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Multiple sclerosis (MS) is a chronic autoinflammatory disease of unknown origin,

involving characterized by immune cell infiltration into the target tissue, central

nervous system (CNS), resulting in local and/or systemic inflammation. The

symptoms vary from gait disturbance, visual impairment and learning and

memory impairment and are being managed with corticosteroid and/or

immunosuppressive agents. However, several patients do not respond to these

treatments, which can also elevate the risk of severe infections. Therefore, there

remains an ongoing need to identify new therapeutic targets. MS exhibits

distinctive pathology, clinical course, and treatment responses, suggesting the

importance of targeting disease site-specific immune cells to mitigate immune

system-induced inflammation, rather than employing broad immunosuppression.

Chemokines and chemokine receptors play a crucial role in the pathogenesis of

MS by recruiting immune cells to the CNS, leading to inflammation and

demyelination. Therapies targeting chemokines have shown promising results in

preclinical studies and clinical trials, but more research is needed to fully

understand their mechanisms and optimize their efficacy.
KEYWORDS

multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), chemokines,
CNS (central nervous system), immune cells, therapeutic targets
1 Introduction

Multiple sclerosis (MS) is a chronic autoinflammatory disease of unknown

pathogenesis characterized by immune cell infiltration into target tissue, especially the

central nervous systems (CNS), leading to local and/or systemic inflammation. This

infiltration results in subsequent axonal damage, demyelinating inflammation, and the

formation of sclerosing plaques in brain tissue (1, 2). In general, corticosteroid and/or

immunosuppressive agents are among the first line treatment for MS patients with CNS
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involvement. Nevertheless, some patients fail to respond to these

agents, and their usage carries an elevated risk of severe infection

(3, 4). With the primary objective of therapy being to reduce the

frequency of relapses, limit the accumulation of persistent disability,

and prevent or delay the onset of progressive disability, there

remains an urgent need to identify new treatments for MS, one

potential avenue being the targeting of chemokines.

Chemokines constitute a family of small chemotactic cytokines

crucial for regulating leukocyte migration during inflammation. They

initiate intracellular signaling cascades that drives processes such as

cell polarization and adhesion. “Classical” chemokine receptors,

characterized by four conserved cysteine residues arranged in CXC,

CC, CX3C, and XC patterns, are categorized into four subclasses

based on their structural configuration. These receptors, expressed on

the surface of immune cells, bind to chemokines and activate

intracellular signaling pathways that promote cell polarization,

adhesion, and migration. Classical chemokine receptors function as

G protein-coupled transmembrane receptors (GPCRs). Upon

chemokine binding, they initiate a series of intracellular signals that

facilitate cell migration from the circulation into inflamed tissues or

extravascular spaces (5–7). This migration process plays a pivotal role

in various biological responses, particular in immune reactions,

aiding immune cells in homing to sites of inflammation or infection.

Additionally, “atypical” chemokine receptors exist to regulate

chemokine levels by removing them, thus suppressing inflammation.

These receptors play a vital role in chemokine biology by capturing,

scavenging, or transporting chemokines, thereby modulating their

signaling through classical chemokine receptors (8).

Chemokines and chemokine receptors, pivotal in regulating

leukocytes migration into tissue, play a crucial role in the

pathogenesis of MS. Many studies have reported their

involvement in recruiting of immune cells to the CNS, leading to

CNS inflammation and demyelination. Thus, targeting these

molecules has emerged as a promising therapeutic strategy for

MS (7, 8). Further research is essential to fully understand the

mechanisms behind these therapies and optimize their efficacy,

given the complex relationship between immune regulation and MS

pathophysiology. Therefore, this review provides a comprehensive

overview of MS immunopathology, disease progression, and

current treatment approaches drawing insights from analogous

mechanisms observed in animal models. Additionally, we discuss

the clinical effects of drugs with CNS involvement and their

potential as new targets for MS with present up-to-date opinions

in this regard.
2 Pathological findings in MS based
on patients and mouse model

The precise triggers for immunocompetent cell activation in

patients with MS remain largely unknown. However, given that MS

lesions are predominantly observed in the CNS, and HLA-DRB1*15:01
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alleles are major susceptibility genes for MS (9), T cells and B cells have

been implicated in the pathogenesis of MS (10). In patients with MS,

CSF analysis often reveals mild pleocytosis with a clear predominance

of lymphocytes over neutrophils (11). These immune cells are thought

to react with various myelin antigens, including myelin basic protein

(MBP), myelin oligodendrocyte glycoprotein (MOG), and proteolipid

protein (PLP) (10). Recent research has shed light on the role of viral

infections, particularly Epstein-Barr virus (EBV), in MS development.

Longitudinal studies have shown a significant increase in MS risk

following EBV infection, but not that with cytomegalovirus infection

(12). Intriguingly, clinical studies have demonstrated symptomatic and

objective improvement in MS patients following in vitro-expanded

autologous EBV-specific T cell administrations (13). Notably, the

efficacy of this therapy was associated with high EBV reactivity of

the T cell product and downregulation of CSF IgG levels. Furthermore,

molecular mimicry between EBV nuclear antigen (EBNA)-1 and CNS

protein, a glial cell adhesion molecule (glialCAM) (Figure 1) was

observed, leading to the production of a cross-reactive antibodies by

pathogenic B cells (14). This finding suggests a promising clinical

strategy for treating MS patients. Pathogenic roles of immune cells on

MS are shown (Figure 1). During the early stages of inflammation, self-

antigen activation triggers immune responses. Subsequently, helper T

(Th) cells migrate into the CNS through the vasculature, initiating

pathological processes (15–17) (Figure 1). The CNS has several barriers

to prevent leukocyte infiltration. These barriers include the blood brain

barrier (BBB) and blood-spinal cord barrier (BSCB), and the blood-

cerebrospinal fluid barriers (BCSFB), which limit the entry of T cell

entry into the CNS. The interaction between immune cells and

endothelial cells, mediated by chemokines and adhesion molecules

such as P/E selectins, Mac-1, LFA-1 (Lymphocyte function-associated

antigen 1), VLA-4 (a4-b1 integrin), ICAM (Intercellular Adhesion

Molecule) -1,2 and VCAM -1 (vascular cell adhesion molecule 1), is

crucial for regulating leukocyte infiltration (18).

Autoantigen-specific T cells are initially activated in the

periphery and subsequently migrate to the CNS, where they

encounter antigen-presenting cells (APCs) presenting the

autoantigen. This reactivation in the CNS initiates autoimmune

processes similar to MS, accompanied by the release of chemokines

that activate and recruit other inflammatory immune cells.

Post-mortem examinations have frequently revealed the

accumulation of both T cells and B cells in the perivascular cuffs

within the meninges and brain parenchyma of MS patients (16, 19).

In these tissues, the degree of cell infiltration are often

associated with demyelination and neurodegeneration (19).

Exposure of endothelial cells to proinflammatory cytokines such

as IFN-gamma, TNF-alpha and IL-1beta, IL-17 etc. disrupts the

BBB by disorganizing cell-cell junctions, reducing the brain solute

barrier, and enhancing leukocyte-endothelial adhesion (20).

Notably, Th17 cells, known for their proinflammatory role, are

increased in both peripheral blood (16, 21, 22) and CNS lesions of

MS patients, particularly those with active disease (17). IL-17

produced by Th17 cells disrupts BBB tight junctions, facilitating
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their transmigration across endothelial cells in vitro and in

vivo (15).

Using animal models in research offers several advantages,

including their physiological and pathobiological similarities to

humans, well-characterized genomes and immune responses, and

appropriate experimental size. Despite these advantages, challenges

persist regarding reproducibility and translating findings to human

disease models. One major difference is that EAE is induced by active

immunization with CNS antigens, whereas the etiology of MS appears

to be a complex interplay of genetic and environmental factors.

However, animal models remain valuable tools for investigating

specific research questions. For instance, in studying MS

pathogenesis, mouse models such as EAE induced in C57BL/6 or

SJL/J mice using MOG or PLP peptides demonstrate molecular

mimicry as a disease model for MS (23). The SJL/J strain specifically

models relapsing–remitting MS. Additionally, genetic susceptibility

or resistance to EAE in MHC congenic mice is associated with

differential cytokine production. Antigens used in rodent EAE

models include spinal cord homogenate (SCH), purified myelin,
Frontiers in Immunology 03
myelin proteins such as MBP, PLP, and MOG, or peptides derived

from these proteins. The resulting disease phenotype varies from

monophasic to relapsing-remitting or chronic EAE depending on

the antigens and genetic background, and can be easily examined

from the time of antigen stimulation (24). MHC background largely

determines disease susceptibility, while epigenetic factors influence

EAE incidence, onset time, severity, neurological signs, and CNS

lesion distribution (25, 26).
3 Spatial and temporal MS treatment
chemokine targets

The expression of several chemokines and their receptors is

significantly elevated in the blood and inflamed tissues of MS

patients, as well as in animal models of EAE. Considering the

functions of chemokines, this suggests a pivotal role for chemokines

in recruiting leukocytes and initiating inflammation in MS (27–31).

The temporal dynamics of chemokine expression in EAE offer
FIGURE 1

Estimated targets of disease-modifying therapies in MS. This figure illustrates the factors involved in immune cell migration and transition from
peripheral tissues to the CNS in MS. The process begins with self-antigen activation, triggering immune responses. Helper T cells then migrate into
the CNS, initiating pathological processes. This infiltration is regulated by interactions between immune and endothelial cells, mediated by
chemokines and adhesion molecules. Autoantigen-specific T cells activate in the periphery, migrate to the CNS, and reactivate upon encountering
APCs, initiating MS-like autoimmune processes. The figure depicts the following key steps: (A) Antigen Presentation in Lymph Nodes: Dendritic cells
(DCs) and macrophages, activated by exposure to self-myelin antigens (e.g., MOG, MBP, PLP), migrate to lymph nodes as APCs. (B) Immune Cell
Activation: Immune cells are further activated in peripheral lymph nodes as autoantigen-specific cells. (C) Migration to the CNS: Activated myelin-
specific T cells (and sometimes B cells) enter the bloodstream and migrate toward the CNS. This process is facilitated by specific adhesion
molecules such as intercellular adhesion molecule-1 (ICAM-1) and leukocyte function-associated antigen-1 (LFA-1). (D) Blood-Brain Barrier
Disruption: Inflammatory cytokines produced by activated immune cells disrupt the BBB, BSCB, allowind immune cells to invade the CNS. This
disruption is enhanced by expression of specific chemokines. Pro-inflammatory cytokines disrupt the BBB, enhancing leukocyte-endothelial
adhesion. Th17 cells, known for their pro-inflammatory role, are increased in peripheral blood and CNS lesions. IL-17, produced by Th17 cells,
disrupts BBB tight junctions, facilitating their transmigration across endothelial cells. Cytokines released by Th1 cells, such as IFN-g and TNF-b, can
activate macrophages, causing damage to oligodendrocytes and pathological changes in myelination. (E) Autoimmune Processes in the CNS: Upon
encountering APCs presenting self-antigens in the CNS, these cells initiate MS-like autoimmune processes, such as axonal injury and myelin loss.
This is accompanied by the release of chemokines that activate and mobilize other inflammatory immune cells.
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valuable insights into disease progression of the disease and the

identification of potential therapeutic targets. Chemokines are

produced by various cell types, but the specific cells involved vary

depending on the context and location in the body. In blood,

chemokines are primarily produced by immune cells, endothelial

cells, and fibroblasts. In CSF, they are synthesized by

ependymocytes, immune cells, and interstitial cells lining the

ventricles. Within the CNS, chemokines are produced by cells

forming brain blood vessels, as well as lymphocytes, macrophages,

and microglia, particularly in active demyelinating MS brain lesions

under pathological conditions. This process enables chemokines to

induce and activate leukocyte adhesion molecules locally in certain

tissues, establishing a chemotactic concentration gradient and

contributing to endothelial permeability and monolayer

recruitment (29, 30, 32, 33).

In the EAE animal model, the disease progresses through three

distinct stages: the pre-symptomatic acute phase, the onset to

disease phase (peak phase), and the chronic phase. Chemokine

expression typically follows this pattern:
Fron
Pre-symptomatic Acute Phase: The disease manifests

approximately 8 days after EAE induction in animals.

Before onset, no visible motor impairments are observed,

but an increase in T cells in the blood precedes the T cell

infiltration into the CNS. Temporary vascular leakage in the

cortical gray matter is observed within the first several days

of disease induction, initiating microglial activation,

followed by continuous accumulation of dendritic

cells, leading to the infiltration of myelin-specific T cells

(34–36). M-CSF1 (Macrophage Colony-Stimulating

Factor) is upregulated in CSF, blood and CNS tissue as

early as one day post-immunization (DPI). Before the peak

onset of clinical symptoms, the expression of several

chemokines, including CCL2, CCL3, CCL5, CXCL1,

CXCL2, CXCL10, and CXCL11 increases in the CNS of

EAE animals (37–41). For example, spatial variations in

chemokine concentrations, driven by differences in

expression in various CNS regions and in CSF versus

serum (e.g., suppression of brainstem CXCL2 expression

by IFN-g and localized variations in CCL2 expression), have
been shown to influence BBB integrity and recruit

neutrophils and monocytes to the CNS (29, 33, 42). The

IFN-g pathway plays a significant role in chemokine

localization from the spinal cord to the brain. EAE

phenotype of IFN-g KO mice exhibit altered patterns of

chemokine expression in the spinal cord and brain, with a

greater tendency for inflammatory cell infiltration (43).

Onset Phase (Peak Phase): The onset phase of EAE occurs

approximately 8-15 days post-immunization, during which

clinical symptoms reach their peak. During this period,

CCL2, CCL3, CXCL1, and CXCL10 remain elevated.

Additionally, proinflammatory cytokines, such as IL-1b,
IFN-g, CCL5, CCL12, and CXCL9 are upregulated in the

spinal fluid, blood, and CNS of EAE animals (44, 45).
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Chronic Phase: The chronic phase of EAE occurs

approximately 15-30 days post-immunization. Following

the peak phase, inflammation and demyelination begin to

subside, leading to partial recovery in the animals,

depending on the antigen type. During this phase the

expression of cytokines such as M-CSF1, CCL2, CCL3,

and CCL5 decreases (29, 38, 46). This reduction is

associated with the resolution of inflammation and

diminished mononuclear cell infiltration into the CNS.

However, nerve damage still remains and chronic

neurologic symptoms persist. The chronic phase may last

the animal’s entire life and results in progressive neurologic

dysfunction. Persistent inflammation in the CNS can lead

to further recurrence and further neurological deficits (29).
Chemokine ligands and receptors are considered potential risk

factors for MS, with their expression linked to clinical disease

activity and severity. Inhibiting the chemokine system has been

shown to suppress MS inflammation and potentially prevent the

onset of MS (Tables 1a, b). Consequently, controlling immune cell

recruitment to the CNS has become a major therapeutic target.

Furthermore, due to functional overlap between chemokine

systems, inhibiting a single chemokine may not be sufficient to

completely suppress leukocyte migration. Therefore, targeting

multiple chemokines and/or their receptors in combination may

offer a more effective approach for treating human MS (5, 6).
4 Targeting the chemokine system
in MS

The study of chemokines can 1) involve an influx of

inflammatory cells from blood vessels, but since this occurs

before the onset of symptoms, the timing and site-specific control

of activity is possible from the outset, 2) provide potential lead

compounds for MS therapy, 3) lead to a deeper understanding of

MS pathogenesis, and 4) can be used therapeutically. The anti-

inflammatory effect may be due to inhibition of chemotaxis, thereby

preventing leukocyte influx into affected tissues. In addition, since

there are multiple chemokines for each receptor, it is necessary to

verify whether it is effective to inhibit them collectively or ligand-

specifically. Chemokine activity can be controlled by inhibition

against the chemokine itself or against the chemokine receptor,

using peptide antagonists, neutralizing antibodies, and small non-

peptide antagonists.

Immune neutralization of some chemokines [e.g., CCL3 acting

on both CCR5 and CCR1, multiple chemokines sharing a single

receptor, etc (47)] generally involves interactions with a variety of

chemokine-receptors, so details of tissue localization and time-

specific effects need to be identified. From both therapeutic and

mechanistic perspectives, it is meaningful to administer selective

small-molecule agents to block the effects of chemokine receptors

on acute EAE and MS during the induction phase of the

autoimmune response. Table 1c describes chemokines and
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receptors with potential therapeutic effects. We would like to

discuss effective chemokine modulation for treatment by

describing those that are affected by disease transition and

protein/gene expression, those that are suspected to be involved

in chemokines in gene-deficient animals, and those that are affected

by chemokines in drugs already used in clinical practice.

• CCR1 Antagonists

CCX354 is an orally administered, highly potent, and selective

antagonist of the CCR1 receptor. In clinical studies, it has shown

good tolerance and exhibited a linear dose-exposure relationship,

with a half-life of approximately 7 hours at a 300-mg dose. Effective

blockade of inflammatory cell infiltration into tissues requires

maintaining ≥90% CCR1 inhibition on blood leukocytes at all

times (48, 49). CCX354 was evaluated in two clinical trials for

rheumatoid arthritis, where it demonstrated a favorable safety and

tolerability profile, as well as clinical activity. The response rate at

week 12 was 39% in the placebo group and 56% in the 200 mg once-
TABLE 1a Chemokine targets for MS and phenotypes of chemokine
ligand gene-modified mice in MS models.

Gene
KO Mouse Phenotypes in EAE (Antagonist
Treatment in MS Model and Phenotypes)

CCL2

Anti-CCL2 neutralizing antibody reduced mononuclear cell
infiltration into the CNS and clinical severity in a mouse model of
EAE (51, 58, 59). CCL2 KO mice exhibited less severe EAE clinical
manifestations. In patients, CCL2 is expressed by astrocytes and
macrophages in acutely demyelinating lesions and active chronic
lesions. CCL2 levels in the CNS are reduced during increased disease
activity in MS (60).

CCL3

Deletion of the CCL3 gene in Tregs results in partial disease
protection in the MS mouse model. Anti-CCL3 treatment inhibited
MNC recruitment into the CNS. Tregs deficient in CCL3 production
fail to prevent (51).

CCL4
Tregs deficient in CCL4 production fail to prevent EAE progression.
CCL4 expression in the CNS has been reported in the EAE model,
similar to clinical findings in MS (61).

CCL5

CCL5 KO mice have not been fully analyzed, but clinical indicators
suggest involvement. CCL5 levels in CSF were higher in MS patients
than in controls. CCL5 expression in the CNS has been reported in
the EAE model, similar to clinical findings in MS. Modified CCL5
ligands are effective in controlling symptoms and neurodegenerative
diseases (51, 62). Immunological neutralization of CCL5 in the EAE
model has shown conflicting results (51, 63).

CCL7
CCL7 KO mice have not been analyzed, but clinical indicators
suggest involvement (64, 65).

CCL8
CCL8 KO mice have not been analyzed, but clinical indicators
suggest involvement (66, 67).

CCL11
CCL11 KO mice have not been analyzed, but clinical indicators
suggest involvement (66, 67).

CCL13

CCL13 KO mice have not been analyzed, but clinical indicators
suggest involvement (66). Elevated CCL13 levels in brain tissue and
CSF can attract monocytes and stimulate lymphocytes to secrete
inflammatory cytokines (68).

CCL17 CCL17 KO mice showed mildly reduced clinical scores (69, 70).

CCL18
CCL8 is a functional analog of human CCL18 in mice. Clinical
indicators suggest involvement. One study suggested that CCL18 can
inhibit chemotaxis via CCR1, CCR2, CCR4, and CCR5 (71)

CCL19
CCL19 and CCL21 KO mice (plt/plt mice) are resistant to EAE
induction (72). Clinical indicators suggest involvement (66).

CCL20

Clinical phenotypes of EAE in the chronic phase were slightly
exacerbated in CCL20 KO mice and may be compensated for by
other chemokine signals (73). Clinical indicators suggest involvement
(73, 74).

CCL21

CCL19 and CCL21 KO mice (plt/plt mice) are resistant to EAE
induction (72). CCL21 and CXCR3 have functions in traumatic and
EAE-induced neuropathic pain but are not involved in
pathology (75).

CCL22

CCL22 KO mice have not been analyzed, but clinical indicators
suggest involvement in MS pathogenesis in women (69, 76).
Administration of anti-CCL22 at the time of autoantigen
immunization delayed the initiation of clinical disease (77).

CXCL1

CXCL1 KO mice have not been analyzed, but clinical indicators
suggest involvement (39). Anti-CXCL1 antibody reduced granulocyte
adhesion to brain capillaries, and daily administration of this
antibody for one week reduced EAE severity (78, 79)

(Continued)
TABLE 1a Continued

Gene
KO Mouse Phenotypes in EAE (Antagonist
Treatment in MS Model and Phenotypes)

CXCL2
CXCL2 KO mice have not been analyzed, but clinical indicators
suggest involvement (33, 80).

CXCL5
CXCL5 KO mice have not been analyzed, but clinical indicators
suggest involvement (39, 81)

CXCL8
CXCL8 KO mice have not been analyzed, but clinical indicators
suggest involvement (79, 82–84).

CXCL9
CXCL9 KO mice have not been analyzed, but clinical indicators
suggest involvement (33, 85)

CXCL10

CXCL10 KO mice developed severe MOG-induced EAE (86). The
blocking CXCL10 function in rats increases EAE severity (87).
However, clinical deficits were milder, and acute demyelination was
substantially reduced in astroglia CXCL10-deleted EAE mice, but
long-term axon loss was equally severe (88). The function of
CXCL10 on EAE still remains unclear.

CXCL11
CXCL11 KO mice have not been analyzed, but clinical indicators
suggest involvement (89, 90).

CXCL12

CXCL12 KO mice have not been analyzed, but clinical indicators
suggest involvement. CXCR7 antagonist CCX771 prevented CXCR7,
resulting in elevated abluminal levels of CXCL12, resulting in
elevated abluminal levels of CXCL12 and reduced leukocyte
infiltration, which ameliorated EAE severity (89, 91).

CXCL13

EAE onset occurs normally in CXCL13 KO mice, but disease severity
wanes over time compared to wild-type mice (92, 93). Anti-human
CXCL13 antibody, MAb5261, inhibited CXCL13-induced B
cell migration.

CXCL16

CXCL16 KO mice have not been analyzed, but clinical indicators
suggest involvement. Animals treated with anti-CXCL16 antibodies
were resistant to EAE induction and showed decreased EAE severity
(94, 95).

XCL1
XCL1 KO mice have not been analyzed, but clinical indicators
suggest involvement. Animals treated with anti-XCL1 antibodies
were resistant to EAE induction (96).

CX3CL1
CX3CL1 KO mice have not been analyzed, but clinical indicators
suggest involvement (97). CX3CL1-mediated chemoattraction of NK
cells is relatively specific for the CNS (98)
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daily group (p=0.01). To date, there is a lack of specific data on the

use of CCX354 in MS. However, other CCR1 antagonists, such as

CCX721, avacopan (CCX168), BMS-817399, and ASK-8007, show

promise in addressing MS-related neuroinflammation (50).

Notably, elevated CCR1 levels have been observed in

cerebrospinal fluid (CSF) during the early and acute stages of

demyelination episodes in MS. In an animal model of EAE, CCR1

expression was significantly reduced during clinical remission,

correlating with decreased spinal cord inflammation and

demyelination (51). This evidence supports the exploration of

CCR1 antagonists as a potential therapeutic approach for MS.

• CCR2 Antagonists

CCX872, a CCR2 antagonist, targets the G-protein-coupled

receptor CCR2, which is expressed on monocytes and

macrophages and plays a crucial role in their migration and

infiltration into tissues. Its anti-inflammatory potential was

demonstrated using CX3CR1GFP/+CCR2RFP/+ reporter mice,

where treatment with CCX872 effectively reduced the

accumulation of peripheral macrophages, inhibited the neurotoxic

polarization of these cells, and suppressed the expression of NOX2,

a superoxide-generating enzyme that produces reactive oxygen

species (ROS), within a day post-injury. Importantly, this

intervention prevented traumatic brain injury (TBI)-induced

deficits in hippocampal-dependent learning and memory

observed 28 days after injury (52). Given the evidence that CCR2

is expressed on microglia and macrophages in chronic active MS

lesions and on perivascular mononuclear cells in both white matter

lesions and unaffected cortex, CCX872 presents a particularly

promising candidate for further investigation in MS. However, if

therapeutic intervention is considered, multiple targets must be

addressed. This is because EAE in CCR2 knockout (KO) mice led to

the replacement of neutrophils by monocytes, ultimately resulting

in demyelination (53).

Dual Antagonists

• CCR2/CCR5

BMS-813160 is a dual antagonist of CCR2/CCR5 activation

presenting with an excellent human liver microsome stability, oral

bioavailability and low clearance in mouse, dog and monkey. It may

inhibit inflammatory processes, angiogenesis, tumor cell migration,

tumor cell proliferation and invasion and was clinically tested in

this regard. Simpson et al.'s study, chronic active MS lesions were

found to be associated with CCR2, CCR3, and CCR5, particularly in
TABLE 1b The phenotypes of chemokine receptors gene-modified mice
in MS models.

Gene
KO Mouse Phenotypes in EAE (Antagonist
Treatment in MS Model and Phenotypes)

CCR1

Deletion of the CCR1 gene results in partial disease protection in the
MS mouse model. CCR1 antagonist ameliorates experimental
autoimmune encephalomyelitis by inhibiting Th9/Th22-related
markers in the brain and periphery (SJL/J) (99). In patients, CCR1
was detected on were detected on mononuclear cells and
macrophages in demyelinating plaques (100).

CCR2

CCR2 KO mice did not illustrate CNS histopathology or clinical EAE
(MOG induced in B6129PF2/J or C57BL/6J mice) and showed an
obvious decrease in infiltrating T cells compared with control mice.
CCR2 KO mice failed to develop EAE (59, 101). In patients, CCR2
was detected on infiltrating monocytes, macrophages and
lymphocytes in MS lesions (54, 102).

CCR3

CCR3 KO mice have not been analyzed, but clinical indicators
suggest involvement (103). In patients, CCR3 was detected on
infiltrating monocytes, macrophages and lymphocytes in MS lesions
(54, 102).

CCR4
CCR4 KO diminished clinical score of disease (104, 105). CCR4 and
CCR6 double KO mice developed less severe EAE relative to control
mice (69, 106).

CCR5

CCR5 KO mice did not protect against EAE. KO mice (B6129PF2/J
genetic background) exhibited milder EAE with less severe T-cell
infiltration and demyelination in the spinal cord compared with
controls (51, 63, 107). A CCR5 receptor antagonist and antibodies to
CCL20 have been reported to diminish disease severity (53, 54). In
patients, CCR5 was detected on lymphocytic cells, macrophages, and
microglia in actively demyelinating MS brain lesions and T cells
expressing CXCR3 or CCR5 in CSF were increased (30).

CCR6

CCR6 KO mice or mice that were treated with a neutralizing anti-
CCR6 antibody showed resistance to EAE development (108), CCR6
KO mice showed significantly more severe chronic EAE, but the
pathological phenotypes of EAE in CCR6-KO mice were not
consistent between the research groups (73, 106, 109). CCR4 and
CCR6 double KO mice developed less severe EAE (69). In patients, T
cells expressing CXCR3 and CCR6 in CSF were increased (30, 60).

CCR7

CCR7 KO mice acquired disease with an intensity similar to wild-
type littermates. KO CD11c-eYFP cells infiltrated into the CNS but
cells lacking CCR7 were retained in the brain and spinal cord while
wild type DCs migrated to cervical lymph nodes (72, 110).

CCR8

CCR8 KO mice showed reduced EAE. CCR8 has been clearly
demonstrated to play an essential role in EAE progression (111).
CCR8 expression correlated with the demyelinating activity, but was
not restricted to the MS pathology (112).

CXCR1 CXCR1 KO mice ameliorated disease severity in EAE mice (81).

CXCR2

Neutrophil-specific CXCR2 KO mice had less severe disease
symptoms at peak and late phases when compared to control mice
with similar levels of CNS-infiltrating neutrophils and other immune
cells despite high levels of circulating CXCL1 (113).

CXCR3

CXCR3 KO mice developed severe MOG-induced EAE (114). In
patients, T cells expressing CXCR3 in CSF were increased (30, 60)
and CXCR3 was detected on infiltrating monocytes, macrophages,
and lymphocytes in MS lesions (100).

CXCR4/
CXCR7

CXCR4/CXCR7 KO mice have not been analyzed, but clinical
indicators suggest involvement (89, 91, 115).

CXCR5
CXCR5 KO mice have not been analyzed, but clinical indicators
suggest involvement (32, 93).

(Continued)
TABLE 1b Continued

Gene
KO Mouse Phenotypes in EAE (Antagonist
Treatment in MS Model and Phenotypes)

CXCR6
CXCR6 KO mice showed no protection, however, anti-CXCR6 mAb
reverted EAE (32, 116, 117).

CX3CR1
While CX3CR1 KO mice showed severe MOG induced EAE and NK
cells were obviously reduced in the inflamed CNS (98), the CX3CR1
inhibitor ameliorated EAE rat (118).

XCR1
XCR1 KO mice showed involvement in EAE development (96).
XCR1 CAR-T cell-mediated depletion of DC1 modestly suppressed
the onset of Th1-driven EAE (119).
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foamy macrophages and activated microglia, with CCR2 and CCR5

also being prevalent in infiltrating lymphocytes (54, 55). Given these

findings, BMS-813160 might be a promising candidate for

evaluation in MS treatment.

• CCR1/3 and CCR2/5

UCB 35625 and its enantiomer J113863 are known for their

strong affinity towards CCR1 and CCR3, making them promising

candidates for modulating immune responses. In preclinical studies

using EAE model, daily administration of J113863 at a dose of 10

mg/kg for 12 days resulted in a significant reduction of pro-

inflammatory CD4+GM-CSF+ and CD4+IL-6+ cells, while

simultaneously increasing the levels of anti-inflammatory CD4

+IL-27+ and CD4+IL-10+ cells in the spleen. Moreover, J113863

treatment was shown to suppress the mRNA and protein expression

of pro-inflammatory cytokines GM-CSF and IL-6 in brain tissues,

while enhancing the expression of anti-inflammatory cytokines IL-

10 and IL-27. These findings suggest that CCR1 antagonists could

play a valuable role in reducing neuroinflammation in MS.

Interestingly, while UCB 35625 and J113863 primarily target
Frontiers in Immunology 07
CCR1 and CCR3, they also demonstrate low-affinity interactions

with CCR2 and CCR5. Depending on the specific receptor, the

enantiomer, and the signaling pathway involved, these compounds

may act as antagonists, partial agonists, or full agonists. This

versatility in function underscores the potential utility of these

compounds in addressing the complex immune dysregulation

observed in MS (56, 57).
5 Conclusions

This review synthesizes research on the role of chemokines in

inflammatory diseases, with a particular focus on MS, and outlines

recommended therapies and promising targets based on the disease

mechanisms presented in Figure 1. Several chemokines and their

receptors are implicated in MS pathophysiology, with by some

be ing d i rec t ly targe ted or ind i rec t ly modula ted by

immunomodulatory agents and drugs (Table 1c). The distinctive

pathology, clinical course, and treatment responses of MS
TABLE 1c The chemokine as the target for therapy of MS.

MS or EAE Targeting
Agent/Drug

Target Cells Modulated Chemokine/Chemokine Receptor Supporting
References

ACT-1004-1239 Various immune cells,
oligodendrocyte precursor cells

CXCL12/CXCR7 (In the MOG-induced EAE model, ACT-1004-1239(10-100
mg/kg, twice daily, orally) showed a significant dose-dependent reduction in
disease clinical scores and increased survival.)

(120)

Alemtuzumab B cell, T cell on
mature lymphocytes

CD52 (Approved for MS. Reduces accumulation of disability (≥1.0 point on
EDSS) reduced by 66%, relapse rate by 72%, and by 55%. Reduces CCR3,
CCR4, CCR5, CCR6, CXCR3, CXCL10, and CCL20.

(93, 94, 121, 122)

AMD3100 Various immune cells CXCL12/CXCR4 (CXCL12 reduced in MS patient CSF cells and EAE spinal
cord. Administration of antagonist AMD3100 to a weak EAE rats led to earlier
disease onset. In mouse EAE, AMD3100 exacerbates disease by promoting
leukocyte infiltration into the CNS parenchyma.)

(91, 123, 124)

Anti-CCL3 antibody Macrophages, T cells CCL3/CCR1, CCR5 (While CCL3 antibody treatment effectively suppressed
EAE and prevented CNS mononuclear cell accumulation, Met-RANTES, a
CCR1/CCR5 antagonist, only mildly decreased chronic-relapsing EAE severity
without impacting leukocyte migration.)

(125, 126)

Anti-CXCL10 antibody T cells, Eosinophils,
Monocytes, Natural killer cells

CXCL10/CXCR3 (Paradoxically, while CXCL10 neutralization exacerbates EAE
by increasing CD4+ cell infiltration in the CNS, it reduces inflammatory cell
invasion, demyelination, and improves neurological function in a viral model of
multiple sclerosis.)

(87, 127, 128)

Anti-CXCL16 antibody T cells, NK cells, Dendritic cells CXCL16 (Anti-CXCL16 antibody treatment confers resistance to
EAE induction.)

(94)

Anti-CCR6 antibody Th17 cells CCR6 (Anti-hCCR6 treatment effectively reduced clinical EAE symptoms and
decreased inflammatory cell infiltration within the central nervous system.)

(129, 130)

BTX/Evobrutinib B Cells, Myeloid Cells CCR1 (BTK inhibitor limits microglia-mediated inflammation in vitro and in
multiple animal models of MS)

Phase III (131)

CCX771 Monocytes Oligodendrocytes CXCL12/CXCR7/ACKR3 (CCX771 treatment ameliorates the clinical severity
of EAE.)

(132, 133)

Cladribine APCs, Peripheral B
cells, Monocytes

CCL5, CXCL8. (Approved for relapsing MS. Decreases CXCL8 in CSF and
CCL5 in CSF and serum. Blocks B and T cells, causing cell death.)

(134, 135)

Fingolimod T cell, CD8+T cell a sphingosine-1-phosphate receptor (S1PR) (Approved for MS. Sequesters
lymphocytes in lymph nodes. Reduces annualized relapse rate reduced by 39%
(1.25 mg) and 52% (0.5 mg). Reduces CXCR4-mediated B cell migration.)

(136–138)

(Continued)
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underscore the importance of targeting disease site-specific immune

cells to mitigate immune system-induced inflammation, rather than

relying on broad immunosuppression. The pleiotropic nature of the

chemokine system presents challenges for effective targeting with

selective antibodies or receptor blockers. Furthermore, general

chemokine blockade carries the risk of compromising host

defenses, and discrepancies between findings in EAE models and

species-specific differences in chemokine responsiveness necessitate

careful consideration for clinical translation to human MS patients.

These insights are valuable for developing novel therapeutic

approaches in inflammatory diseases, especially in inhibiting the

mobilization of pathogenic lymphoid cells within lesions and

contribute to advancing therapeutic strategies for MS.
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TABLE 1c Continued

MS or EAE Targeting
Agent/Drug

Target Cells Modulated Chemokine/Chemokine Receptor Supporting
References

Glatiramer acetate (GA) Antigen-presenting
cells (APCs)

CCR5, CCR7, CXCR3, CXCR6 (Approved for MS. Mixture of random-sized
peptides that mimic myelin basic protein, acting as a decoy. Reduced relapse
rate by 29%. Modulates CCR1, CCR2, CCR3, CCR7, CCR9, CCR10, CXCR1,
CXCR4, CXCR5, CXCR6, and CCR6.)

(139)

Interferon-Beta (IFN-b) B cells, Neutrophils CCL2, CCL3, CCL5, CCL7, CXCL8, CXCL9, CXCL10/CCR5, CXCR3
(Approved for MS. IFN-b therapy suppresses MS disease activity. Decreases
circulating neutrophils in RRMS patients, and showed a decrease in neutrophil
infiltration in animal models. Reduced relapse rate reduced (7% for 1.6 MIU,
33% for 8 MIU). Increases relapse-free patients (23% for 1.6 MIU, 50% for 8
MIU). Decreases of CCR5 and CXCR3 expression on T cells. Induces transient
CXCL10 increase. High-dose IFN-b suppress CCL17 in peripheral blood.)

(140, 141)

Mab 526I B cells CXCL13/CXCR5 (Mab 526I attenuates symptoms in experimental
autoimmune encephalomyelitis.)

(142)

Methylprednisolone (MP) Various immune cells CXCL10, CXCL13, CXCR1, CXCR2, CXCR3 (The high concentration of
CXCL10 in MS serum of patients was diminished to the initial value after
therapy with intravenous methylprednisolone.)

(143)

Met-RANTES T cells (especially Th1 and
Th17 cells),
Monocytes, Eosinophils

CCL5/CCR1, CCR5 (While active treatment showed no effect on acute-
monophasic EAE, regardless of administration timing, Met-RANTES modestly
improved fixed neurological disability when administered at disease onset in
chronic-relapsing EAE.)

(126)

Mitoxantrone T cells (autoreactive), B cells,
Macrophages, APCs

CCL2, CCR2, CXCR1, CXCR2 (Intrathecal methotrexate slowed disability
progression, decreased CXCR1 and CXCR2 expression on peripheral blood
mononuclear cells.)

(144)

Natalizumab (Tysabri) Leukocytes (a4-
integrin expressing)

CCL22, CXCL9, CXCL10, CXCL11, CXCL13 (Approved for relapsing MS. a4
integrin antagonist, preventing leukocyte trafficking into the CNS. Reduces CSF
levels of Th1 (CXCL9, CXCL10, CXCL11) and Th2 (CCL22) chemokines.
Increases CXCR3-expressing B cells.)

(145)

NSC-87877 T cells CXCL12/CXCR7 (NSC-87877 abrogated EAE by blocking initial CD8+ T-cell
into the uninflamed CNS.

(146)

Rituximab (Ofatumumab)
Chimeric anti-CD20 antibody

B cells CCL19, CXCL8, CXCL10, CXCL13 (Approved for MS. Annualized relapse rate:
0.11 with ofatumumab, 0.22 with teriflunomide Modulates CXCL10.)

(147)
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1547256
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Arimitsu et al. 10.3389/fimmu.2025.1547256
The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.

Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Frontiers in Immunology 09
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Compston A, Coles A. Multiple sclerosis. Lancet. (2008) 372:1502–17.
doi: 10.1016/S0140-6736(08)61620-7

2. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L. Axonal transection
in the lesions of multiple sclerosis. N Engl J Med. (1998) 338:278–85. doi: 10.1056/
NEJM199801293380502

3. Coerver EME, Fung WH, de Beukelaar J, Bouvy WH, Canta LR, Gerlach OHH,
et al. Discontinuation of first-line disease-modifying therapy in patients with stable
multiple sclerosis: the DOT-MS randomized clinical trial. JAMA Neurol. (2025)
82:123–31. doi: 10.1001/jamaneurol.2024.4164

4. Dargahi N, Katsara M, Tselios T, Androutsou ME, de Courten M, Matsoukas J,
et al. Multiple sclerosis: immunopathology and treatment update. Brain Sci. (2017) 7.
doi: 10.3390/brainsci7070078

5. Dyer DP. Understanding the mechanisms that facilitate specificity, not
redundancy, of chemokine-mediated leukocyte recruitment. Immunology. (2020)
160:336–44. doi: 10.1111/imm.13200

6. Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J. (2018)
285:2944–71. doi: 10.1111/febs.14466

7. Proudfoot AE. Chemokine receptors: multifaceted therapeutic targets. Nat Rev
Immunol. (2002) 2:106–15. doi: 10.1038/nri722

8. Xu H, Lin S, Zhou Z, Li D, Zhang X, Yu M, et al. New genetic and epigenetic
insights into the chemokine system: the latest discoveries aiding progression toward
precision medicine. Cell Mol Immunol. (2023) 20:739–76. doi: 10.1038/s41423-023-
01032-x

9. Sawcer S, Franklin RJ, Ban M. Multiple sclerosis genetics. Lancet Neurol. (2014)
13:700–9. doi: 10.1016/S1474-4422(14)70041-9

10. Hohlfeld R, Dornmair K, Meinl E, Wekerle H. The search for the target antigens
of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors
and therapeutic targets. Lancet Neurol. (2016) 15:198–209. doi: 10.1016/S1474-4422
(15)00334-8

11. Berek K, Bsteh G, Auer M, Di Pauli F, Zinganell A, Berger T, et al. Cerebrospinal
fluid findings in 541 patients with clinically isolated syndrome and multiple sclerosis: A
monocentric study. Front Immunol . (2021) 12:675307. doi : 10.3389/
fimmu.2021.675307

12. Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y, et al. Longitudinal
analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis.
Science. (2022) 375:296–301. doi: 10.1126/science.abj8222

13. Pender MP, Csurhes PA, Smith C, Douglas NL, Neller MA, Matthews KK, et al.
Epstein-Barr virus-specific T cell therapy for progressive multiple sclerosis. JCI Insight.
(2018) 3. doi: 10.1172/jci.insight.124714

14. Lanz TV, Brewer RC, Ho PP, Moon JS, Jude KM, Fernandez D, et al. Clonally
expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature. (2022)
603:321–7. doi: 10.1038/s41586-022-04432-7

15. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M,
et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central
nervous system inflammation. Nat Med. (2007) 13:1173–5. doi: 10.1038/nm1651

16. Kebir H, Ifergan I, Alvarez JI, Bernard M, Poirier J, Arbour N, et al. Preferential
recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis. Ann
Neurol. (2009) 66:390–402. doi: 10.1002/ana.21748

17. Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J, Esiri MM, et al.
Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is
associated with active disease in multiple sclerosis. Am J Pathol. (2008) 172:146–55.
doi: 10.2353/ajpath.2008.070690

18. Kadry H, Noorani B, Cucullo L. A blood-brain barrier overview on structure,
function, impairment, and biomarkers of integrity. Fluids Barriers CNS. (2020) 17:69.
doi: 10.1186/s12987-020-00230-3

19. Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H,
Schmidbauer M, et al. The relation between inflammation and neurodegeneration in
multiple sclerosis brains. Brain 132(Pt. (2009) 5):1175–89. doi: 10.1093/brain/awp070
20. Minagar A, Alexander JS. Blood-brain barrier disruption in multiple sclerosis.
Mult Scler. (2003) 9:540–9. doi: 10.1191/1352458503ms965oa

21. Matusevicius D, Kivisakk P, He B, Kostulas N, Ozenci V, Fredrikson S, et al.
Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in
multiple sclerosis. Mult Scler. (1999) 5:101–4. doi: 10.1177/135245859900500206

22. Durelli L, Conti L, Clerico M, Boselli D, Contessa G, Ripellino P, et al. T-helper
17 cells expand in multiple sclerosis and are inhibited by interferon-beta. Ann Neurol.
(2009) 65:499–509. doi: 10.1002/ana.21652

23. Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, et al. IL-17
plays an important role in the development of experimental autoimmune
encephalomyelitis. J Immunol. (2006) 177:566–73. doi: 10.4049/jimmunol.177.1.566

24. Miller SD, Karpus WJ. Experimental autoimmune encephalomyelitis in the
mouse. Curr Protoc Immunol Chapter. (2007) 15:15.1.1–15.1.18. doi: 10.1002/
0471142735.im1501s77

25. deLuca LE, Pikor NB, O’Leary J, Galicia-Rosas G, Ward LA, Defreitas D, et al.
Substrain differences reveal novel disease-modifying gene candidates that alter the
clinical course of a rodent model of multiple sclerosis. J Immunol. (2010) 184:3174–85.
doi: 10.4049/jimmunol.0902881

26. Sobel RA. Genetic and epigenetic influence on EAE phenotypes induced with
different encephalitogenic peptides. J Neuroimmunol. (2000) 108:45–52. doi: 10.1016/
s0165-5728(99)00270-2

27. Berek K, Bauer A, Rudzki D, Auer M, Barket R, Zinganell A, et al. Immune
profiling in multiple sclerosis: a single-center study of 65 cytokines, chemokines, and
related molecules in cerebrospinal fluid and serum. Front Immunol. (2023) 14:1200146.
doi: 10.3389/fimmu.2023.1200146

28. Lepennetier G, Hracsko Z, Unger M, Van GriensvenM, Grummel V, Krumbholz
M, et al. Cytokine and immune cell profiling in the cerebrospinal fluid of patients with
neuro-inflammatory diseases. J Neuroinflamm. (2019) 16:219. doi: 10.1186/s12974-
019-1601-6

29. Borjini N, Fernández M, Giardino L, Calzà L. Cytokine and chemokine
alterations in tissue, CSF, and plasma in early presymptomatic phase of experimental
allergic encephalomyelitis (EAE), in a rat model of multiple sclerosis. J Neuroinflamm.
(2016) 13:291. doi: 10.1186/s12974-016-0757-6

30. Sørensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, et al.
Expression of specific chemokines and chemokine receptors in the central nervous
system of multiple sclerosis patients. J Clin Invest. (1999) 103:807–15. doi: 10.1172/
JCI5150

31. Kothur K, Wienholt L, Tantsis EM, Earl J, Bandodkar S, Prelog K, et al. B cell,
Th17, and neutrophil related cerebrospinal fluid cytokine/chemokines are elevated in
MOG antibody associated demyelination. PLoS One. (2016) 11:e0149411. doi: 10.1371/
journal.pone.0149411

32. Schropp V, Chunder R, Dietel B, Tacke S, Kuerten S. The presence of cerebellar B
cell aggregates is associated with a specific chemokine profile in the cerebrospinal fluid
in a mouse model of multiple sclerosis. J Neuroinflamm. (2023) 20:18. doi: 10.1186/
s12974-023-02695-z

33. Stoolman JS, Duncker PC, Huber AK, Giles DA, Washnock-Schmid JM, Soulika
AM, et al. An IFNg/CXCL2 regulatory pathway determines lesion localization during
EAE. J Neuroinflamm. (2018) 15:208. doi: 10.1186/s12974-018-1237-y

34. Xin L, Madarasz A, Ivan DC, Weber F, Aleandri S, Luciani P, et al. Impairment
of spinal CSF flow precedes immune cell infiltration in an active EAE model. J
Neuroinflamm. (2024) 21:272. doi: 10.1186/s12974-024-03247-9

35. Wimmer I, Scharler C, Zrzavy T, Kadowaki T, Mödlagl V, Rojc K, et al.
Microglia pre-activation and neurodegeneration precipitate neuroinflammation
without exacerbating tissue injury in experimental autoimmune encephalomyelitis.
Acta Neuropathol Commun. (2019) 7:14. doi: 10.1186/s40478-019-0667-9

36. Bartholomäus I, Kawakami N, Odoardi F, Schläger C, Miljkovic D, Ellwart JW,
et al. Effector T cell interactions with meningeal vascular structures in nascent
autoimmune CNS lesions. Nature. (2009) 462:94–8. doi: 10.1038/nature08478
frontiersin.org

https://doi.org/10.1016/S0140-6736(08)61620-7
https://doi.org/10.1056/NEJM199801293380502
https://doi.org/10.1056/NEJM199801293380502
https://doi.org/10.1001/jamaneurol.2024.4164
https://doi.org/10.3390/brainsci7070078
https://doi.org/10.1111/imm.13200
https://doi.org/10.1111/febs.14466
https://doi.org/10.1038/nri722
https://doi.org/10.1038/s41423-023-01032-x
https://doi.org/10.1038/s41423-023-01032-x
https://doi.org/10.1016/S1474-4422(14)70041-9
https://doi.org/10.1016/S1474-4422(15)00334-8
https://doi.org/10.1016/S1474-4422(15)00334-8
https://doi.org/10.3389/fimmu.2021.675307
https://doi.org/10.3389/fimmu.2021.675307
https://doi.org/10.1126/science.abj8222
https://doi.org/10.1172/jci.insight.124714
https://doi.org/10.1038/s41586-022-04432-7
https://doi.org/10.1038/nm1651
https://doi.org/10.1002/ana.21748
https://doi.org/10.2353/ajpath.2008.070690
https://doi.org/10.1186/s12987-020-00230-3
https://doi.org/10.1093/brain/awp070
https://doi.org/10.1191/1352458503ms965oa
https://doi.org/10.1177/135245859900500206
https://doi.org/10.1002/ana.21652
https://doi.org/10.4049/jimmunol.177.1.566
https://doi.org/10.1002/0471142735.im1501s77
https://doi.org/10.1002/0471142735.im1501s77
https://doi.org/10.4049/jimmunol.0902881
https://doi.org/10.1016/s0165-5728(99)00270-2
https://doi.org/10.1016/s0165-5728(99)00270-2
https://doi.org/10.3389/fimmu.2023.1200146
https://doi.org/10.1186/s12974-019-1601-6
https://doi.org/10.1186/s12974-019-1601-6
https://doi.org/10.1186/s12974-016-0757-6
https://doi.org/10.1172/JCI5150
https://doi.org/10.1172/JCI5150
https://doi.org/10.1371/journal.pone.0149411
https://doi.org/10.1371/journal.pone.0149411
https://doi.org/10.1186/s12974-023-02695-z
https://doi.org/10.1186/s12974-023-02695-z
https://doi.org/10.1186/s12974-018-1237-y
https://doi.org/10.1186/s12974-024-03247-9
https://doi.org/10.1186/s40478-019-0667-9
https://doi.org/10.1038/nature08478
https://doi.org/10.3389/fimmu.2025.1547256
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Arimitsu et al. 10.3389/fimmu.2025.1547256
37. Shrestha B, Ge S, Pachter JS. Resolution of central nervous system astrocytic and
endothelial sources of CCL2 gene expression during evolving neuroinflammation.
Fluids Barriers CNS. (2014) 11:6. doi: 10.1186/2045-8118-11-6

38. Chui R, Dorovini-Zis K. Regulation of CCL2 and CCL3 expression in human
brain endothelial cells by cytokines and lipopolysaccharide. J Neuroinflamm. (2010)
7:1. doi: 10.1186/1742-2094-7-1

39. Rumble JM, Huber AK, Krishnamoorthy G, Srinivasan A, Giles DA, Zhang X,
et al. Neutrophil-related factors as biomarkers in EAE and MS. J Exp Med. (2015)
212:23–35. doi: 10.1084/jem.20141015

40. Godiska R, Chantry D, Dietsch GN, Gray PW. Chemokine expression in murine
experimental allergic encephalomyelitis. J Neuroimmunol. (1995) 58:167–76.
doi: 10.1016/0165-5728(95)00008-p

41. Fife BT, Kennedy KJ, Paniagua MC, Lukacs NW, Kunkel SL, Luster AD, et al.
CXCL10 (IFN-gamma-inducible protein-10) control of encephalitogenic CD4+ T cell
accumulation in the central nervous system during experimental autoimmune
encepha lomye l i t i s . J Immuno l . ( 2001) 166 :7617–24 . doi : 10 .4049/
jimmunol.166.12.7617

42. Stamatovic SM, Shakui P, Keep RF, Moore BB, Kunkel SL, Van Rooijen N, et al.
Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. J
Cereb Blood Flow Metab. (2005) 25:593–606. doi: 10.1038/sj.jcbfm.9600055

43. Stoolman JS, Duncker PC, Huber AK, Segal BM. Site-specific chemokine
expression regulates central nervous system inflammation and determines clinical
phenotype in autoimmune encephalomyelitis. J Immunol. (2014) 193:564–70.
doi: 10.4049/jimmunol.1400825

44. Hidaka Y, Inaba Y, Matsuda K, Itoh M, Kaneyama T, Nakazawa Y, et al.
Cytokine production profiles in chronic relapsing-remitting experimental autoimmune
encephalomyelitis: IFN-g and TNF-a are important participants in the first attack but
not in the relapse. J Neurol Sci. (2014) 340:117–22. doi: 10.1016/j.jns.2014.02.039

45. McColl SR, Mahalingam S, Staykova M, Tylaska LA, Fisher KE, Strick CA, et al.
Expression of rat I-TAC/CXCL11/SCYA11 during central nervous system
inflammation: comparison with other CXCR3 ligands. Lab Invest. (2004) 84:1418–
29. doi: 10.1038/labinvest.3700155

46. Hulkower K, Brosnan CF, Aquino DA, Cammer W, Kulshrestha S, Guida MP,
et al. Expression of CSF-1, c-fms, and MCP-1 in the central nervous system of rats with
experimental allergic encephalomyelitis. J Immunol. (1993) 150:2525–33. doi: 10.4049/
jimmunol.150.6.2525

47. Dyer DP, Medina-Ruiz L, Bartolini R, Schuette F, Hughes CE, Pallas K, et al.
Chemokine receptor redundancy and specificity are context dependent. Immunity.
(2019) 50:378–389.e5. doi: 10.1016/j.immuni.2019.01.009

48. Tak PP, Balanescu A, Tseluyko V, Bojin S, Drescher E, Dairaghi D, et al.
Chemokine receptor CCR1 antagonist CCX354-C treatment for rheumatoid arthritis:
CARAT-2, a randomised, placebo controlled clinical trial. Ann Rheum Dis. (2013)
72:337–44. doi: 10.1136/annrheumdis-2011-201605

49. Dairaghi DJ, Zhang P, Wang Y, Seitz LC, Johnson DA, Miao S, et al.
Pharmacokinetic and pharmacodynamic evaluation of the novel CCR1 antagonist
CCX354 in healthy human subjects: implications for selection of clinical dose. Clin
Pharmacol Ther. (2011) 89:726–34. doi: 10.1038/clpt.2011.33

50. Shu J, Ren Y, Tan W, Wei W, Zhang L, Chang J. Identification of potential drug
targets for vascular dementia and carotid plaques by analyzing underlying molecular
signatures shared by them. Front Aging Neurosci. (2022) 14:967146. doi: 10.3389/
fnagi.2022.967146

51. Eltayeb S, Sunnemark D, Berg AL, Nordvall G, Malmberg A, Lassmann H, et al.
Effector stage CC chemokine receptor-1 selective antagonism reduces multiple
sclerosis-like rat disease. J Neuroimmunol. (2003) 142:75–85. doi: 10.1016/s0165-
5728(03)00264-9

52. Morganti JM, Jopson TD, Liu S, Riparip LK, Guandique CK, Gupta N, et al.
CCR2 antagonism alters brain macrophage polarization and ameliorates cognitive
dysfunction induced by traumatic brain injury. J Neurosci. (2015) 35:748–60.
doi: 10.1523/JNEUROSCI.2405-14.2015

53. Gaupp S, Pitt D, Kuziel WA, Cannella B, Raine CS. Experimental autoimmune
encephalomyelitis (EAE) in CCR2(-/-) mice: susceptibility in multiple strains. Am J
Pathol. (2003) 162:139–50. doi: 10.1016/S0002-9440(10)63805-9

54. Simpson J, Rezaie P, Newcombe J, Cuzner ML, Male D, Woodroofe MN.
Expression of the beta-chemokine receptors CCR2, CCR3 and CCR5 in multiple
sclerosis central nervous system tissue. J Neuroimmunol. (2000) 108:192–200.
doi: 10.1016/s0165-5728(00)00274-5

55. Cherney RJ, Anjanappa P, Selvakumar K, Batt DG, Brown GD, Rose AV, et al.
BMS-813160: A potent CCR2 and CCR5 dual antagonist selected as a clinical
candidate. ACS Med Chem Lett. (2021) 12:1753–8. doi: 10.1021/acsmedchemlett.
1c00373

56. Ansari MA, Nadeem A, Attia SM, Bakheet SA, Shahid M, Rehman MU, et al.
CCR1 antagonist J-113863 corrects the imbalance of pro- and anti-inflammatory
cytokines in a SJL/J mouse model of relapsing-remitting multiple sclerosis.
Immunobiology. (2022) 227:152245. doi: 10.1016/j.imbio.2022.152245

57. Corbisier J, Huszagh A, Galés C, Parmentier M, Springael JY. Partial agonist and
biased signaling properties of the synthetic enantiomers J113863/UCB35625 at
chemokine receptors CCR2 and CCR5. J Biol Chem. (2017) 292:575–84.
doi: 10.1074/jbc.M116.757559
Frontiers in Immunology 10
58. Karpus WJ, Kennedy KJ, Fife BT, Bennett JL, Dal Canto MC, Kunkel SL, et al.
Anti-CCL2 treatment inhibits Theiler’s murine encephalomyelitis virus-induced
demyelinating disease. J Neurovirol . (2006) 12:251–61. doi: 10.1080/
13550280600873819

59. Bose S, Cho J. Role of chemokine CCL2 and its receptor CCR2 in
neurodegenerative diseases. Arch Pharm Res. (2013) 36:1039–50. doi: 10.1007/
s12272-013-0161-z

60. van Langelaar J, van der Vuurst de Vries RM, Janssen M, Wierenga-Wolf AF,
Spilt IM, Siepman TA, et al. T helper 17.1 cells associate with multiple sclerosis disease
activity: perspectives for early intervention. Brain. (2018) 141:1334–49. doi: 10.1093/
brain/awy069

61. Ronin E, Pouchy C, Khosravi M, Hilaire M, Grégoire S, Casrouge A, et al. Tissue-
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