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Purpose: Glioma represents a prevalent and malignant tumor of the central

nervous system (CNS), and it is essential to accurately predict the survival of

glioma patients to optimize their subsequent treatment plans. This review

outlines the most recent advancements and viewpoints regarding the

application of nomograms in glioma prognosis research.

Design:With an emphasis on the precision and external applicability of predictive

models, we carried out a comprehensive review of the literature on the

application of nomograms in glioma and provided a step-by-step guide for

developing and evaluating nomograms.

Results: A summary of thirty-nine articles was produced. The majority of

nomogram-building research has used limited patient samples, disregarded

the proportional hazards (PH) assumption in Cox regression models, and some

of them have failed to incorporate external validation. Furthermore, the

predictive capability of nomograms is influenced by the selection of

incorporated risk factors. Overall, the current predictive accuracy of

nomograms is moderately credible.

Conclusion: The development and validation of nomogram models ought to

adhere to a standardized set of criteria, thereby augmenting their worth in clinical

decision-making and clinician-patient communication. Prior to the clinical

application of a nomogram, it is imperative to thoroughly scrutinize its

statistical foundation, rigorously evaluate its accuracy, and, whenever feasible,

assess its external applicability utilizing multicenter databases.
KEYWORDS

glioma, nomogram, proportional hazards (PH) assumption, cox regression
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Introduction

Gliomas constitute a prevalent and heterogeneous class of

primary tumors within the central nervous system (CNS),

including glioblastoma (GBM) and low-grade glioma (LGG).

About 75% of malignant primary brain tumors in adults are

gliomas, which can diffusely penetrate the brain parenchyma (1,

2). Gliomas are neuroectoderm-derived tumors that arise

from glial cells or their progenitor cells, which encompass a

spectrum of histological subtypes including ependymomas,

oligodendrogliomas, and astrocytomas, among others (3). In

accordance with the World Health Organization (WHO)

classification of tumors of the CNS published in 2021, GBM is

categorized as a WHO grade 4 tumor, whereas gliomas of WHO

grade 2 and 3 are categorized as LGG (4, 5). Gliomas, especially

glioblastoma multiforme, have a high death rate and are strongly

linked to neurological impairment. Their propensity for

recurrence following surgical intervention presents a formidable

challenge for neurosurgeons and neuro-oncologists (6). In order

to help clinicians create individual treatment programs and make

decisions about follow-up and imaging intervals, a useful and

user-friendly predictive model that can provide reliable prognostic

information for glioma patients is desperately needed.

The nomogram constitutes a statistical predictive model that

amalgamates multiple risk factors to estimate individual survival

probabilities. Given its capacity to produce numerical probabilities

for the occurrence of clinical events and depict them via

straightforward graphical displays, nomograms exhibit substantial

advantages in comparison to the conventional TNM staging system

for numerous cancers (7). In recent years, a multitude of nomogram

models tailored specifically for gliomas have been developed and have

garnered significant acceptance and popularity among neurosurgeons

(8–12). However, it is crucial to acknowledge the inherent limitations of

these studies that have produced nomogrammodels, which encompass

the relatively small sample sizes incorporated, the existence of racial

disparities, the absence of external validation datasets, inadequate

incorporation of variables, and the non-compliance with the

proportional hazards (PH) assumption. These limitations

undoubtedly pose challenges in interpreting these predictive

outcomes within a more extensive clinical setting.

In this review, we rigorously assessed the precision of the

nomograms and the credibility of their predictive outcomes across

the included studies, while also engaging in a thorough discussion of

the aforementioned limitations and proposing potential avenues for

optimization. Furthermore, we have delineated a systematic flowchart

for the development of nomogram models aimed at predicting the

prognosis of glioma patients.
Materials and methods

Literature identification

We started data analysis in November 2024 after conducting a

thorough literature review in the PubMed, Web of Science, and
Frontiers in Immunology 02
Embase databases that included publications published between

January 1, 2004, and October 30, 2024. For additional information

on the search strategy and retrieval subject terms, please refer to

Supplementary Data Sheet 1.
Study selection and data collection

All search outcomes were exported into the reference

management software (EndNote X9.3.2), with duplicates being

eliminated J.X. (for all studies), H.L., Q.Y., L.C., and M.W. (each

examined every quarter) independently evaluated the titles and

abstracts according to the inclusion criteria. Uncertainty-filled

abstracts were included for full-text evaluation. The full-text

articles were examined by J.X. to verify whether they were

included or not. J.X. checked all data for accuracy and

summarized (1) study information (investigator, publication year,

tumor type, dataset utilized, sample size, data source); (2) metadata

of glioma patients (if available); (3) risk score formula.
Data source

RNA-seq profiles and corresponding clinicopathological

information for glioma, LGG, and GBM patients were

downloaded from The Cancer Genome Atlas (TCGA) and

Chinese Glioma Genome Atlas (CGGA) (mRNAseq_array_301,

mRNAseq_325 and mRNA_693) database. In addition, gene

expression and glioma patient survival data in the Gravendeel

database were downloaded from GlioVis. Metadata of patients in

the TCGA-LGG, ZN-LGG, and SU-LGG cohorts collected by Liu

et al. was obtained as well. The detailed methodology of the study is

presented in Supplementary Data Sheet 1.
Establishment and evaluation of the
nomogram model

Drawing upon the datasets and prognostic risk factors employed

in the selected studies, we utilized the “rms” R package (https://cran.r-

project.org/web/packages/rms/index.html) to develop respective

nomogram models for predicting the survival outcomes of glioma

patients. To ascertain the precision and dependability of these

models, we generated calibration plots for each and assessed the

PH assumption based on “survival” R package (https://

www.rdocumentation.org/packages/survival/versions/3.1-8).
Statistical analysis

R software (version 4.0.2) was adopted for all statistical analysis

in this research, and p < 0.05 was regarded as statistically significant.

To evaluate the genetic and clinicopathological features associated

with OS (overall survival), univariate and multivariate Cox

regression analysis models were constructed.
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Results

The flowchart provides a summary of the study screening

procedure (Figure 1). Following a preliminary screening and

deduplication of the 1,989 records found in the literature search

conducted on October 30, 2024, we found 964 possibly pertinent

citations. 44 studies were selected for full-text review after an

additional screening of abstracts and titles. Among them, 5

studies (13–17) were disqualified because the authors either used

alternative data formats or neglected to include selection criteria for

survival and clinicopathological feature data, making it impossible

to create nomogram models. Ultimately, 39 studies (8, 10, 11, 14,

17–51) met all the standards for inclusion. Figure 2 displays the

publication years of the included articles. In our review, over 75% of

the articles were published in 2022 or later, with only a handful

published prior to 2020. However, it must be taken into account

that the total number of articles published in recent years has

increased (52). This observation may indicate the recent

developments in the techniques or methodologies for

constructing prognostic nomograms and further underscores the

escalating research interest in this particular domain.
Study characteristics

The characteristics of the studies incorporated in this

comprehensive review were summarized in Tables 1, 2, with a

special emphasis on the fact that they all hail from China. 28

studies (71.8%) (10, 11, 14, 18–26, 28, 29, 31, 32, 37, 39–46, 48, 49,

51) established nomogram models for predicting the survival rates

of glioma patients, 8 studies (20.5%) (8, 17, 30, 33–36, 38)

formulated nomogram models to forecast the survival outcomes

of LGG patients, and 3 studies (7.7%) (27, 47, 50) constructed
Frontiers in Immunology 03
nomogram models for anticipating the survival probabilities of

GBM patients. All of the investigations included multiple datasets,

with 39 studies (representing 100% of the total) (8, 10, 11, 14, 17–

51) incorporating the TCGA database and 33 studies (constituting

84.6% of the total) (10, 11, 14, 17–26, 28–38, 40, 42–45, 47–49, 51)

utilizing the CGGA database. Nevertheless, it is worth

highlighting that only 7 studies (17.9%) (18, 21, 28, 34, 43, 48,

51) employed external datasets for the validation of the

nomogram, whereas 32 studies (82.1%) (8, 10, 11, 14, 17, 19, 20,

22–27, 29–33, 35–42, 44–47, 49, 50) did not utilize external

datasets for the purpose of nomogram validation. The LASSO

regression analysis was used in 18 studies (46.2%) (14, 17, 24, 25,

27, 34–38, 40–45, 47, 51) to determine the most relevant predictive

feature genes. The risk score formula for glioma patients was then

created using the gene expression levels as follows: Risk score = S
(Coefi × Exp) The risk coefficient is denoted by Coefi in this

formula, whereas the gene expression level is denoted by Exp.
Assessment of nomograms in
included research

After independently screening the data utilized in each research

in accordance with the specific criteria for data inclusion in each

included study, we performed univariate and multivariate COX

regression analysis for every investigation. Following that, we

developed corresponding nomogram models to forecast the

survival prospects of glioma patients based on the several

independent prognostic variables used by these investigations

(Supplementary Figures 1A-39A; Supplementary Data Sheet 2).

Apart from that, we evaluated the accuracy and reliability of each

nomogram. This encompassed generating calibration curves

(Supplementary Figures 1B-39B; Supplementary Data Sheet 2),

figuring out the concordance index (C-index) (Tables 1, 2),

performing rigorous PH assumption testing on the variables

included in each model (Supplementary Tables 1-39;

Supplementary Data Sheet 3), and confirming whether the model

as a whole complied with the PH assumption. In these studies that

incorporated external datasets, we also used the corresponding data

to plot additional calibration curves for verification (Supplementary

Figures 1C, 4C, 10C-E, 16C, 25C-D, 34C-D, 39C; Supplementary

Data Sheet 2). Among all the studies analyzed by us, 31 studies

(79.5%) (8, 14, 17–25, 27, 28, 30–46, 51) exhibited C-index values

exceeding 0.8. Nevertheless, among the 7 studies that validated the

predictive performance of their nomograms using external datasets,

a notable 85.7% (6 studies) (18, 21, 28, 34, 43, 51) reported a decline

of more than 10.0% in the C-index, suggesting a reduction in

accuracy for prediction when the nomograms were tested against

external data. Among the 29 studies (74.4%) (8, 10, 11, 18–23, 25–

44), the p-values obtained from the global validation test of the

nomogram were ≤ 0.05 (Table 1). Conversely, in 10 studies (25.6%)

(14, 17, 24, 45–51), the p-values exceeded 0.05 for the global

validation test (Table 2). In cases where the global test yields a p-

value greater than 0.05, it is deemed that the multifactorial model

fulfills the proportional hazards assumption.
FIGURE 1

Flow diagram for screening research. Identified and included studies
from the database searches (PubMed, Embase, and Web of Science).
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Developing a predictive survival model
tailored for glioma patients

Nomograms greatly increase the readability of predictive model

results due to their ability to translate complex regression equations

into visual graphics. This helps doctors create individualized

treatment plans and increases the precision and efficacy of clinical

decision-making processes. Consequently, we have delineated the

sequence of independent steps entailed in developing nomograms for

predicting glioma patients’ survival and suggested diverse verification

methods to evaluate them. The fundamental procedures for

establishing a nomogram specifically for glioma patients encompass

identifying the patient cohort, initially screening predictive variables,

collecting and processing data, constructing the nomogram model,

assessing the clinical applicability and predictive accuracy of the

survival outcome prediction model, evaluating the predictive

capability of individual variables, selecting appropriate variables to

reconstruct an optimized model followed by revalidation, and

ultimately, clinical implementation and interpretation of the

definitive nomogram (Figure 3). To provide a concrete illustration

of these steps, we utilized datasets acquired from ref. 8 to develop a

nomogram as an example (Supplementary Tables 40-42;

Supplementary Data Sheet 3). After sample screening, the

prognostic factors were determined by Cox regression analysis.

Utilizing the TCGA-LGG cohort as the training dataset, we initially

selected patient subtype, histological type, gender, andWHO grade to

construct a nomogram for predicting 1-, 1.5-, and 2-year OS in

patients with LGG (Figure 4A). This model adheres to the PH

assumption not only within the training set but also in the external
Frontiers in Immunology 04
validation sets, namely the ZN-LGG cohort (external validation set 1)

and the SU-LGG cohort (external validation set 2) (Supplementary

Table 43; Supplementary Data Sheet 3). The predictive capability of

the nomogram is robust, evidenced by a C-index of 0.705 upon

validation within the training dataset (Figure 4B). Moreover, this

predictive performance has been further corroborated through

calibration analysis conducted on external validation sets 1 and 2,

yielding C-indices of 0.894 and 0.831, respectively (Figures 4C, D).

Subsequently, we selected appropriate molecular and clinical

variables again to further refine and optimize the nomogram model

(Figure 4E). The PH hypothesis test confirmed that the refined model

adhered to the necessary assumptions (Supplementary Table 44;

Supplementary Data Sheet 3). Furthermore, we validated that this

optimized model exhibited superior predictive power than the

original model, as shown by a higher C-index of 0.886 as opposed

to 0.705 (Figure 4F). In addition, the original model demonstrated the

following predicted area under the receiver operating characteristic

(ROC) curves (AUC) values for the 1-year, 1.5-year, and 2-year

survival rates within the training set: 0.751, 0.725, and 0.755,

respectively. In the external validation set 1, the predicted AUC

values for the same survival rates were 0.894, 0.938, and 0.929,

respectively. Similarly, in the external validation set 2, the predicted

AUC values were 0.904, 0.839, and 0.869 for the 1-year, 1.5-year, and

2-year survival rates, respectively. In contrast, the optimized model

exhibited predicted AUC values of 0.941, 0.939, and 0.959 for the 1-

year, 1.5-year, and 2-year survival rates, respectively (Figure 5). Due

to the limited sample size included, the example presented in this

study serves merely as a point of reference, and additional external

validation is needed to continue to improve and optimize the model.
FIGURE 2

Publication year of the 39 included studies. Note that the number for 2024 is based on the articles published until 30th October 2024 and is
therefore incomplete.
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TABLE 1 Researches on utilizing nomograms for prognosis prediction in glioma patients.

Sample

C-index
P-value for the
global test of
the nomogram

Conformity
to the
PH

assumption

TCGA=0.861 (0.850-
0.871)

CGGA=0.749
(0.737-0.762)

TCGA=3.74e-05
CGGA= 0.0002

TCGA (No)
CGGA (No)

CGGA325 = 0.808
(0.795-0.822)

CGGA325 = 0.0145 CGGA325 (No)

TCGA=0.838
(0.827-0.849)

TCGA=1.27e-08 TCGA (No)

TCGA=0.828 (0.816-
0.840)

CGGA=0.744
(0.735-0.754)

TCGA=0.0112
CGGA=8.45e-05

TCGA (No)
CGGA (No)

TCGA=0.857 (0.846-
0.867)

CGGA=0.749
(0.736-0.762)

TCGA=0.0002
CGGA=1.58e-06

TCGA (No)
CGGA (No)

TCGA=0.813
(0.791-0.836)

TCGA=0.0034 TCGA (No)

TCGA=0.861
(0.848-0.873)

TCGA=0.0045 TCGA (No)

CGGA693 = 0.751
(0.737-0.765)

CGGA693 = 6.83e-05 CGGA693 (No)
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Investigator
Tumor
type

Dataset utilized
size:
total
cases

Data source Risk score formula
External
validation

*An et al. (18) Glioma
TCGA (n=702)
CGGA (n=693)

1395
http://cancergenome.nih.gov/

http://www.cgga.org.cn
NA Yes

Chang et al. (19) Glioma

GSE4290 (n=176)
GSE50161 (n=130)
TCGA (n=592)

CGGA325 (n=286)
CGGA693 (n=429)

Tissue
Microarray (n=124)

1737
GEO, TCGA, CGGA database and

tissue microarray
NA No

Yu et al. (20) Glioma

TCGA (n=689)
GTEx (n=1157)
GSE4290 (n=84)

CGGA325 (n=NA)
CGGA693 (n=NA)

NA
https://xenabrowser.net/datapages/

GEO database
http://www.cgga.org.cn/index.jsp

NA No

*Jiang et al. (21) Glioma

TCGA (n=607)
GTEx (n=NA)
CGGA325

+CGGA693 (n=961)

NA
https://portal.gdc.cancer.gov/

http://www.cgga.org.cn/
NA Yes

Wang et al. (22) Glioma

TCGA (n=607)
GTEx (n=1152)
CGGA (n=693)
GSE50161 (n=63)

2515
TCGA, CGGA, GEO,

GTEx database
NA No

Song et al. (23) Glioma
TCGA (n=523)
GTEx (n=1152)
CGGA (n=NA)

NA

https://www.cancer.gov/ccg/
research/genome-sequencing/tcga
https://www.genome.gov/Funded-
Programs-Projects/Genotype-
Tissue-Expression-Project
http://www.cgga.org.cn

NA No

Chen et al. (25) Glioma
TCGA (n=672)

CGGA325
+CGGA693 (n=1013)

1685
https://xenabrowser.net/
http://www.cgga.org.cn/

RS=0.4712 × CALR expression
+ 0.1171 × CANX expression +
0.2059 × PSMB8 expression +
0.0198 × PDIA3 expression +
0.0966 × HLA-B expression

No

Han et al. (26) Glioma
TCGA (n=667)

CGGA693 (n=693)
Rembrandt (n = 510)

1870
http://cancergenome.nih.gov

http://www.cgga.org.cn
http://rembrandt.nci.nih.gov

NA No

http://cancergenome.nih.gov/
http://www.cgga.org.cn
https://xenabrowser.net/datapages/
http://www.cgga.org.cn/index.jsp
https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
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TABLE 1 Continued

Sample

C-index
P-value for the
global test of
the nomogram

Conformity
to the
PH

assumption

TCGA-GBM=0.862
(0.850-0.873)

TCGA-GBM=1.23e-06
TCGA-

GBM (No)

TCGA-LGG=0.841
(0.821-0.860)

CGGA301-LGG=0.699
(0.669-0.729)

CGGA325-LGG=0.732
(0.709-0.755)

CGGA693-LGG=0.702
(0.682-0.722)

TCGA-LGG=0.0002
CGGA301-
LGG=0.0516
CGGA325-
LGG=0.0035
CGGA693-
LGG=0.0515

TCGA-LGG
(No)

CGGA301-LGG
(Yes)

CGGA325-LGG
(No)

CGGA693-
LGG (Yes)

TCGA=0.752
(0.739-0.765)

TCGA=3.35e-05 TCGA (No)

TCGA=0.827 (0.805-
0.848)

CGGA325 = 0.789
(0.767-0.811)

TCGA=0.0008
CGGA325 = 0.0034

TCGA (No)
CGGA (No)

TCGA=0.844
(0.832-0.855)

TCGA=1.81e-08 TCGA (No)

TCGA=0.862
(0.852-0.873)

TCGA=3.6e-05 TCGA (No)
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Tumor
type

Dataset utilized
size:
total
cases

Data source Risk score formula
External
validatio

Zhang et al. (27) GBM
TCGA-GBM (n=159)
GSE83300 (n=50)

209 TCGA, GEO database

RS=0.2988 × PDIA4 expression
+ 0.1705 × PILRB expression +
0.2448 × DUSP6 expression +
0.3055 × PTPRN expression −

0.2095 × CBLN1 expression

No

*Wang
et al. (28)

Glioma

TCGA (n=529)
CGGA301 (n=301)
CGGA325 (n=325)
CGGA693 (n=693)

1848 TCGA, CGGA database NA Yes

Zhang et al. (29) Glioma

TCGA (n=529)
TCGA-GBM

(microarray, n= 489)
CGGA301 (n=301)
CGGA693 (n=693)
GSE16011 (n=284)

Gill (n=92)
IVY-GBM (n=270)
Rembrandt (n=580)

3238

http://cancergenome.nih.gov/
http://www.cgga.org.cn

https://www.ncbi.nlm.nih.gov/geo/
Gill database

http://
glioblastoma.alleninstitute.org/

https://
caintegrator.nci.nih.gov/

rembrandt/

NA No

Ma et al. (30) LGG
TCGA (n=616)

CGGA325 (n=325)
CGGA693 (n=693)

1634
http://cancergenome.nih.gov/

http://www.cgga.org.cn
NA No

Ge et al. (31) Glioma

TCGA (n=696)
CGGA325 (n=325)
CGGA693 (n=693)
Nantong University

Affiliated
Hospital (n=183)

1897
TCGA, CGGA database, self-

collected data
NA No

Peng et al. (32) Glioma

TCGA (n=NA)
GTEx (n=NA)
CGGA (n=NA)
Department of
Neurosurgery of
Wuhan Union
Hospital (n=89)

NA

https://portal.gdc.cancer.gov/
https://gtexportal.org/
http://www.cgga.org.cn/

self-collected data

NA No
n

http://cancergenome.nih.gov/
http://www.cgga.org.cn
https://www.ncbi.nlm.nih.gov/geo/
http://glioblastoma.alleninstitute.org/
http://glioblastoma.alleninstitute.org/
https://caintegrator.nci.nih.gov/rembrandt/
https://caintegrator.nci.nih.gov/rembrandt/
https://caintegrator.nci.nih.gov/rembrandt/
http://cancergenome.nih.gov/
http://www.cgga.org.cn
https://portal.gdc.cancer.gov/
https://gtexportal.org/
http://www.cgga.org.cn/
https://doi.org/10.3389/fimmu.2025.1547506
https://www.frontiersin.org/journals/immunology
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TABLE 1 Continued

Sample

C-index
P-value for the
global test of
the nomogram

Conformity
to the
PH

assumption

TCGA-LGG-OS=0.858
(0.841-0.876)
TCGA-LGG-
DSS=0.872
(0.856-0.889)

TCGA-LGG-
OS=3.58e-06
TCGA-LGG-
DSS=2.06e-06

TCGA-LGG-OS
(No)

TCGA-LGG-
DSS (No)

TCGA=0.846 (0.824-
0.867)

CGGA=0.709
(0.690-0.728)

TCGA=0.0003
CGGA=9.85e-05

TCGA (No)
CGGA (No)

TCGA-LGG=0.826
(0.797-0.855)

TCGA-LGG=3.33e-05
TCGA-

LGG (No)

TCGA-LGG=0.853
(0.832-0.875)

TCGA-LGG=0.0039
TCGA-

LGG (No)

TCGA=0.849
(0.836-0.862)

TCGA=0.0305 TCGA (No)

TCGA-LGG=0.817
(0.793-0.841)

TCGA-LGG=0.0230
TCGA-

LGG (No)

(Continued)
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Investigator
Tumor
type

Dataset utilized
size:
total
cases

Data source Risk score formula
External
validation

Zhi et al. (33) LGG

TCGA (n=528 LGG +
168 GBM)

CGGA325 (n=182
LGG + 139 GBM)
CGGA693 (n=443
LGG + 249 GBM)

1709
http://cancergenome.nih.gov
http://www.cgga.org.cn/

NA No

*Zhang
et al. (34)

LGG

TCGA-LGG (n=529)
GTEx (n=1152)
CGGA301 (LGG,

n=174)
CGGA325

(LGG,n=182)

2037
https://portal.gdc.cancer.gov/

https://xenabrowser.net/datapages/
http://cgga.org.cn/

CRG score=0.164859 ×
C21orf62 expression + 0.293187

× DRAXIN expression +
0.882099 × ITPRID2 expression

+ 0.625577 × MAP3K1
expression + 0.256801 ×
MOXD1 expression

Yes

Li et al. (35) LGG

TCGA-LGG (n=529)
GTEx (n=1152)

CGGA-microarray
(LGG, n=174)

CGGA-sequencing
(LGG, n=443)

REMBRANDT (LGG,
n=162)

GSE16011
(LGG, n=107)

2567

https://portal.gdc.cancer.gov
https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/

http://www.betastasis.com/glioma/
rembrandt/

https://www.ncbi.nlm.nih.gov/

SnG-Risk score=0.129695 ×
AURKA expression + 0.301414

× CENPA expression +
0.057793 × LIMK1 expression

− 0.753527 × PATZ1
expression + 0.154034 ×
TGFB1I1 expression +

0.362497 × TLR3 expression

No

Li et al. (36) LGG

TCGA-LGG (n=529)
CGGA-microarray
(LGG, n=174)

CGGA-sequencing
(LGG, n=625)
REMBRANDT
(LGG, n=162)

1490
TCGA, CGGA,

REMBRANDT database,

RS=0.21536 × ABCC3
expression + 0.23117 × HOXA4

expression + 0.06596 ×
HOXC10 expression + 0.04934
× NNMT expression + 0.37831

× SCNN1B expression

No

Wang et al. (37) Glioma

TCGA (n=NA)
CGGA301 (n=301)
CGGA325 (n=325)
CGGA693 (n= 668)
GSE108474 (n=NA)
GSE43378 (n=NA)
GSE16011 (n=NA)
GSE68838 (n=NA)

NA TCGA, CGGA, GEO database

RS= 0.028 × CXCL1 expression
+ 0.027 × CXCL9 expression +
0.14 × CXCL10 expression +
0.04 × CXCL11 expression −

0.12 × CXCL12 expression +
0.047 × CXCL14 expression

No

Zhu et al. (38) LGG
TCGA-LGG (n=515)
CGGA325 (LGG,

845
https://portal.gdc.cancer.gov/

http://www.cgga.org.cn/
RS=0.3413 × TNFRSF11B
expression + 0.1794 ×

No

http://cancergenome.nih.gov
http://www.cgga.org.cn/
https://portal.gdc.cancer.gov/
https://xenabrowser.net/datapages/
http://cgga.org.cn/
https://portal.gdc.cancer.gov
https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/
http://www.betastasis.com/glioma/rembrandt/
http://www.betastasis.com/glioma/rembrandt/
https://www.ncbi.nlm.nih.gov/
https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/
https://doi.org/10.3389/fimmu.2025.1547506
https://www.frontiersin.org/journals/immunology
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TABLE 1 Continued

Sample

C-index
P-value for the
global test of
the nomogram

Conformity
to the
PH

assumption

TCGA-OS=0.822
(0.803-0.841)

TCGA-PFI=0.732
(0.713-0.750)

TCGA-OS=0.0014
TCGA-PFI=0.3300

TCGA-OS (No)
TCGA-PFI (Yes)

TCGA=0.885
(0.872-0.898)

TCGA=0.0085 TCGA (No)

TCGA-LGG=0.808
(0.783-0.832)

TCGA-LGG=0.0012
TCGA-

LGG (No)

TCGA=0.864
(0.852-0.876)

TCGA=0.0161 TCGA (No)

TCGA=0.857 (0.844-
0.869)

CGGA325 = 0.740
(0.726-0.754)

CGGA693 = 0.714
(0.702-0.727)

CGGA693 = 0.0029
CGGA325 = 0.0002

TCGA=0.2300

CGGA693 (No)
CGGA325 (No)
TCGA (Yes)

(Continued)
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Investigator
Tumor
type

Dataset utilized
size:
total
cases

Data source Risk score formula
External
validation

n=186)
CGGA693

(LGG, n=144)

METTL7B expression − 0.2905
× SSTR2 expression + 0.3566 ×
OXTR expression + 0.2803 ×
CDKN2C expression + 0.1194

× H19 expression

Geng et al. (39) Glioma

TCGA (n=670)
GTEx (n=1152)

First Hospital of Jilin
University (n=NA)

NA XENA, self-collected data NA No

Yu et al. (40) Glioma
TCGA (n=669)

CGGA325 (n=NA)
CGGA693 (n= NA)

NA
https://portal.gdc.cancer.gov/

http://www.cgga.org.cn

CDRS RS= 0.490 × BDKRB2
expression + 0.522 × RFFL
expression + 0.551 × SHISA5
expression − 0.668 × TRAF3
expression + 0.731 × FANCD2

expression + 0.703 ×
GNS expression

No

Zhou et al. (41) Glioma

TCGA-LGG (n=510)
TCGA-GBM (n=159)
GSE184941 (n=69)
GSE108474 (n=70)

808

R/ Bioconductor package
TCGAbiolinks

https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE184941

https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE108474

RS=0.086 × HOXA7 expression
+ 0.242 × WEE1 expression +
0.247 × IGF2BP3 expression +
0.052 × DUSP10 expression

No

Wu et al. (42) Glioma

TCGA (n=NA)
GTEx (n=NA)

CGGA325 (n=NA)
CGGA693 (n= NA)

NA
https://portal.gdc.cancer.gov/

http://www.cgga.org.cn/

RS=0.1983 × CREB5 expression
+ 0.2359 × ATF1 expression +
0.1581 × ATF7 expression +
0.4231 × CREB1 expression +
0.1578 × CREB3L1 expression

+ 0.6542 × CREB3L2
expression − 0.4324 × CREBBP
expression − 0.8175 × EP300
expression − 0.0533 × FOS

expression + 0.1922 × FOSL2
expression + 0.1508 ×

JUN expression

No

*Peng et al. (43) Glioma

TCGA (n=597)
GTEx (n=NA)

CGGA325 (n=305)
CGGA693 (n= 655)

NA
https://portal.gdc.cancer.gov/

http://www.cgga.org.cn/

GA-MSCRGPI= − 0.260 ×
MCM7 expression + 0.285 ×
CDK6 expression + 0.709 ×
ORC1 expression − 0.153 ×
CCL20 expression + 0.202 ×

TNFRSF12A expression − 0.293

Yes

https://portal.gdc.cancer.gov/
http://www.cgga.org.cn
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE184941
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE184941
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108474
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108474
https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/
https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/
https://doi.org/10.3389/fimmu.2025.1547506
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 1 Continued

Sample

score formula
External
validation

C-index
P-value for the
global test of
the nomogram

Conformity
to the
PH

assumption

1 expression + 0.271 ×
1 expression − 0.310 ×
IAM1 expression

=0.0173 × TNFSF4
sion + 0.0341 × CD70
ression + 0.0371 ×
14 expression + 0.0426
FRSF19 expression +
× NGFR expression +
234 × TNFRSF11B
ression + 0.1599 ×
F14 expression + 0.2198
FRSF12A expression

No
TCGA=0.867
(0.857-0.878)

TCGA=0.0456 TCGA (No)

NA No
CGGA=0.791
(0.781-0.800)

CGGA=4.15e-09 CGGA (No)

NA No
CGGA=0.735
(0.719-0.751)

CGGA=1.62e-06 CGGA (No)

NA No
TCGA-LGG=0.828

(0.807-0.848)
TCGA-LGG=5.88e-05

TCGA-
LGG (No)

y; SU, Medical Center of Stanford University; PH, proportional hazards; OS, overall survival; DSS, disease specific survival; PFI,
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Investigator
Tumor
type

Dataset utilized
size:
total
cases

Data source Risk

× POL
TRAF

Wang et al. (44) Glioma

TCGA (n=702)
CGGA325 (n=325)
GSE16011 (n=268)
Rembrandt (n=454)

1749

http://cancergenome.nih.gov/
CGGA dataset

http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE16011

https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE108474

R
expre

ex
TNFS
× TN

0.046
0.
ex

TNFRS
× T

Lin et al. (11) Glioma
TCGA (n=690)
CGGA (n=929)

GSE16011 (n=276)
1895

http://cancergenome.nih.gov
www.cgga.org.cn/
GEO database

Han et al. (10) Glioma

TCGA (n=669)
CGGA (n=325)

Rembrandt (n=510)
Gill [24] (n=93)

Ivy dataset (n=269)

1866

http://cancergenome.nih.gov
http://www.cgga.org.cn

http://rembrandt.nci.nih.gov
https://www.ncbi.nlm.nih.gov/geo/

Liu et al. (8) LGG

TCGA-LGG (n=488)
ZN-LGG (n=70)
SU-LGG (n=37)

TCGA-GBM (n=380)
ZN-GBM (n=77)

1052 GDC portal, self-collected data

LGG, low-grade glioma; GBM, glioblastoma multiforme; NA, not available; RS, risk score; ZN, Zhongnan Hospital of Wuhan Universi
progress free interval; *, study showing a decline of more than 10.0% in the C-index.
These studies fail to meet the proportional hazards assumption.
A

T

S
s
p
F

7
1
p

N

t

http://cancergenome.nih.gov/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16011
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16011
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108474
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108474
http://cancergenome.nih.gov
http://www.cgga.org.cn/
http://cancergenome.nih.gov
http://www.cgga.org.cn
http://rembrandt.nci.nih.gov
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2025.1547506
https://www.frontiersin.org/journals/immunology
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TABLE 2 Researches on utilizing nomograms for prognosis prediction in glioma patients.

al
on

C-index

P-value for
the global test

of
the

nomogram

Conformity
to the
PH

assumption

TCGA=0.853
(0.842-0.865)

TCGA=0.2832 TCGA (Yes)

TCGA=0.860
(0.849-0.872)

TCGA=0.2663 TCGA (Yes)

TCGA=0.815
(0.796-0.833)

TCGA=0.0781 TCGA (Yes)

TCGA-GBM=0.716
(0.688-0.744)

TCGA-GBM=0.6113
TCGA-

GBM (Yes)

CGGA301 = 0.739
(0.723-0.755)

Gravendeel=0.733
(0.713-0.752)
TCGA=0.859
(0.848-0.870)

CGGA301 = 0.0561
Gravendeel=0.4008
TCGA=0.0004

CGGA301 (Yes)
Gravendeel (Yes)

TCGA (No)

TCGA-LGG=0.887
(0.869-0.905)

TCGA-LGG=0.0906
TCGA-

LGG (Yes)

(Continued)
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Investigator
Tumor
type

Dataset utilized

Sample
size:
total
cases

Data source Risk score formula
Extern
validat

He et al. (45) Glioma
TCGA (n=691)

CGGA693 (n=590)
1281

https://
portal.gdc.cancer.gov/
http://www.cgga.org.cn/

RS=0.18 × GINS2 expression + 0.17 ×
EGR1 expression + 0.58 × ECT2 expression

No

Zeng et al. (24) Glioma
TCGA (n=596)

CGGA325 (n=312)
908

https://
portal.gdc.cancer.gov/
http://www.cgga.org.cn/

RS=0.249 × HLA-DQA2 expression +
0.179 × HOXA3 expression + 0.227 ×

SAA2 expression
No

Zhang et al. (46) Glioma
TCGA (n=706)
GTEx (n=1152)
GSE14805 (n=38)

1896

https://
portal.gdc.cancer.gov/
https://gtexportal.org/

http://
www.ncbi.nlm.nih.gov/

projects/geo/

NA No

Zhao et al. (47) GBM
TCGA-GBM (n=169)
CGGA (GBM, n=249)

418
https://xena.ucsc.edu/
http://www.cgga.org.cn

RS=0.17 × EN1 expression + 0.09 ×
TUBB2A expression + 0.14 × HSPB1

expression + 0.19 × LOXL1 expression +
0.09 × RGS4 expression + 0.08 × L1CAM
expression + 0.20 × GPR143 expression

No

Wang et al. (48) Glioma

TCGA (n=598)
CGGA301 (n=301)
REMBRANDT

(n=NA)
Gravendeel (n=211)

NA
http://gliovis.bioinfo.cnio.es/
http://www.cgga.org.cn/

NA Yes

Song et al. (17) LGG

TCGA-LGG (n=469)
CGGA (LGG, n=405)
CGGA-microarray

(n=118)
GSE16011 (n=88)
GSE61374 (n=136)

1216
TCGA data portal, CGGA

database, https://
www.ncbi.nlm.nih.gov/geo/

RS=2.1627 × IGFBP5 expression + 1.8334
× CENPF expression + 1.4131 × CD101

expression + 1.3129 × SIGLEC1 expression
+ 1.3071 × TMPRSS3 expression + 0.8839
× SIGLEC8 expression + 0.8605 × BIRC5
expression + 0.8552 × EMP1 expression +

0.4835 × SPP1 expression + 0.4357 ×
PDCD1LG2 expression + 0.3861 × FABP5
expression + 0.2623 × CD37 expression +
0.2018 × CD300LF expression + 0.0448 ×
ADAMTS3 expression − 0.0003 × PROK2
expression − 0.3417 × CBX6 expression −

0.9706 × GPR27 expression − 1.2091 ×
CRYBB1 expression − 1.5871 × ANKRD22
expression − 3.3937 × HEY1 expression

No
i

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://gtexportal.org/
http://www.ncbi.nlm.nih.gov/projects/geo/
http://www.ncbi.nlm.nih.gov/projects/geo/
http://www.ncbi.nlm.nih.gov/projects/geo/
https://xena.ucsc.edu/
http://www.cgga.org.cn
http://gliovis.bioinfo.cnio.es/
http://www.cgga.org.cn/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2025.1547506
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 2 Continued

re formula
External
validation

C-index

P-value for
the global test

of
the

nomogram

Conformity
to the
PH

assumption

NA No

TCGA-OS=0.789
(0.775-0.803)

TCGA-DSS=0.786
(0.771-0.801)

TCGA-PFI=0.722
(0.707-0.737)

TCGA-OS=0.0691
TCGA-DSS=0.1676
TCGA-PFI=0.0215

TCGA-OS (Yes)
TCGA-DSS (Yes)
TCGA-PFI (No)

NA No
TCGA-GBM=0.628

(0.599-0.656)
TCGA-GBM=0.5165

TCGA-
GBM (Yes)

.143 × ATL1
×GRIA3 expression +
ssion − 0.305 × IL17D
× KLHDC1 expression
AM2 expression
IM67 expression

No
TCGA=0.856
(0.844-0.868)

TCGA=0.1571 TCGA (Yes)

ARNTL expression +
NTL2 expression +
LHE40 expression −

RY2 expression −

NK1E expression −

HLF expression −

R1D2 expression −

ER3 expression +
ORC expression +
MELESS expression

Yes

TCGA=0.863 (0.852-
0.875)

CGGA325 = 0.691
(0.671-0.710)

TCGA=0.3776
CGGA325 = 0.1789

TCGA (Yes)
CGGA325 (Yes)

more than 10.0% in the C-index.
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Investigator
Tumor
type

Dataset utilized

Sample
size:
total
cases

Data source Risk sco

Dai et al. (49) Glioma
TCGA (n=NA)
GTEx (n=NA)
CGGA (n=NA)

NA

https://
portal.gdc.cancer.gov/

repository
http://www.cgga.org.cn/

Xie et al. (50) GBM

TCGA-GBM (n=168)
GTEx (n=NA)

GSE43289/GSE43378/
GSE15824/GSE34152/
GSE50161/GSE66354/
GSE16011 (n=NA)

NA

https://
portal.gdc.cancer.gov/

https://www.gtexportal.org/
home/datasets

Zeng et al. (14) Glioma
TCGA (n=699)
CGGA (n=325)

1024
http://cancergenome.nih.gov

http://www.cgga.org.cn

RS= − 0
expression − 0.094
0.171 ×HPX expr
expression − 0.132

− 0.096 ×NC
− 0.124 × TR

*Wang
et al. (51)

Glioma

TCGA (n=672)
CGGA-microarray

(n=263)
CGGA325 (n=320)
CGGA693 (n=693)
GSE108474 (n=294)

2242

https://
cancergenome.nih.gov/
http://www.cgga.org.cn/

https://
www.ncbi.nlm.nih.gov/gds

RS=0.30145833 ×
0.08807400 × A
0.14204612 × BH
0.36049846 × C

0.06305725 × C
0.03387665 ×

0.04254696 × N
0.08047881 ×
0.01191781 × R
0.17275780 × TI

NA, not available; RS, risk score; OS, overall survival; DSS, disease specific survival; PFI, progress free interval; *, study showing a decline of
These studies adhere to the proportional hazards assumption.
e

R

S

P

https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
http://www.cgga.org.cn/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.gtexportal.org/home/datasets
https://www.gtexportal.org/home/datasets
http://cancergenome.nih.gov
http://www.cgga.org.cn
https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
http://www.cgga.org.cn/
https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/gds
https://doi.org/10.3389/fimmu.2025.1547506
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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Discussion

Numerous studies have been dedicated to developing

prognostic assessment models for glioma patients, which not only

reflect the high priority placed on patient prognosis evaluation but

also provide invaluable guidance for clinical practice. Traditional

assessment methodologies, exemplified by the Karnofsky

Performance Status (KPS) scale for glioma patients, integrate

various factors, including the patient’s age, general well-being,

neurological status, and radiological findings, to comprehensively

assess their overall health condition, thereby facilitating the

formulation of tailored treatment regimens (53). However, as

research progresses, various new prognostic assessment tools have

continually emerged, with nomograms being a particularly

noteworthy one (54). Through the integration of diverse clinical

and molecular factors, nomograms are designed to enhance the

precision of survival probability predictions for patients, ultimately

aiding clinicians in tailoring individualized treatment regimens. For

example, nomograms can be used to assess the efficacy of particular

therapeutic interventions, such as radiotherapy and chemotherapy,

and to make reliable predictions regarding the survival outcomes of

glioma patients undergoing specific treatments (10, 11, 26, 29).
Limited data and lack of external validation

Despite demonstrating substantial potential in predicting the

survival outcomes of glioma patients and furnishing clinicians with

an intuitive and relatively straightforward instrument for assessing
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patient survival probabilities, nomograms still possess a range of

common limitations that must be meticulously addressed prior to

their broader adoption in clinical practice. Firstly, a prevalent issue

observed in current research on the development and validation of

nomogram models is the inclusion of relatively limited data, which

inherently constrains the predictive accuracy and generalization

capacity of these models (55). As a predictive tool grounded in

statistical principles, the efficacy of nomograms heavily relies on the

abundance and diversity of the training data. In instances where

data quantity is inadequate, the model may struggle to adequately

capture the intricate patterns and underlying correlations within the

dataset, consequently leading to instability and biases in the

predictive outcomes. Transfer learning has garnered significant

attention in the application of small-sample problems. By

transferring model knowledge trained on large datasets to small

sample datasets, transfer learning can significantly enhance the

model’s generalization ability and accuracy (56). Secondly, the

construction of a nomogram is typically based on specific

research cohorts and datasets, which may not comprehensively

represent the actual circumstances of the entire glioma patient

population. For instance, certain studies may primarily rely on data

derived from European and American populations (54). However,

glioma, being a disease with notable racial and geographical

disparities, is likely influenced by a multitude of factors, including

genetic background, environmental conditions, lifestyle habits, and

others, in terms of its pathogenesis, pathological types, treatment

responses, and prognosis (57). The nomogram created based on

particular population data and applied directly to other ethnic/

racial groups without adequate adjustment or validation may result
FIGURE 3

Graphical overview of proposed steps for developing and validating a predictive survival model tailored for glioma patients.
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FIGURE 4

Development and validation of nomograms targeted at lower-grade glioma (LGG) as an illustrative example. (A) The first developed nomogram for
predicting 1-, 1.5-, and 2-year overall survival (OS) based on the TCGA-LGG cohort. (B) Calibration plots showing the predicted probabilities of 1-,
1.5-, and 2-year OS by the first constructed model in the TCGA-LGG cohort compared to actual outcomes. (C) Calibration plots showing the
predicted probabilities of 1-, 1.5-, and 2-year OS by the first constructed model in the ZN-LGG cohort compared to actual outcomes. (D) Calibration
plots showing the predicted probabilities of 1-, 1.5-, and 2-year OS by the first constructed model in the SU-LGG cohort compared to actual
outcomes. (E) The reconstructed nomogram for predicting 1-, 1.5-, and 2-year OS based on the TCGA-LGG cohort. (F) Calibration plots showing
the predicted probabilities of 1-, 1.5-, and 2-year OS by the reconstructed model in the TCGA-LGG cohort compared to actual outcomes.
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in lower prediction accuracy and even misleading clinical decisions

because it fails to take into account the differences in incidence and

survival rates among various ethnic groups (58). Furthermore, the

majority of studies included in this review did not employ external

validation cohorts to further evaluate the predictive performance of

the nomogram models after their construction. External validation

constitutes a crucial step in ensuring the reliability and stability of

the models, as it aids researchers in determining the applicability of

the models across diverse patient populations (59). Additionally,

external validation serves as an effective means of identifying

potential issues with the models, such as overfitting, where the

model performs exceptionally well on the training data but exhibits

poor generalization capabilities on new data, or underfitting, where

the model fails to adequately capture crucial information within the

data, leading to suboptimal prediction outcomes (60, 61).

Consequently, the absence of external validation not only

undermines the credibility of the models but also hinders the

broad application of the research findings in clinical practice.

Additionally, in seven studies that employed external datasets to

assess the predictive performance of their nomogram models, six

studies showed a decline of over 10.0% in the C-index compared to

the training set. This decrement may be attributed to potential

discrepancies in data quality, variations in sample size, inadequate

feature selection, or models being either overly intricate or

simplistic between the external datasets and the training set (62).

To address these challenges, future studies ought to endeavor to

gather more extensive and representative multicenter datasets for

the development of nomogram models. Simultaneously, upon

completion of model construction, a rigorous validation process

employing independent external cohorts should be adhered to, in
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accordance with standardized protocols, to thoroughly assess the

predictive performance of the model. This validation should

encompass not only the accuracy of prognostic predictions for

patients but also the stability and applicability of the model across

diverse clinical contexts.
Selection of variables

Although the nomogram model’s accuracy in forecasting is now

considered to be moderately trustworthy, it has not yet achieved a

high level of precision. This may be attributed to factors such as the

inherent limitations of the model and the significant clinical

heterogeneity observed among glioma patients (63). In particular,

the existing nomogram models lack comprehensive integration of

crucial factors influencing the prognosis of glioma patients, such as

the Karnofsky performance status (KPS), specific copy number

variations (CNV) like cyclin-dependent kinase inhibitor 2A/B

(CDKN2A/B) deletion, mutation of the telomerase reverse

transcriptase (TERT) promoter, regulator of telomere elongation

helicase 1, and pivotal molecular markers like the codeletion of

chromosome arms 1p and 19q (1p/19q), methylation status of the

promoter region of the gene O (6)-methylguanine-DNA

methyltransferase (MGMT), and mutation of isocitrate

dehydrogenase (IDH) enzyme (64–67). Moreover, the incidence

and progression of glioma are intimately associated with the

immune microenvironment, necessitating the inclusion of

microenvironment- and immunotherapy-related variables within

nomogram models (68). Nevertheless, the bulk of research has not

sufficiently considered or incorporated these important elements,
FIGURE 5

ROC curves and AUC for 1-Year, 1.5-year, and 2-year OS predictions using the original nomogram model in training set and external validation set.
Additionally, ROC curves and AUC for 1-year, 1.5-year, and 2-year OS predictions using the optimized nomogram model.
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which undoubtedly impedes the further enhancement of the

predictive efficacy of the model. Hence, subsequent studies can

selectively incorporate significant clinical pathological features,

radiomic features, surgical resection range, CNV, single-cell

sequence features, immune microenvironment features like

immune cell infiltration, immunotherapy-related variables like

PD-L1 expression, and molecular features like MGMT

methylation status into a nomogram for predicting the survival of

glioma patients.
Data processing

The creation of nomograms is constrained by the quality and

integrity of the data. In actual clinical settings, the input data

necessary for the model may be incomplete or inaccurate due to a

variety of factors, including inadequate documentation of patient

information, data loss, or the presence of outliers. Multiple

imputation is a commonly used method for handling missing

data, but the imputed values may inherently possess a certain

degree of inaccuracy, owing to the intrinsic characteristics of the

original data and other imputation-related factors (69). In addition,

Zhang et al. merged two datasets from distinct sources, namely the

TCGA-GBM and GSE83300 cohorts, upon which they developed a

nomogram (27). Completely eliminating biases across varied

datasets is still a difficult task, even with their best efforts to

perform background adjustment and quantitative normalization

on the original files, followed by the use of the “Combat” algorithm

to reduce batch effects (70). Notably, when datasets originate from

different experimental platforms or techniques, inherent

discrepancies among the data may persist, potentially leading to

misleading biological interpretations of the consolidated dataset.

Furthermore, in cases where batch effects within the dataset are

excessively intricate or unrecognized confounding factors are

present, the “Combat” algorithm may fall short in fully

eradicating these effects, thereby compromising the quality of the

merged data (71). Given the above challenges, future research

should give more meticulous consideration to strategies for data

integration during the design and execution phases.
Cox proportional hazards model

From the perspective of model construction, the nomogram

utilized for predicting patient survival outcomes primarily relies on

both univariate and multivariate Cox regression analysis which can

screen out independent risk factors (72). The Cox regression model

postulates that the hazard ratio remains invariant across the entire

follow-up duration, implying a constant covariate effect over time

(73). However, multiple factors could cause nonproportionality of

hazards to emerge frequently in practice (74). Failure to adhere to

the proportional hazards assumption can introduce inaccurate

prediction results and distorted statistical conclusions derived

from the model (75, 76). Besides, the model faces difficulties in

dealing with time-dependent covariates and nonlinear relationships
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between variables. Accordingly, prior to the application of a

nomogram, the PH assumption on the relationship between

covariates and outcomes should be validated by future researchers

using Schoenfeld residuals or other approaches. Researchers ought

to apply other alternative approaches like the Cox model with time-

varying effects, the piecewise hazards model, and the accelerated

failure time (AFT) model rather than the conventional Cox

proportional hazards model when the PH assumption is not

satisfied (74, 77). For example, Bayonas et al. used the accelerated

failure time model to predict the progression-free survival of

patients with advanced, well-differentiated neuroendocrine

tumors who received somatostatin analog therapy (78). Similarly,

Reckamp et al. conducted a study on the association between

germline pathogenic variants and the age at diagnosis of lung

adenocarcinoma, employing an AFT model (79).
Appropriate assessment

In some studies, it can be observed that there is often a certain

degree of deviation between the calibration curves of the nomogram

and the ideal line (typically represented as a diagonal), implying

that the predictive results of the nomogram may not align with the

actual outcomes when predicting individual risks (19, 22, 23, 27, 31,

33, 41, 49). Additionally, despite exhibiting satisfactory fitting

performance within the training cohort, the calibration curves

experience a notable decline in both fitting accuracy and the C-

index within the validation cohort (34). The augmentation of such

deviation may originate from multiple facets, encompassing but not

confined to sample selection bias, model overfitting, inappropriate

selection of feature variables, and inaccuracies during the data

preprocessing phase. In practical contexts, complex interactions

and associations frequently exist among risk factors. While

nomograms can simplify these factors into a single numerical

value or score, they may inadvertently overlook crucial

relationships among the variables involved. The utilization of

nomograms for survival prediction in glioma patients necessitates

consideration of individual differences and disease progression (80,

81). Clinical manifestations and prognosis in glioma patients may

diverge significantly across individuals, which nomograms may

inadequately capture. Therefore, when applying the model to

specific patients, it is necessary to make comprehensive

judgments and adjustments based on the actual situation and

changes in the patient’s condition.
Future prospects

Given the importance of predicting the survival outcomes of

glioma patients in clinical practice, this article offers step-by-step

guidelines to assist researchers in developing and evaluating clinical

predictive nomogram models (82). With the rapid development of

big data and machine learning technology, researchers can also

explore the use of these advanced technologies to optimize the

construction and validation process of nomogram models. For
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example, ensemble learning and deep learning can be employed to

more efficiently handle large-scale datasets, thereby enhancing the

predictive accuracy and robustness of the models (83). Meanwhile,

improvements to the models can be achieved through techniques

such as feature engineering, feature extraction and selection, and

algorithm optimization. For instance, feature engineering can

involve the generat ion of new features through the

transformation or combination of original features, ultimately

bolstering the expressive capacity of the model (84). Additionally,

algorithm optimization can be carried out by adjusting model

parameters or incorporating novel algorithms to further elevate

model performance. Researchers can also adopt more advanced

modeling strategies, including random forests, boosting methods,

multilayer perceptrons, decision trees, artificial neural networks,

support vector machines, and others (85). By integrating multi-

dimensional information such as imaging, genomics, and clinical

data, a more comprehensive and accurate prognostic prediction

nomogram model can be constructed. To further explain the

external validity and potential differences among different

populations, external validation of the model is an indispensable

step. Furthermore, GBM, being the highest-grade glioma, typically

exhibits a more rapid growth rate and a poorer prognosis, whereas

LGG displays relatively slower growth and a more favorable

prognosis. The disparity in such biological behaviors necessitates

the consideration of developing distinct prognostic models tailored

to these two patient populations. This endeavor would facilitate

more precise predictions of glioma patient prognosis and provide a

scientific rationale for personalizing treatment regimens.

In conclusion, we have conducted an assessment of the

nomograms included in our study. When the model significantly

violates the proportional hazards assumption, meticulous attention

must be devoted to adopting suitable analytical strategies. It is of

crucial importance to ascertain the type of non-proportional

hazards and to choose the most suitable analytical technique

tailored to that specific context. Hence, in the face of the

challenge posed by models violating the proportional hazards

assumption, it is imperative for us to continually delve into and

experiment with novel analytical strategies and techniques, thereby

ensuring the precision and reliability of predictive outcomes. This

endeavor not only enhances the scientific rigor and efficacy of

clinical decision-making but also offers valuable insights and

guidance for future research endeavors. A step-by-step guide for

developing and validating nomograms offers potential

clinical value.
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Benavent M, et al. Prediction of progression-free survival in patients with advanced,
well-differentiated, neuroendocrine tumors being treated with a somatostatin analog:
the GETNE-TRASGU study. J Clin Oncol. (2019) 37:2571–80. doi: 10.1200/
JCO.19.00980

79. Reckamp KL, Behrendt CE, Slavin TP, Gray SW, Castillo DK, Koczywas M, et al.
Germline mutations and age at onset of lung adenocarcinoma. Cancer. (2021)
127:2801–6. doi: 10.1002/cncr.v127.15

80. Zhang H, Liao J, Zhang X, Zhao E, Liang X, Luo S, et al. Sex difference of
mutation clonality in diffuse glioma evolution. Neuro-Oncology. (2018) 21:201–13.
doi: 10.1093/neuonc/noy154

81. Melin BS, Barnholtz-Sloan JS, Wrensch MR, Johansen C, Il'yasova D, Kinnersley
B, et al. Genome-wide association study of glioma subtypes identifies specific
differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors.
Nat Genet. (2017) 49:789–94. doi: 10.1038/ng.3823

82. Ryba A, Özdemir Z, Nissimov N, Hönikl L, Neidert N, Jakobs M, et al. Insights
from a multicenter study on adult H3 K27M-mutated glioma: Surgical resection’s
limited influence on overall survival, ATRX as molecular prognosticator. Neuro-
Oncology. (2024) 26:1479–93. doi: 10.1093/neuonc/noae061

83. Cai Z, Apolinário S, Baião AR, Pacini C, Sousa MD, Vinga S, et al. Synthetic
augmentation of cancer cell line multi-omic datasets using unsupervised deep learning.
Nat Commun. (2024) 15:10390. doi: 10.1038/s41467-024-54771-4

84. Zhang YP, Zhang XY, Cheng YT, Li B, Teng X-Z, Zhang J, et al. Artificial
intelligence-driven radiomics study in cancer: the role of feature engineering and
modeling. Mil Med Res. (2023) 10:22. doi: 10.1186/s40779-023-00458-8

85. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med.
(2019) 380:1347–58. doi: 10.1056/NEJMra1814259
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1356833
https://doi.org/10.3389/fimmu.2024.1356833
https://doi.org/10.3389/fimmu.2023.1090040
https://doi.org/10.1186/s12967-019-1914-3
https://doi.org/10.1186/s12967-019-1914-3
https://doi.org/10.1016/j.gendis.2023.101106
https://doi.org/10.1016/j.gendis.2023.101084
https://doi.org/10.1111/cpr.12988
https://doi.org/10.1126/science.aao0185
https://doi.org/10.1200/JCO.2006.08.1661
https://doi.org/10.1093/neuonc/noz191
https://doi.org/10.1093/neuonc/noz191
https://doi.org/10.1038/s41598-023-44911-z
https://doi.org/10.1038/s41598-023-44911-z
https://doi.org/10.1016/j.media.2019.03.009
https://doi.org/10.1016/S1474-4422(18)30468-X
https://doi.org/10.1001/jamaoncol.2018.1789
https://doi.org/10.1136/bmj-2023-074819
https://doi.org/10.1016/j.jphys.2019.08.009
https://doi.org/10.1109/TNNLS.2018.2844399
https://doi.org/10.1109/TNNLS.2018.2844399
https://doi.org/10.1021/ci400573c
https://doi.org/10.1038/s41467-024-54352-5
https://doi.org/10.1056/NEJMoa1500925
https://doi.org/10.1056/NEJMoa1407279
https://doi.org/10.1038/ng.407
https://doi.org/10.1093/annonc/mdu050
https://doi.org/10.1136/jitc-2024-009175
https://doi.org/10.1136/bmj.b2393
https://doi.org/10.1186/s13059-024-03401-9
https://doi.org/10.1016/j.media.2020.101879
https://doi.org/10.1016/j.media.2020.101879
https://doi.org/10.1186/s12943-024-02049-0
https://doi.org/10.1093/eurheartj/ehy770
https://doi.org/10.1016/j.jacc.2019.08.1034
https://doi.org/10.1016/j.jacc.2019.08.1034
https://doi.org/10.1186/s12933-024-02302-2
https://doi.org/10.1186/s12933-024-02302-2
https://doi.org/10.1177/09622802241242325
https://doi.org/10.1016/j.kint.2024.08.026
https://doi.org/10.1016/j.kint.2024.08.026
https://doi.org/10.1200/JCO.19.00980
https://doi.org/10.1200/JCO.19.00980
https://doi.org/10.1002/cncr.v127.15
https://doi.org/10.1093/neuonc/noy154
https://doi.org/10.1038/ng.3823
https://doi.org/10.1093/neuonc/noae061
https://doi.org/10.1038/s41467-024-54771-4
https://doi.org/10.1186/s40779-023-00458-8
https://doi.org/10.1056/NEJMra1814259
https://doi.org/10.3389/fimmu.2025.1547506
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Limitations of nomogram models in predicting survival outcomes for glioma patients
	Introduction
	Materials and methods
	Literature identification
	Study selection and data collection
	Data source
	Establishment and evaluation of the nomogram model
	Statistical analysis

	Results
	Study characteristics
	Assessment of nomograms in included research
	Developing a predictive survival model tailored for glioma patients

	Discussion
	Limited data and lack of external validation
	Selection of variables
	Data processing
	Cox proportional hazards model
	Appropriate assessment
	Future prospects

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


