the

interaction between CD14+ monocyte and HLA_DR+ Tregs,

facilitates the suppression of HLA_DR+ Tregs in severe COVID-

19 patients.
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Weakened TCR clonotype expansion of
Tregs in COVID-19 patients

When examining the TCR diversity of Tregs, we found that only

in the MR group was the size of some clonotypes greater than 5, while
Frontiers in Immunology 08
the largest clonotypes were less than 5 in other groups (Figure 5A).

TCR clonotypes with sizes ranging from 2 to 5 were mainly

concentrated in HLA_DR+ Tregs from the eight groups of

COVID-19 patients, while in the healthy controls, these were

enriched in the CD69+ Tregs (Figure 5A). The percentage of TCR
FIGURE 4

The interactions between APCs and four Treg subclusters. (A–D) The heatmap plots show the intensity of the interaction between the four Treg subclusters
and CD14+ monocytes, CD14+ CD16+ monocytes, CD16+ monocytes, and DCs, respectively. (E–G) The bubble heatmap plots show selected L-R pairs
between HLA-DR+ Tregs and CD14+ monocytes, CD14+ CD16+ monocytes, CD16+ monocytes and DCs, respectively. The red color indicates a P-value less
than 0.05, while the blue color represents a P-value more than 0.05. The size of the circles represents the average expression level of ligands and receptors.
(I) The correlation between the suppressive score of HLA-DR+ Tregs and the cell percentage of CD14+ monocytes in myeloid cells. (J) Box plot shows the
expression level of CXCR3 among HC, mild, severe and recovery COVID-19, the DESseq2 normalized counts as the expression level of CXCR3. P-values for
pairwise comparisons were calculated by unpaired two-tailed Student’s t-test, *P < 0.05.
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clonotype-expanded cells in all eight groups was less than 15%

(Figure 5B). In addition, only the Gini index of TCR clonotypes

from the AA, MP, and SA groups was significantly higher than that of

the healthy controls (Figure 5C). Meanwhile, the Gini index of TCR

clonotypes from severe COVID-19 patients was not significantly

higher than the other groups (Supplementary Figures S6A–D). Thus,

it can be observed that the TCR clonotypes in the eight groups of

COVID-19 patients were rich in diversity and had low clonality.
Frontiers in Immunology 09
Furthermore, we found that the eight groups of COVID-19

patients had different length distributions of CDR3 from TRA and

TRB (Figures 6A, B), which might suggest that the TCR clonotypes

from different groups recognized different antigens. There was no

public TCR clonotype among the different populations of Tregs and

across healthy controls and asymptomatic, mild, and severe

patients. We also observed that there was no public TCR

clonotype among the different populations of Tregs and across
FIGURE 5

The TCR clonotype expansion feature of Tregs in COVID-19 patients. (A) The UMAP plots and histograms show the different sizes of TCR clonotypes
corresponding to cell types in the eight COVID-19 patient groups and healthy controls. (B) The quantitative proportion of different types of TCR
clonotypes in the eight COVID-19 patient groups and healthy controls. (C) Gini index distribution among the eight COVID-19 patient groups and
healthy controls. P-values for pairwise comparisons were calculated by unpaired two-tailed Student’s t-test, *P < 0.05, **P < 0.01.
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patients with different severities of COVID-19, and there was a

higher frequency of TCR sharing between HLA_DR+ Tregs and

CD69+ Tregs (Supplementary Figures S6E, F), especially in the MR

and SP groups (Figure 6C).

Moreover, we noted that the suppression of expanded TCRs of

HLA_DR+ Tregs in the SP group was significantly higher than that

in the AA, MA, and SR groups, while that in the other severe

COVID-19 patients was not different from that in the other groups

(Figure 6D). By comparing the suppression of clonotype-expanded
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TCRs with that of non-clonotype-expanded TCRs, we found that

the suppression of clonotype-expanded TCRs was significantly

higher than that of non-clonotype expansion only in the MP,

MR, SP, and HC groups (Figure 6E).

Taken together, the clonability of the TCR clonotypes in the

eight groups of COVID-19 patients was low, and the length of

CDR3 had a different distribution. The suppression of expanded

TCRs of HLA_DR+ Tregs in severe COVID-19 patients was not

stronger than in the other groups.
FIGURE 6

The TCR sharing and clonability of Tregs in COVID-19 patients. (A, B) The CDR3 nucleotide length distribution of TRA and TRB, respectively. (C) The
TCR sharing among CCR7+ Tregs, CD69+ Tregs, CTLA4+ Tregs, and HLA-DR+ Tregs from eight COVID-19 patient groups and healthy controls. (D)
The violin plot shows the distribution of suppressive scores among eight COVID-19 patient groups and healthy controls. (E) The distribution of
suppressive score between non-clonality TCR clonotype and clonality TCR clonotype from eight COVID-19 patient groups and healthy controls. P-
values for pairwise comparisons were calculated by unpaired two-tailed Student’s t-test, *P < 0.05, **P < 0.01, ****P < 0.0001.
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Discussion

Since the COVID-19 pandemic, numerous studies of peripheral

blood from individuals infected with SARS-CoV-2 have revealed

the proportion change and immune characteristics of Tregs from

COVID-19 patients compared to healthy donors. However, the

dynamic changes and heterogeneity of Tregs in COVID-19 patients

are still lacking characterization. To fill this gap, we utilized single-

cell transcriptomic technology to unveil the dynamic landscape of

Tregs in COVID-19 patients with different disease severity and

stage. We noted that the proportion of Tregs in healthy individuals

was significantly lower compared to that in the AA, MP, MR, SA,

and SP groups, but there was no significant difference when

compared to the MA and SR groups. The percentage of Tregs in

CD4+ T cells from the SA and SR groups showed a declining trend

compared to the MP and MR groups but remained higher than in

the MA group, while the proportion of Tregs in the SP group was

quite similar to that in the MP and MR groups. This is consistent

with previous observations of higher or lower proportions of Tregs

in severe COVID-19 patients (27, 28, 40, 41). The proportion of

Tregs at different disease stages in severe and mild cases showed

varying trends compared to healthy individuals. Additionally, the

ratio of Tregs at different disease stages in the mild cases had a

different trend compared to that in the severe cases. Our results

indicate that the proportion of Tregs varies within the same disease

severity at different stages. Therefore, different studies might sample

individuals at different stages of the same disease severity, leading to

controversies regarding the variation of Tregs in COVID-19

patients. Further, we observed that the proportion of CCR7+

Tregs in COVID-19 patients was lower than that in the healthy

controls and decreased as the severity of the disease worsened. In

contrast, the proportion of HLA_DR+ Tregs in COVID-19 patients

was higher than that in healthy controls and increased as the

severity of the disease worsened. Therefore, our study provided a

longitudinal investigation of the characteristics of Tregs from

COVID-19 patients.

In this study, we found that Tregs only have one developmental

pathway, starting with CCR7+ Tregs and ending with HLA_DR+

Tregs. Y Luo et al. categorized Tregs into two differentiation

pathways with distinct phenotypic and functional programs in

patients who underwent stem cell transplantation, ending with

the FOXP3hi and MKI67hi subsets, respectively (42). Different

diseases may induce different developmental pathways (42, 43). In

addition, we found that CARHSP1 was positively correlated with the

proportion of HLA_DR+ Tregs, suggesting that CARHSP1

positively regulated the development of HLA_DR+ Tregs.

CARHSP1 contains an S1-like cold-shock domain (CSD), making

it possible for it to bind to polypyrimidine regions and regulate the

stability of the target mRNA (44, 45). Miguel Lacal et al. reported

that CARHSP1 plays a role in the regulation of transcription after

GPI treatment of endothelial cells (46). However, how CARHSP1

regulates HLA_DR+ Tregs needs further study.

In this study, we found that HLA_DR+ Tregs exhibit stronger

suppressive activity compared to other subsets of Tregs, with
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HLA_DR+ Tregs from severe cases showing the strongest

suppressive function. Moreover, HLA_DR+ Tregs at the convalescent

stage have greater suppressive function than other stages in mild

COVID-19 patients, while HLA_DR+ Tregs at the progressive stage

have greater suppressive function than other stages in severe COVID-

19 patients. The inconsistent performance at different disease severities

may have led to the controversy regarding Tregs (29).

Several possibilities have been proposed to induce the

suppressive function of Tregs, including IL-16, IL-18, hypoxia,

and high levels of lactic acid (30, 32, 33, 47, 48). However, we

observed an enhanced interaction between PF4 from CD14+

monocytes and CXCR3 from HLA_DR+ Tregs in COVID-19

patients, suggesting that PF4-CXCR3 plays an important role in

maintaining homeostasis and suppressive function of Tregs. CXCR3

knockdown by siRNAs reduced PF4-enhanced Th1 and Treg

responses and Tcm cell proliferation (49). Anti-CXCL4 (PF4)

antibody was found to inhibit the percentage of Tregs, while the

recombinant CXCL4 protein increased the percentage of Tregs in

the CD4+ T in chronic osteomyelitis (50). CXCR3 also serves as a

receptor for CXCL9, CXCL10, and CXCL11 (51, 52), but the

enhanced interaction between CXCR3 and these chemokines was

undetectable in COVID-19 patients, as their protein and mRNA

levels were very low or undetectable. Furthermore, we found that

the proportion of CD14+ monocytes is positively correlated with the

suppression of HLA_DR+ Tregs, and the proportion of CD14+

monocytes in severe COVID-19 patients is higher than in other

COVID-19 patients. In addition, we found that the expression level

of CXCR3 in severe COVID-19 patients is higher than that in other

COVID-19 patients. In summary, our study suggests that PF4-

CXCR3 plays an important role in the suppressive function of Tregs

in severe COVID-19 patients. Further, we explored the clonability

and expansion of TCR in Tregs and found that HLA_DR+ Tregs has

weak clonal expansion in COVID-19 patients, which suggests that

the activation of HLA_DR+ Tregs in COVID-19 patients might be a

SARS-CoV-2 non-specific induction.

Expanded TCR clonotypes in severe COVID-19 cases did not

significantly increase compared to the asymptomatic and mild

COVID-19 groups, and all COVID-19 patients had weak TCR

clonotype expansion. The TCR clonotype of Tregs shows significant

clonal expansion, suggesting that the activation of Tregs may be

induced by specific antigens (53). Conversely, when the TCR clonal

expansion of Tregs is relatively weak, it indicates that the activation

of Tregs may be caused by bystander effects. Here, Tregs isolated

through single-cell transcriptomics were non-antigen-specific Tregs

and the TCR clonotype of Tregs showed weakened expansion,

which suggested that the activation of Tregs may be driven by

bystander effects.

There are some limitations to our study, the first being that we

only focused on Tregs from PBMC samples of COVID-19 patients

and not on tissue-specific responses. Tregs from COVID-19 patients

were detected from all kinds of immune cells by bioinformatic

methods and were not sorted from immune cells by flow

cytometry. As a result, the cell yield from individuals was relatively

low, making it challenging to capture rare Treg subsets, such as KI67+
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Tregs, which might affect a comprehensive study of the

immunological characteristics and function of Tregs. In addition,

we cannot distinguish SARS-CoV-2-specific Tregs that truly reflect

the immune response and function after infection with SARS-CoV-2.

In summary, we described a dynamic landscape of

transcriptomics and functionality of Tregs in COVID-19 patients

under different disease conditions, providing potential insights into

factors that induce Treg activation in critically ill patients and

offering a theoretical basis for the application of Tregs in the

treatment of COVID-19 patients.
Materials and methods

Single-cell RNA-seq data pre-processing

The single-cell RNA data from 48 samples downloaded from

the Beijing Institute of Genomics, Chinese Academy of Sciences

(http://bigd.big.ac.cn/gsa-human) with accession number

HRA000628 were used. The Cell Ranger toolkit (v 4.0.0) provided

by 10× Genomics was used to align the sequencing data with the

reference genome GRCh38 downloaded from 10× Genomics’

official website and generated the gene-cell unique molecular

identifier (UMI) matrix. The mapping ratio of each sample was

greater than 85% (Supplementary Table S4). For each cell, we

quantified the number of genes and UMIs and kept high-quality

cells with 200 to 5,500 genes detected and a mitochondrial gene

count of no more than 12%.
Unsupervised dimension reduction and
cluster analysis

The filtered unique molecular identifiers of the genes were

normalized using the “NormalizeData” program in the R Seurat

package (v4.0.3) (54) with default parameters. Next, the

“IntegrateData” function was applied to correct the batch effect

between healthy donors and COVID-19 patients. Then, the

“RunPCA” program was performed based on the top 2,000 highly

variable genes generated by the “Find VariableFeatures” function,

and the UMAP of single cells was generated using the “RunUMAP”

program. Finally, we used “FindNeighbors” and “FindClusters” to

cluster cells into sub-clusters at a resolution of 0.8 and visualized

them by UMAP with default settings.

According to the specific markers (CD3E, CD3D, and CD3B), all

T cells were singled out from the clustered cells. T cells from healthy

donors and the eight groups of COVID-19 patients were re-

clustered following the steps described above, including

integration, dimension reduction, and clustering analysis. Then,

CD4+ T cells were chosen with high levels of expression of CD4

genes and low expression of CD8A and CD8B genes and were re-

clustered into different sub-clusters. Approximately 7,873 Tregs

were selected with high expression of FOXP3 and IL2AR genes. The

CD4+ Tregs were further re-clustered into sub-clusters with a

resolution of 0.6, resulting in eight clusters. Finally, the CD4+
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Tregs were ultimately categorized into four subpopulations based

on the highly expressed characteristic genes in each cluster.
Identification of marker genes and
annotation of cell clusters

Marker genes for each cluster were identified with the MAST

algorithm in the FindAllMarkers function of Seurat. The following

criteria were used to filter the markers: |log2FC| >=0.585, p.adjust

<= 0.05, and pct.1>0.25. The cell clusters were annotated using

previously reported cell type-specific marker genes.
Calculating gene expression
signature scores

The cell gene expression signature score was calculated using

the “AddModuleScore” function in Seurat. This function operates

as follows. It computes the average expression values of genes

within each specified gene set for each cell and selects a

background gene set that is comparable in size to the target gene

set. The gene module score is then obtained by subtracting the

average expression values of the background gene set from those of

the target gene set. The background gene set is generated by a

function that randomly selects genes from multiple partitions of the

expression matrix. The suppressive scores of the Tregs were

calculated using the following genes: NT5E, FGL2, CTLA4,

ENTPD1, TGFB1, LGALS1, EBI3, IL12A, PRF1, GZMA, GZMB,

IL2RA, and IL10 (30). The suppressive score represents the

suppressive strength of the Tregs. The higher the score, the

stronger the suppression. The HLA_DR scores of the Tregs were

then calculated using the genes as follows: HLA_DRB5, HLA-

DQA1, HLA_DRB1, HLA-DPA1, HLA-DPB1, HLA-DQB1,

and HLA_DRA.
Construction of single-cell trajectories

Two methods were used to construct the single-cell trajectories,

namely Monocle3 (55) and slingshot (56). Using Monocle3, the

Tregs identified in the Seurat clustering analysis were fitted to a

principal graph within each partition using the “learn_graph”

program. Subsequently, based on their progression through the

developmental program, the cells were ordered with CCR7+ Tregs as

the root cells. Pseudo-temporal was then employed to quantify the

developmental process. Using the slingshot program, the expression

matrix of the cell embeddings of all Tregs was utilized as input to

generate inferred trajectories. Following the pseudo-temporal order

established in Monocle3, Tregs were segmented into three equal

parts, comprising early, middle, and later stages. The top 20 genes

with high expression at the early and later stages were visualized in a

heatmap plot. Additionally, differentially expressed transcription

factors at the early and later stages across various groups were

depicted in early bubble heatmap plots.
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Functional annotation analysis

The “FindMarkers” function was applied to detect the

differentially expressed genes (DEGs) from a pair-wise

comparison. The following criteria were used to define DEGs: |

log2FC|≥0.26, P-value ≤ 0.05, and pct.1>0.25. Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analyses of the DEGs were performed using the clusterProfiler R

package (57), and only terms in the “GO Biological Processes” were

considered in the GO enrichment analysis. In addition, GSEA was

also included and performed with C5 (Gene Ontology) in

MSigDB (58).
Protein-protein interactions

The “FindMarkers” function was used to define the

differentially expressed genes that were upregulated in HLA_DR+

Tregs compared to other cell clusters. The following criteria were

used to define DEGs: log2FC≥0.26, P-value ≤ 0.05, and pct.1>0.25

Subsequently, a protein-protein interaction network was

constructed using STRING. Genes interacting with CARHSP1 and

their downstream genes were selected, and then a sub-protein

interaction network was constructed using STRING.
Cell–cell interaction analysis
using CellPhoneDB

Curated receptors, ligands, and their interactions are stored in

CellPhoneDB (Version 2.1.2) (59), which is a publicly available

repository. CellPhoneDB allows searching for particular ligands/

receptors or interrogating single-cell transcriptomic data. Aiming to

reveal the cell-cell interactions between the HCs and the eight groups of

COVID-19 patients, CellphoneDB in Python (version 3.6.0) was used

with default parameters. Furthermore, significant interaction pairs (P-

value <= 0.05) were reserved for the subsequent analyses. According to

the annotation in CellPhoneDB, the genes in the cell-cell interactions

were separated into ligands and receptors for further studies. The genes

annotated as “True” receptors in the interacting pair were accepted as

receptors interacting in the cell-cell interactions. The “False”

annotation was taken as a ligand. Ligand-derived cell types were

treated as regulatory cells (source cell types), while the receptor-

derived cell types were regarded as regulated cells (target cell types).

For downstream analysis, we counted and compared cell-cell

interactions in 28 clusters from the HCs and the eight groups of

COVID-19 patients and then selected the most variable

cellular interactions.
Single-cell TCR analysis

The nucleotide and amino acid sequences of TCR chains were

assembled and annotated using the Cell Ranger vdj program
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(version 4.0.0), and the proportion of reads that were mapped to

the V(D)J region exceeded 70% in most samples (Supplementary

Table S5). Only cells with paired TRA and TRB were used in the

follow-up analysis. An exact match of amino acid sequences of

CDR3 and matching V and J genes of both TRA and TRB was

defined as the same TCR clonotype. Subsequently, the barcodes of

Tregs from the single-cell transcriptome were matched with the

barcodes of the retained TCR clonotypes to obtain the TCR

clonotype cell types. The analysis of clonotype expansion and the

length of CDR3 was performed for the TCR clonotypes with cell

type annotation. Finally, there were 5,973 TCRs with annotated cell

types. The number of different TCR clonotypes of different cell

types in each group is listed in Supplementary Table S6. Statistical

analysis of the Gini index was used to measure the cross-

compartment clonal diversity. The Gini index was calculated

using the Gini function of the reldist R package (60). A two-tailed

Student’s t-test was used to detect the significance of the differences.
RNA-seq analysis

The gene count representing the gene expression level of Tregs

from bulk RNA-seq was downloaded from the Gene Expression

Omnibus (GEO) database with accession no. GSE179448, including

13 severe COVID-19 patients, 6 mild COVID-19 patients, 19

recovered COVID-19 patients, and 7 healthy controls. Detailed

clinical information is presented in Supplementary Table S7. The R

package DESeq2 (61) was used to compute the DEGs between the

different groups from the normalized read count dataset. Genes

with FoldChange≥1 or ≤-1 and P-value ≤ 0.05 were selected

as DEGs.
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SUPPLEMENTARY FIGURE 1

Selection of the Tregs. (A) The UMAP plot shows the subcluster of CD4+ T
cells from COVID-19 patients and healthy controls. (B) The UMAP plot shows

the subcluster of Tregs. (C, D) The UMAP plots show the expression

distribution of key markers related to Tregs in the CD4+ T cells (C) and
Tregs(D).

SUPPLEMENTARY FIGURE 2

The pseudo-temporal trajectory of Tregs from COVID-19 patients at the
stage of acute, progress, recovery period, and healthy controls. (A, B)
Pseudo-temporal trajectory of Tregs from COVID-19 patients at the stage

of acute progression, recovery period, and healthy controls by Slingshot (A)
andMonocle3 (B). (C, D) Pseudo-temporal developmental trajectory of Tregs

from asymptomatic, mild, severe COVID-19 patients and healthy controls by
slingshot (A) and monocle3 (B). (E) The protein-protein interactions between

CARHSP1 and other genes.

SUPPLEMENTARY FIGURE 3

Immune characteristics of all Tregs, CCR7+ Tregs, CD69+ Tregs, and CTLA4+

Tregs. (A–D) The violin plot shows the suppressive score of eight COVID-19

patient groups and healthy controls in all Tregs (A), CCR7+ Tregs (B), CD69+

Tregs (C), and CTLA4+ Tregs (D). (E, H) The violin plot shows the suppressive

score of eight COVID-19 patient groups and healthy controls in all Tregs (E),
CCR7+ Tregs (F), CD69+ Tregs (G), and CTLA4+ Tregs (H). (I) The point plots

show the pairwise comparison of differentially expressed genes in Tregs

between HC and COVID-19 patients at the recovery stage. P-values for
pairwise comparisons were calculated by unpaired two-tailed Student’s t-

test, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

SUPPLEMENTARY FIGURE 4

The expression distribution of selected genes is associated with cytokine,

chemokine receptor, chemokine ligand, TNF family ligand, and TNF family
receptor. (A–D) The bubble heatmap plot shows the expression level of

selected genes associated with cytokine, chemokine receptor, chemokine

ligand, TNF family ligand, TNF family receptor in all Tregs (A),CCR7+ Tregs (B),
CD69+ Tregs (C) and CTLA4+ Tregs (D).

SUPPLEMENTARY FIGURE 5

Cellular populations of immune cells in PBMC samples from COVID-19
patients and healthy controls. (A) The UMAP plot displays the distribution of

immune cells, including NK/NKT cells, T cells, B cells, myeloid cells (B) The
heatmap shows the expression level of cell-specific markers for cell clusters.
(C–E) The correlation between the suppressive score of HLA-DR+ Tregs and

the cell percentage of DC (C), CD14+ CD16+ monocytes (D), and CD16+

monocytes (E).

SUPPLEMENTARY FIGURE 6

The distribution of the Gini index in Tregs. (A–D) Distribution of the Gini index

in all Tregs (A),CCR7+ Tregs (B),CD69+ Tregs (C), andCTLA4+ Tregs (D). (E, F)
The sharing of TCRs among different Treg cell subpopulations (E) and across

various disease stages (F). P-values for pairwise comparisons were calculated
by unpaired two-tailed Student’s t-test, *P < 0.05, **P < 0.01, ***P < 0.001,

****P < 0.0001.
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