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Sepsis, a heterogeneous illness produced by a dysregulated host response to

infection, remains a severe mortality risk. Recent discoveries in sepsis research

have stressed phenotyping as a feasible strategy for tackling heterogeneity and

enhancing therapy precision. Sepsis phenotyping has moved from traditional

stratifications based on severity and prognosis to dynamic, phenotype-driven

therapeutic options. This review covers recent progress in connecting sepsis

subgroups to personalized treatments, with a focus on phenotype-based

therapeutic predictions and decision-support systems. Despite ongoing

challenges, such as standardizing phenotyping frameworks and incorporating

findings into clinical practice, this topic has enormous promise. By investigating

phenotypic variation in therapy responses, we hope to uncover new biomarkers

and phenotype-driven therapeutic solutions, laying the groundwork for more

effective therapies and, ultimately improving patient outcomes.
KEYWORDS

sepsis heterogeneity, phenotyping, personalized therapy, phenotype-driven treatment,
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1 Introduction

Sepsis is a primary cause of mortality among critically sick patients worldwide,

accounting for approximately 49 million cases and 11 million deaths each year,

representing nearly 20% of all deaths worldwide (1–3). It results from an anomalous

immunological response to infection that precipitates organ failure (1, 4). Sepsis exhibits

high clinical heterogeneity, making the discovery of effective treatments exceedingly

challenging (5). Despite advances in understanding the cellular and molecular causes of

sepsis, its complicated pathophysiology remains a problem (6). This heterogeneity arises from

diverse pathogens, infection sites, and host immune responses that interact intricately to

shape the clinical presentation (7–11). The phenotypical variability in sepsis is reflected across

various clinical manifestation. Hemodynamic alterations, including blood pressure, cardiac
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output, and systemic vascular resistance, are prevalent indicators of

sepsis-induced circulatory dysfunction (12, 13). Coagulation diseases,

including disseminated intravascular coagulation (DIC), platelet

failure, and microthrombosis, intensify organ damage (14, 15).

Neurological manifestations encompass sepsis-associated

encephalopathy and delirium, reflecting both direct and indirect

impacts on the central nervous system (16, 17). Metabolic

instability, including hyperlactatemia and mitochondrial

dysfunction, underscores the systemic nature of sepsis (18, 19).

Respiratory issues, especially acute respiratory distress syndrome

(ARDS) and hypoxemia, often predominate the clinical trajectory,

however other systems, including renal and hepatic, exhibit varied

responses based on the patient’s phenotype (13, 20–22).

Given this multifaceted heterogeneity, understanding how these

clinical factors interplay to shape sepsis phenotypes is essential.

Recent advancements in big data methodologies, artificial

intelligence, and high-throughput multi-omics data, along with

disease phenotyping, offer novel pathways for enhancing the

comprehension of sepsis and formulating more personalized

treatment strategies (23). Phenotypic approaches employ

computational tools to analyze clinical, biomarker, and genetic

data, aiming to discover more homogeneous subpopulations

within sepsis patients (23, 24). This technology facilitates precise

therapy delivery, guaranteeing that the appropriate patient receives

the exact treatment at the designated time. In other fields, such as

oncology, phenotypic methodologies have enhanced therapeutic

accuracy (25, 26). Leveraging these advancements, sepsis treatment

could be revolutionized, perhaps leading to the identification of new

biomarkers and therapeutic targets that correspond to phenotypic

differences in treatment response, thus enhancing patient outcomes.

This review examines current advancements in sepsis

phenotyping (Figure 1), highlighting the potential of these

methods to tackle sepsis heterogeneity and optimize treatment

protocols. We aim to establish a foundation for the identification

of novel biomarkers and targeted treatments based on differential

responses among sepsis subtypes, ultimately enhancing

patient outcomes.
Abbreviations: AI, artificial intelligence; BHSD1, beta-hydroxysteroid

dehydrogenase 1; ARDS, acute respiratory distress syndrome; COMT, catechol-

O-methyltransferase; DEGs, differentially expressed genes; DTW, dynamic time

warping; DTR, dynamic treatment regime; DAMPs, damage-associated

molecular patterns; DIC, disseminated intravascular coagulation; GLCCI1,

Glucocorticoid-induced transcript 1; HAC, hierarchical agglomerative

clustering; ICUs, intensive care unit; LCA, latent class analysis; mHLA-DR,

monocyte human leukocyte antigen-DR; MIME-III, Medicine Information

Database III ; MHC, major histocompatibi l i ty complex; mRNA,

messengerRNA; MAS, macrophage activation syndrome; ML, Machine

learning; OPRM1, m-opioid receptor; PAMPs, Pathogen-associated molecular

patterns; qRT-PCR, quantitative real-time PCR; rhTM, recombinant human

thrombomodulin; RCTs, randomized clinical trials; SOFA, sequential organ

failure assessment; SRS, sepsis response signature; scRNA-seq, single-cell RNA

sequencing; SOD, superoxide dismutase; SOMs, self-organizing maps.
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2 The necessity of sepsis classification

Sepsis is a complex clinical disease defined by a variety of

immunological responses, infection locations, and patient

characteristics (7, 27). It is now regarded as a coexisting, dynamic

proinflammatory and immunosuppressive route driven by pathogen

virulence, host immunological regulation, and pharmaceutical

interventions (27–30). Sepsis-induced immunological dysregulation,

which includes genetic and metabolic changes to immune cells,

causes organ failure and increases the chance of re-infection after

pathogen clearance (31–36). Patient demographics, comorbidities,

infection characteristics, and treatment timing all contribute to sepsis

heterogeneity, which has an impact on clinical symptoms and

treatment outcomes (Figure 2). Despite advances in sepsis research,

a lack of specialized therapy options limits further success (36, 37).
2.1 Failures of randomized clinical trials
in sepsis

In recent decades, extensive clinical trials designed to enhance

sepsis treatment have predominantly failed to demonstrate

significant clinical efficacy (38–46). The trials examined several

medications, including hormone therapy, immunomodulators,

antibiotics, and fluid resuscitation methods. Despite these efforts,

various medications, such as recombinant activated protein C, have

not reliably decreased mortality or enhanced organ function, with

some associated with adverse side effects (38, 40, 46). Likewise, the

reliance on therapies targeting individual pathways, such as anti-

inflammatory cytokines like IL-1 and IL-6, fails to address the

complex interplay of pro-inflammatory and anti-inflammatory

responses in sepsis (41, 42). The primary reason for these failures

lies in the assumption that sepsis is a homogenous condition,

treatable with a “one-size-fits-all” approach. Research on

antibiotics and fluid resuscitation has underscored the intricacies

of sepsis management, revealing a lack of consensus regarding

optimal treatment protocols (43–45, 47–49). Many RCTs lack

robust stratification of patients by phenotype, leading to diluted

efficacy signals and conflicting results. An example of this

heterogeneity can be seen in patients with macrophage activation

syndrome (MAS), a hyperinflammatory condition associated with

sepsis. Studies have shown that these patients may benefit from IL-1

receptor antagonists, highlighting the importance of targeted

therapies for specific subgroups (41). These insights underscore

the need to move beyond conventional RCT designs and develop

phenotype-driven approaches that tailor interventions to patient-

specific profiles.

The failures of these trials highlight the importance of

understanding sepsis heterogeneity at the molecular and clinical

levels. Stratifying patients by genetic, molecular, and clinical

phenotypes could enhance the precision of trials and allow the

identification of subgroup-specific responses. And adaptive designs

that allow modifications based on interim data can better

accommodate the dynamic nature of sepsis and its heterogeneous

population. Meanwhile, addressing the interplay of multiple
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pathways using combination therapies or network-driven strategies

may prove more effective than single-target interventions. By

addressing these issues, future trials can better align with the

complexity of sepsis and pave the way for more effective treatments.
2.2 Deciphering sepsis heterogeneity:
implications for phenotype-
based therapies

Progress in genomic and transcriptomic technologies has

revealed that sepsis has several subphenotypes, each associated

with distinct clinical consequences. These findings highlight the

promise of phenotype-driven therapies to surpass the limitations of

traditional sepsis treatments. Initial research utilizing genetic

analysis identified numerous sepsis subphenotypes exhibiting

diverse clinical outcomes. An investigation of whole genome

expression in whole blood RNA from 98 adolescent septic shock

patients in 2009 uncovered numerous novel findings (24). This is the

inaugural phenotypic investigation of septic shock patients, revealing
Frontiers in Immunology 03
three subphenotypes characterized by distinct immune response

patterns and varying degrees of illness severity (24). Subsequent

research corroborated these findings, indicating that gene expression

profiling can delineate sepsis subgroups with varying treatment

responses (50–52). In a 2015 study, researchers employed

NanoString nCounter to quantify messenger RNA (mRNA) for

100 categorized genes, demonstrating gene expression mosaicism.

Notwithstanding the enhancement, the model only identified

subphenotypes A and B in the two cohorts (n=168 and n=132)

(52). Subtype A activates glucocorticoid receptors to a lesser extent

than subtype B (52). This prompted researchers to investigate

adjuvant corticosteroid therapy and its prognostic implications.

Adjuvant corticosteroids were administered to 52 (43%) of 120

patients with subphenotype A and 104 (58%) of 180 patients with

subtype B. Corticosteroid therapy markedly decreased mortality in

subtype A, but not in subtype B (52). This research is the first

investigation of phenotype-directed therapy in septic shock patients

by gene expression profiling to ascertain therapeutic heterogeneity in

sepsis. Nonetheless, the administration of corticosteroids is

non-randomized.
FIGURE 1

Chronology of the developmental history of sepsis classification. The evolution of sepsis phenotypic research from static categorization to dynamic
classification has led to increasingly customized and precise treatment approaches for sepsis. Precise phenotypic classification and phenotype-based
therapy strategies enhance understanding of sepsis heterogeneity, identify novel therapeutic targets, and optimize clinical treatment protocols,
ultimately improving patient outcomes. Future research will focus on improving treatment outcomes through real-time monitoring and dynamic
modifications to treatment protocols, aimed at addressing existing challenges in precision therapy.
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Furthermore, recent studies have shown demonstrated diversity in

sepsis recovery (53–55). Research indicates that long-term outcomes

differ, with numerous survivors facing persistent physical and

psychological challenges (56–62). A 2021 study identified three

distinct paths of depressive symptoms in septic shock survivors,

highlighting the importance of personalized post- intensive care unit

(ICU) care (59). Another study of clinical and biomarker data from 467

septic shock survivors identified two subgroups post-ICU discharge:

Type A, characterized by low multi-organ dysfunction, and Type B,

with a higher one-year mortality rate (34% vs. 16%) (55). Enhancing

patient outcomes necessitates comprehending sepsis heterogeneity and

developing phenotype-based therapeutics. The integration of

epigenomics, transcriptomics, proteomics, metabolomics and

cytomics with AI technologies is essential for advancing precision

therapies in sepsis. This integration aids in identifying biomarkers and

molecular signatures associated with sepsis subphenotypes, enhancing

patient classification and treatment development. By integrating

genetic and clinical data, researchers might enhance their

comprehension of sepsis heterogeneity and develop stratified trial

designs that consider subphenotype responses. This methodology

establishes a robust framework for the identification of novel

biomarkers and therapeutic targets, facilitating personalized

treatments that enhance clinical outcomes and optimize

therapeutic interventions.
Frontiers in Immunology 04
3 Bridging sepsis subphenotypes to
treatment strategies

Sepsis exhibits significant variabil i ty and presents

management challenges; thus, defining its subphenotypes is

essential for improving treatment. Recently emerging multi-

omics technologies, including epigenomics, transcriptomics,

proteomics, metabolomics, and cytomics, have enabled the

molecular classification of sepsis (Figure 3). When integrated

with vital signs, biochemical markers, and evaluations of organ

function, these technologies elucidate the pathophysiological

underpinnings of sepsis. Epigenomic changes, such as DNA

methylation and histone irregularities, influence immunological

responses and disease outcomes. Transcriptomic and proteomic

analyses reveal gene expression patterns and protein biomarkers

associated with clinical variability in sepsis patients, facilitating

the identification of biomarkers and therapeutic targets.

Moreover, artificial intelligence (AI) and machine learning (ML)

are extensively employed to analyze these high-dimensional

datasets to identify novel disease patterns and predict patient

outcomes (Table 1). K-means clustering and latent profile analysis

have been employed to identify clinically significant subgroups,

categorizing patients according to clinical and genomic data to

facilitate more personalized therapeutic decisions (63–65).
FIGURE 2

Sepsis is defined as a dysregulated host response to infection that leads to organ dysfunction. Innate immunity is inherently structured to swiftly
respond to conserved molecules known as PAMPs and DAMPs, which are produced by infections and hosts, respectively. The complexities of
pathogen-host interactions increase the variability of sepsis manifestations. The observed heterogeneity primarily results from pre-existing individual
health conditions, variability in pathogenic bacteria, differences in infection sites, and variations in host immune responses. This variety underpins
differences in clinical presentation, prognosis, and treatment outcomes, highlighting the importance of understanding sepsis diversity. Improving
phenotype-based therapy techniques, identifying novel markers and targets through diverse therapeutic responses, and stratifying patients can all
improve results and steer newer drugs. Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs).
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Supervised learning methods such as random forests and logistic

regression can identify the onset of sepsis and enhance fluid

resuscitation and antibiotic treatment (64, 66–70). AI/ML

methodologies integrated with clinical data can design

individualized therapy regimens that enhance clinical outcomes

(71–77). Artificial Intelligence and Machine Learning exhibit

potential (78, 79); yet, their incorporation into clinical practice

necessitates thorough validation and external verification to

ensure their dependability and relevance across diverse

healthcare environments.
3.1 Multi-omics-based studies

Sepsis is complex, thus knowing its molecular basis is crucial.

Integrating Epigenomics, transcriptomics, proteomics,

metabolomics, and cytomics data offers a comprehensive view of

sepsis phenotyping (Figure 3). These methodologies delineate

molecular subphenotypes, categorize patients, and formulate

personalized treatment strategies. The following discussion

addresses each omics technology and their potential synergy in

the understanding and management of sepsis.
Frontiers in Immunology 05
3.1.1 Epigenomics
Epigenomics examines heritable modifications in gene expression

that do not include alterations to the DNA sequence, including DNA

methylation, histone modifications, and non-coding RNA. These

epigenetic modifications significantly influence the immune

response to sepsis. One study identified unique DNA methylation

patterns in sepsis patients, correlating hypermethylation of immune

regulatory genes with impaired immunological function (80).

Another investigation identified histone modifications associated

with sepsis-induced immune tolerance, offering insights into

potentially reversible mechanisms (81). These findings underscore

the epigenome’s pivotal role in defining molecular subtypes of sepsis

and its potential therapeutic implications. Nonetheless, despite its

promise, epigenomics possesses constraints. Epigenetic modifications

can be affected by numerous environmental and temporal factors,

complicating the establishment of definitive causality in sepsis.

Moreover, the transient nature of many epigenetic modifications,

coupled with the intricate relationships within the epigenome,

complicates the ability to reach definitive findings. Epigenomics

provides essential insights into the regulatory mechanisms of sepsis,

sometimes complemented by transcriptomics, which captures real-

time gene expression alterations and reveals more dynamic molecular

endophenotypes of the condition.
FIGURE 3

Advancements in big data and artificial intelligence (AI) have enhanced the integration of clinical, biomarker, and molecular data, facilitating a deeper
understanding of sepsis heterogeneity. Although classifications of sepsis subtypes differ due to variations in study designs and methodologies, these
technologies facilitate the identification of novel biomarkers and therapeutic targets. The integration of multi-omics data with artificial intelligence is
essential for advancing precision medicine, refining patient stratification, and directing phenotype-based therapy. By integrating genetic and clinical
data, researchers can enhance the comprehension of sepsis heterogeneity and formulate stratified trials, facilitating the development of personalized
medications that optimize patient outcomes.
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3.1.2 Transcriptomics
Transcriptomics focuses on gene expression profiling to classify

molecular endophenotypes of sepsis, which reveal significant

variations in treatment responses and outcomes. Cohort studies

employing unsupervised clustering to assess blood leukocyte gene

expression data typically discern molecular subphenotypes of sepsis

(82, 83). Comprehending the diverse forms of sepsis and tailoring

treatment to specific phenotypes can enhance patient outcomes.

Multi-omics approaches, particularly transcriptomics, have

provided significant insights into the immunological dysregulation

and genetic markers that characterize sepsis subphenotypes (82–84).

Transcriptomics-based studies have identified several molecular

subphenotypes associated with distinct immune responses in sepsis

patients. For example, a transcriptomic analysis of peripheral white

blood cells from 265 adult sepsis patients in the ICU with community-

acquired pneumonia was published in 2016. This investigation

identified two significant transcriptome signatures—SRS 1 and SRS 2
Frontiers in Immunology 06
—that are associated with a bad and favorable prognosis, respectively

(82). These signatures were confirmed across numerous cohorts and

contributed to the development of gene classifiers capable of accurately

predicting sepsis subphenotypes (82, 85, 86). Importantly, SRS 1 was

associated with immunosuppression, whereas SRS 2 was associated

with a more active immune response (82). Moreover, dynamic changes

in SRS subgroup membership were observed during ICU stays (85).

A significant issue in transcriptomics research has been the

absence of standardized protocols, leading to variability among

studies. Recent initiatives to enhance research methodologies and

replicate results across cohorts have yielded more dependable and

reproducible outputs. For example, a gene expression analysis

utilizing whole blood mRNA microarray data from diverse

infection sources, including pneumonia and peritonitis, identified

similarities and differences in immune responses, contributing to

the characterization of sepsis subphenotypes (Mars1-4) (83). The

Mars1 endophenotype, characterized by diminished gene
TABLE 1 Overview of the methods of machine learning and artificial intelligence.

Category Method Primary Application Key Features References

Unsupervised

K-means Clustering Identifying subphenotypes
Simple, interpretable; sensitive
to outliers

Huang et al. (64)

Latent Profile Analysis Revealing subphenotypes
Captures heterogeneity; requires
large datasets

Liu et al. (65)

Self-Organizing Maps Clustering high-dimensional data
Effective visualization;
computationally intensive

De Zuani et al. (74)

Supervised

Logistic Regression Predicting onset, severity
Simple for binary outcomes;
limited to linear relationships

Sun et al. (67)

Random Forest Predicting outcomes
Robust, non-linear;
computationally expensive

Kijpaisalratana et al. (73)

Decision Tree Treatment guidance
Easy to interpret; prone
to overfitting

Wang et al. (72)

Support Vector Machines Classifying subphenotypes
Effective for high-dimensional
data; sensitive to parameter tuning

Turki et al. (76)

Gradient Boosting/XGBoost Predicting outcomes
High accuracy;
computationally intensive

Berg et al. (70)

Deep Learning Time-series prediction
Effective for sequential data;
requires large datasets

Lauritsen et al. (75)

Artificial Neural Networks Personalized treatment prediction
Processes high-dimensional data;
requires large datasets

Loftus et al. (77)

K-Nearest Neighbors Predicting incidence
Intuitive; sensitive to
irrelevant features

Michelson et al. (68)

Ensemble Methods Improving classification accuracy
Reduces overfitting; difficult
to interpret

Wang et al. (72)

Transfer Learning
Adapting models for data-
scarce settings

Effective with pre-trained models;
transfer not always perfect

Dieckhaus et al. (69)

Specialized

Latent Class Analysis Classifying latent subgroups
Identifies hidden groups; sensitive
to class assumptions

Cai et al. (63)

Dynamic Treatment Regime Personalized treatment strategies
Dynamic recommendations;
complex computation

Ma et al. (152)

Dynamic Time Warping
Aligning and comparing time-
series data

Effective for sequence comparison;
computationally expensive

Bhavani et al. (71)
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expression in innate and adaptive immune functions such as toll-

like receptor and T-cell receptor signaling pathways, was linked to

unfavorable prognosis (83). Endophenotype indicators, specifically

BPGM and TAP 2, were identified to enhance clinical application,

predicting Mars1 (83). TAP 2 and TAP 1 constitute the TAP

complex, responsible for transporting exogenous protein

fragments (peptides) to the endoplasmic reticulum. The peptide is

presented on the cell surface by major histocompatibility complex

(MHC) class I proteins and identified by CD8+ T lymphocytes. If

the peptide is detrimental, the immune system combats the

intruders (87). These findings underscore the significance of

personalized treatment strategies informed by molecular markers,

rather than broad-spectrum medicines.

Research indicates that sepsis subphenotypes influence the

effectiveness of immunomodulatory therapies (Table 2). A

retrospective examination of gene expression in 176 septic shock

patients from the VANISH clinical study, utilizing mRNA data,

identified two SRS subphenotypes (SRS 1 and SRS 2) and assessed

their impact on reactions to vasoactive drugs and steroids (86).

The VANISH clinical trials randomly allocated patients to receive

either norepinephrine or vasopressin within six hours of shock onset,

thereafter administering hydrocortisone or a placebo (43). Patients

displaying the immunosuppressive SRS 1 signature had a neutral
Frontiers in Immunology 07
response to steroid therapy, while those with the immune-active SRS 2

signature encountered worsened results (86). The restricted sample

size may have negatively impacted the SRS 2 subgroup, resulting in an

increased mortality rate. Numerous studies have investigated

transcriptome-derived phenotypes, particularly with corticosteroid

therapy. In 2020, researchers analyzed and incorporated 12 GEO

and ArrayExpress datasets containing whole blood gene expression

data from 1,613 adult sepsis patients (88). This research identified two

sepsis subtypes (Class 1 and Class 2) by the application of deep

learning methodologies and autoencoders for feature extraction. Class

1, characterized by immunosuppression, exhibited a significantly

higher death rate compared to Class 2 (88). The research

additionally examined the influence of sepsis subtypes on

hydrocortisone response by a secondary analysis of an independent

VANISH trial dataset (43, 88). The use of hydrocortisone elevated

mortality rates in Class 2 patients, but not in Class 1 patients (88). This

discovery underscores the necessity for comprehensive investigations

into sepsis subphenotypes to enhance clinical treatment options and

deepen our understanding of the complexity and treatment

responsiveness of sepsis.

A further work in 2021 analyzed the correlation between

corticosteroid responsiveness in septic shock patients and

adrenocortical gene expression (89). A thorough analysis of whole
TABLE 2 Principal papers referenced in the text concerning the potential for phenotype-guided therapy in sepsis.

Number of
Phenotypes

Names of
Sepsis Phenotypes

Therapeutic approaches Research type Reference

2 Subclass (A and B) Corticosteroids Original research Wong et al. (52)

2 SRS (1–2) Corticosteroids Secondary analysis Antcliffe et al. (86)

2 Class (1-2) Hydrocortisone Secondary analysis Zhang et al. (88)

2 Higher expression of BHSD1
or GLCCI1

Hydrocortisone vs placebo Secondary analysis Cohen et al. (89)

2 IA-P and IN-P Hydrocortisone Secondary analysis Yao et al. (92)

4 Group (A, B, C and D) Balanced crystalloids vs saline for
fluid resuscitation

Secondary analysis Bhavani et al. (115)

4 Phenotype (a, b, g, and d) Eritoran (toll-like receptor
4 antagonist)

Secondary analysis Seymour et al. (121)

4 Phenotype (a, b, g, and d) Drotrecogin alfa (activated protein C) Secondary analysis Seymour et al. (121)

4 Phenotype (a, b, g, and d) EGDT as standard care vs usual care Secondary analysis Seymour et al. (121)

4 Cluster (dA, dB, dC and dD) recombinant Human
thrombomodulin treatment

Secondary analysis Kudo et al. (133)

2 Hypoinflammatory
and hyperinflammatory

Drotrecogin alfa (recombinant
Human Activated Protein C)

Secondary analysis Sinha et al. (145)

2 Hypoinflammatory
and hyperinflammatory

Corticosteroids Secondary analysis Neyton et al. (149)

4 Profile (1-4) Different amounts of
fluid resuscitation

Retrospective study Zhang et al. (150)

5 Class (1-5) Tailor fluid resuscitation strategy Original research Ma et al. (152)

4 MOF, RD, ND, and OP Fluid balances Retrospective study Shald et al. (151)

2 Cluster (1-2) Tailor fluid resuscitation strategy Original research Zhang et al. (109)
SRS, sepsis response signature; IA-P, immune-adaptive prevalent; IN-P, immune-innate prevalent; EGDT.
early, goal-directed therapy; MOF, multi-organ failure; RD, respiratory dysfunction; ND, neurologic dysfunction; OP, other patients.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1546474
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1546474
blood RNA sequencing data from 697 patients across 28 medical-

surgical ICUs involved in the ADRENAL experiment revealed no

correlation between adrenal cortical gene expression levels and

mortality (46, 89). A logistic regression analysis demonstrated an

atypical occurrence: those treated with hydrocortisone with elevated

Glucocorticoid-induced transcript 1 (GLCCI1) gene expression levels

recovered from shock more rapidly than those with increased beta-

hydroxysteroid dehydrogenase 1 (BHSD1) gene expression (89). And

a 2022 study using a classifier based on 33 gene expression patterns to

classify 13 sepsis datasets into three categories (90–92). The

researchers subsequently identified a minimal collection of

predictive genes from differentially expressed genes (DEGs) within

each subclass to accurately classify subclasses and reclassify gene

expression patterns into immune-adaptive, immune-innate, and

immune-coagulant subphenotypes (92). Given that the coagulant

malfunction phenotype may not directly influence the response to

glucocorticoid therapy, the researchers re-evaluated 117 patients

from the VANISH clinical trial with septic shock, categorizing

them as immune-adaptive or immune-innate, and investigated the

impact of these subtypes on steroid therapy (92). The research

indicated that glucocorticoids elevated death rates in the high

immune adaptability cohort, supporting previous results from

smaller studies and demonstrating that transcriptomically

generated phenotypes could influence treatment choices (92).

Patients in septic shock may exhibit varying corticosteroid

responses attributable to gene expression differences. There is

increased research on transcriptome-derived phenotypes and

immune cell characteristics in individuals with sepsis (93). These

findings assist in prognostic predictions and the assessment of

treatments such as corticosteroids and vasoactive agents, which

influence patients variably based on their immunological condition.

Thus, transcriptomics research has enhanced our comprehension

of sepsis heterogeneity and demonstrated the potential for

phenotype-based therapeutics. Precision medicine in sepsis enables

the customization of therapy based on the patient’s molecular profile,

enhancing diagnosis and outcomes. The discovery and clinical

application of molecular classifiers are essential for enhancing

therapeutic regimens and patient survival rates. Transcriptomics

offers valuable insights into gene expression related to sepsis,

although it does not directly reflect functional outcomes.

Proteomics examines proteins, the functional outcomes of gene

expression, to enhance comprehension of sepsis heterogeneity.

3.1.3 Proteomics
The heterogeneity of patient reactions in sepsis complicates clinical

care and impedes the development of effective, personalized

therapeutics (6, 94, 95). Proteomics provides insights into the

functional protein landscape in sepsis, unveiling key biomarkers

associated with disease severity and outcomes (96, 97). By identifying

important plasma proteins and their connections with disease severity,

organ dysfunction, and patient outcomes, proteomics aids in the

understanding of the mechanisms behind sepsis heterogeneity and

the development of precision medicine solutions.

Recent studies have shown the effectiveness of proteomic

markers in stratifying patients with sepsis. In 2022, researchers
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employed proteomics to differentiate between children with sepsis

who developed ARDS and those who did not (97). The study

identified significant markers, including S100A8, S100A12, and

superoxide dismutase (SOD), in plasma that were higher in

individuals with ARDS (97). S100A8/A9, a calcium-binding

heterodimer predominantly located in neutrophils and

monocytes, possesses pro-inflammatory and immunosuppressive

characteristics and is integral to the etiology of sepsis. It is

considered a potential biomarker for sepsis and its related organ

damage (98). Therapeutic approaches targeting S100A8/A9 may

help reduce tissue damage resulting from inflammation and

enhance prognosis. The findings facilitated the creation of a

proteomic signature that effectively distinguished between sepsis

with and without ARDS, offering essential insights into the relevant

immune systems and pinpointing potential therapeutic targets.

Another large-scale study employed high-throughput mass

spectrometry to examine plasma proteomes from over 1,600

sepsis patients, merging data with leukocyte transcriptomes to

identify protein indicators and co-expression modules linked to

sepsis severity (96). This study identified three distinct proteomic

subgroups (SPC 1, SPC 2, and SPC 3) that were associated with

clinical outcomes such as organ failure and death (96). For example,

SPC 1 patients, who had the most severe sickness symptoms, had

significantly higher mortality rates than the other subgroups (96).

This classification stresses the importance of proteome profiling in

identifying high-risk individuals and guiding treatment decisions

based on the specifics of their sepsis phenotype.

Proteomics elucidates sepsis heterogeneity and facilitates the

development of biomarkers that more accurately forecast disease

progression and treatment outcomes. This establishes the

foundation for individualized sepsis therapy that focuses on

particular metabolic pathways. Proteomics may facilitate the

identification of novel pharmacological targets, enhance patient

classification, and optimize sepsis management, hence improving

patient outcomes. Proteomics emphasizes functional molecules and

proteins; nonetheless, it inadequately encompasses the biochemical

dynamics of sepsis, which are crucial for understanding the

systemic changes associated with the disease. Metabolomics

bridges this gap by demonstrating the metabolic alterations

associated with sepsis in a more dynamic manner.

3.1.4 Metabolomics
Metabolomics examines metabolites, the end products of

cellular processes, offering a snapshot of the biochemical changes

during sepsis. Investigating metabolic alterations associated with

sepsis phenotypes may reveal novel biomarkers for early

identification, facilitate the prediction of organ failure, and

enhance therapeutic strategies for specific patient subgroups,

ultimately improving prognosis (99, 100). A 2015 study

demonstrated the efficacy of metabolomics in the early

identification of sepsis by differentiating between children

requiring intensive care and those suitable for emergency room

treatment (99). A combination of 14 metabolites and three protein

mediators accurately indicated patients for ICU admission,

highlighting the significance of metabolomics in shaping triage
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decisions and enhancing early intervention (99). While these

findings are intriguing, they require validation in larger cohorts.

Current study has utilized metabolomics to identify organ

dysfunction early in sepsis, in addition to detecting metabolic

abnormalities. Lipid mediator profiling indicated that non-

survivors exhibited elevated levels of inflammatory and pro-

resolving mediators, correlating with severe respiratory failure

and ARDS (3, 100–107). A 2021 study identified three distinct

metabolic groups in patients with early sepsis and sepsis-related

ARDS, each associated with different mortality rates linked to

plasma lipid levels (107). Patients with high lipid levels exhibited

the lowest mortality rates and a diminished risk of organ

dysfunction (107). Notwithstanding these promising outcomes,

the therapeutic efficacy of the notion remains uncertain,

necessitating further validation. A recent study distinguished

sepsis from septic shock by analyzing plasma metabolites within

48 hours of ICU admission, uncovering distinct metabolic patterns

that may facilitate early diagnosis and treatment timing (108).

Nonetheless, additional comprehensive validation studies and

improvement of metabolite combinations remain necessary for

early risk prediction.

Metabolomics has the potential to transform sepsis treatment

by enhancing early detection, forecasting organ failure, and

distinguishing phenotypic subgroups with varying reactions to

medication. Similar to transcriptomics and proteomics,

metabolomic data alone cannot adequately capture the

complexity of sepsis phenotypes. Metabolomics reflects the

biochemical changes occurring during sepsis, it does not account

for the cellular processes and immune system dysfunction that drive

disease progression. Cytomics, which focuses on the phenotypic

and functional diversity of immune cells, is essential for completing

the biological picture of sepsis phenotyping, providing deeper

insights into immune dysregulation and aiding in the

development of more personalized therapeutic strategies.

3.1.5 Cytomics
Cytomics investigates the phenotypic and functional

heterogeneity of cells, especially immune cells, offering real-time

insights on immunological dysregulation in sepsis. Advancements

in single-cell RNA sequencing (scRNA-seq) and immune cell

profiling have enhanced the understanding of the pathophysiology

and heterogeneity of sepsis. Specific immune cell subsets and statuses,

such as MS1 cells, identified as one of the four mononuclear states,

have been linked to increased mortality and organ dysfunction in

sepsis patients in research, serving as potential biomarkers for sepsis

prediction and therapeutic intervention (83–85). Flow cytometry and

other immune profiling methodologies enhance scRNA-seq by

enabling more efficient and cost-effective assessments of immune

dysfunction, which may be monitored in real-time to predict patient

outcomes. For example, monocyte human leukocyte antigen-DR

(mHLA-DR), part of MHC-II expressed by antigen-presenting

cells, is commonly measured by flow cytometry (86–88). Studies

have shown that changes in the mHLA-DR expression pattern are

strongly associated with a poor outcome in individuals with septic

shock (89–91). These findings underscore the significance of mHLA-
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DR as a predictive biomarker and highlight the necessity of

incorporating data from several immunological markers to obtain a

holistic understanding of immune responses in sepsis. Ultimately,

although each omics method provides valuable insights, the

integration of these diverse datasets is essential for comprehending

the complete complexity of sepsis and formulating effective,

phenotype-driven therapeutics.

3.1.6 Integrating multi-omics data for
precision medicine

Sepsis heterogeneity is observable by the integration of

epigenomic, transcriptomic, proteomic, metabolomic, and

cytomic data. Each omics layer elucidates the molecular causes of

sepsis, although their integration is the most potent. Researchers

can identify stable biomarkers, molecular layer interactions, and

dynamic changes by integrating this information (109).

Transcriptomics quantifies gene expression, proteomics analyzes

post-translational changes, and metabolomics examines

downstream metabolic processes. These data augment our

comprehension of sepsis etiology at the systemic level. Multi-

omics integration revolutionizes sepsis research. High-

dimensional datasets necessitate the utilization of machine

learning and network-based technologies for their integration and

interpretation. The integration of multi-omics enhances the

classification of sepsis subphenotypes, predictions of therapy

responses, and the development of the illness. Multi-omics

investigations have elucidated patterns of immune dysregulation

and metabolic abnormalities in sepsis, facilitating tailored

therapeutic approaches (109, 110). As these technologies advance,

they have the potential to revolutionize sepsis management through

early detection, targeted therapy, and improved long-

term outcomes.
3.2 Clinical indicators-based studies

Understanding the variability in sepsis patient responses is

essential for improving therapeutic outcomes, and AI and ML

techniques are increasingly utilized to identify distinct sepsis

subphenotypes based on clinical indicators (111, 112). These

approaches offer novel mechanistic pathways, therapeutic targets,

and biomarkers essential for developing sepsis-specific phenotype-

driven therapies. For instance, unsupervised machine learning

approaches such as cluster analysis allow for the classification of

sepsis patients into subphenotypes without prior assumptions,

utilizing clinical data such as vital signs, white blood cell counts,

and biochemical markers (111, 113, 114). A 2022 study identified

and validated several novel sepsis subphenotypes based on changes

in vital signs over time (115). This multicenter retrospective study

assessed vital signs, including body temperature, heart rate,

respiratory rate, and blood pressure, in 20,729 hospitalized

patients with suspected infections within the initial eight hours

post-admission (115). Four sepsis subphenotypes (Groups A, B, C,

and D) exhibited variations in clinical manifestations, laboratory

findings, organ impairment, and prognosis (115). The secondary
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1546474
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1546474
analysis of the SMART trial compared balanced crystalloids to

normal saline in critically ill patients and demonstrated that

subphenotypes influenced mortality outcomes (115, 116).

Balanced crystalloids decreased mortality in Group D relative to

normal saline (115). The observations indicate that sepsis

subphenotypes characterized by easily obtainable vital signs may

exhibit varied responses to pharmacological interventions,

potentially impacting future clinical trials. Phenotype-driven

therapeutic approaches customize interventions and enhance

patient outcomes. Notwithstanding these advancements, the

application of AI in sepsis diagnosis and treatment remains

impeded by challenges such as subgroup selection and biases in

training datasets (117–119). AI and ML can enhance sepsis

classification and identify individualized patient response

patterns, facilitating precision therapy. These approaches can

revolutionize sepsis therapy by facilitating earlier, more precise

actions that improve patient outcomes when integrated with

genetic data.
3.2.1 Diverse clinical phenotypes
Researchers have progressively employed various omics data

(Figure 3) in conjunction with standard clinical and laboratory test

data—such as white blood cell counts and biochemical markers—

utilizing sophisticated big data algorithms and artificial intelligence

methods to categorize sepsis phenotypes (120–123). These projects

have produced substantial insights into the diversity of sepsis and its

clinical implications. A 2015 study utilizing self-organizing maps

(SOMs) and K-means clustering found four clinical phenotypes

among 2,533 individuals with severe sepsis or septic shock, each

with unique organ failure patterns and fatality rates (120). A 2020

study utilizing SOM and cluster analysis on the Medicine

Information Database III (MIME-III) identified four distinct

sepsis subtypes, each defined by specific organ failures,

underscoring the necessity for personalized treatment strategies

(124). A notable study published in 2019 using consensus K-means

clustering to assess sepsis patients (n=20,189) from 12 medical

institutions and three randomized clinical trials (n=4,737) (121).

Within six hours of admission, 29 clinical and laboratory data

points from electronic health records were employed to identify

four distinct phenotypes (a, b, g, and d), each defined by specific

clinical characteristics and associated mortality risks (121). The

research examined 43,086 cases, involving 31,160 unique people, to

evaluate phenotypic repeatability. Simulations of three randomized

controlled trials demonstrated that altering the distribution of a
and d traits greatly affected trial outcomes (44, 121, 125, 126). This

study highlights the significance of accounting for phenotypic

dispersion in clinical trial design, as it can affect the efficacy of

treatment interventions (121, 127, 128). This study underscores the

need of identifying appropriate phenotypic classifications and

administering prompt therapeutic interventions, as drugs may

prove ineffective or harmful if not congruent with specific

patient morphologies.

Nonetheless, machine learning methodologies exhibit a

deficiency in transparency, and phenotypic consistency varies

across studies. Subphenotypes are typically identified using cross-
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sectional clinical and biochemical data, which constrains our

understanding of their temporal dynamics. Recent studies have

examined dynamic sepsis subtyping according to the temporal

progression of the disease (129–131). A 2022 study analyzed 642

patients across 20 hospitals, used 23 baseline clinical markers, and

identified clustering through heat maps at 0, 6, 24, and 72 hours

(129). Five organ failure symptoms (Types L1, L2, M, H1, and H2)

exhibiting varied patterns and durations were validated in an

independent sample of 381 individuals from 11 institutions (129).

The two high-risk phenotypes, H1 and H2, had comparable

mortality rates; however, there were significant discrepancies in

baseline disease severity scores, clinical characteristics (including

age and organ failure patterns), and plasma marker levels (129).

Another study employed 72-hour sequential organ failure

assessment (SOFA) score trajectories for sepsis patients, utilizing

dynamic temporal warping (DTW) and hierarchical agglomerative

clustering (HAC) to delineate subgroups based on trajectory data

(130). The researchers constructed a random forest model to

forecast subtype affiliation at 6 and 24 hours post-ICU admission

(130). The study comprised 4,678 sepsis patients in the

development cohort and 3,665, 12,282, and 4,804 patients in the

validation cohorts. Four groups were identified: rapidly

deteriorating, gradually declining, rapidly enhancing, and

gradually improving. Distinct baselines, organ dysfunction, and

clinical outcomes were present for each category. Although the

rapidly deteriorating subtype exhibited a lower SOFA score at ICU

admission (mean: 4.5) compared to the rapidly improving subtype

(mortality rate: 5.5%, mean SOFA: 5.5), it nonetheless had the

highest in-hospital mortality rate at 28.3% (130). This research

identified four unique sepsis subphenotypes, each exhibiting

distinct natural histories, illustrating host-pathogen interactions

throughout standard treatment. Comprehending these dynamic

trajectories is essential for formulating and forecasting clinical

trial interventions, as it uncovers discrepancies in natural history

and treatment effectiveness. Other studies employed population-

based trajectory modeling to classify sepsis according to variations

in body temperature, uncovering groupings with markedly distinct

inflammatory profiles and fatality rates (131, 132). These strategies

enhance our comprehension of sepsis progression and facilitate the

development of more tailored therapeutic choices.

Alongside standard clinical indicators, phenotypic assessments

encompass coagulation profiles and hemodynamic evaluations. K-

means clustering was employed in machine learning including

3,694 patients from three Japanese multicenter studies conducted

in 2021 (133). The research examined the reactions of different

phenotypes to recombinant human thrombomodulin (rhTM)

injections and the subsequent clinical outcomes (133). Four

distinct coagulation phenotypes were identified: dA, dB, dC, and

dD. In the dA phenotypic group, rhTM therapy decreased 28-day

and in-hospital mortality, although the absence of standardization

or randomization (133). These findings highlight the therapeutic

potential of phenotype-driven therapies and the importance of

establishing successful therapy windows. Current research faces

issues in repeatability and transparency in machine learning

approaches. However, collected evidence suggests that phenotype-

based interventions may have a considerable impact on sepsis
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therapy (134–137). Integrating multi-omics data with dynamic

clinical signs, such as alterations in inflammatory markers or

hemodynamic parameters, is expected to enhance phenotypic

classification. Longitudinal tracking of clinical changes enables

researchers to associate genetic findings with disease progression

and get a deeper understanding of sepsis features. These

advancements facilitate the identification of novel biomarkers and

therapeutic targets for sepsis subphenotypes, enhancing patient

outcomes and customized treatment.

3.2.2 Hyperinflammatory and
hypoinflammatory subphenotypes

Sepsis, akin to other intricate diseases, exhibits heterogeneity,

complicating treatment and diminishing the effectiveness of various

research trials (94, 138). Distinguishing distinct biological phenotypes

that may exhibit varied responses to therapies is essential for enhancing

therapeutic outcomes (129, 139–144). Two principal subphenotypes in

sepsis—hyperinflammatory and hypoinflammatory—have shown

significant in forecasting disease progression, treatment responses,

and patient outcomes (109, 145–147).

These two inflammatory types were accurately identified in

numerous sepsis cohorts by latent class analysis (LCA) of clinical

and biomarker data (145). The hyperinflammatory phenotype is

characterized by elevated proinflammatory cytokines, utilization of

vasoactive medications, heightened risk of bacteremia, and increased

death rate (145). The hypoinflammatory phenotype is characterized

by diminished inflammatory markers, a lower risk of bacteremia, and

an improved prognosis (145). Clinical and treatment responses differ

by phenotype, suggesting that phenotype-specific strategies may

enhance patient outcomes. The secondary analysis of the

PROWESS SHOCK trial (N=1680) assessing recombinant human

activated protein C (drotrecogin alfa) in septic shock revealed that

hyperinflammatory patients exhibited superior survival rates

compared to hypoinflammatory patients, who demonstrated

diminished survival rates (40, 145). No treatment interactions were

identified in the secondary analysis of the VASST trial, which

compared norepinephrine to early antidiuretic hormone therapy in

cases of septic shock (145, 148). Nevertheless, distinctions consistent

with other cohort studies emphasize the significance of phenotype in

therapeutic classification.

Further investigation has examined the impact of these

variables on mortality associated with sepsis-related ARDS (146).

Hypoinflammatory patients predominantly succumbed to

respiratory failure, while hyperinflammatory patients primarily

perished from circulatory failure (146). The data indicate that

addressing individual inflammatory profiles may enhance

treatment customization and effectiveness. Genomic and

microbiomic data suggest that hyperinflammatory individuals

have elevated bacterial numbers and immunological activity,

impacting metabolic and T cell response genes (149). Researchers

employed this methodology on VANISH trial participants with

transcriptome data (N=117), classifying them as hypoinflammatory

or hyperinflammatory and evaluating phenotype-specific treatment
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benefits by logistic regression models (43, 149). Steroid medication

influenced various phenotypes differently, with hypoinflammatory

patients perhaps encountering adverse outcomes (149). The diverse

sepsis phenotypes underscore the necessity of tailored treatment

according to clinical severity and genetic factors. Phenotype-based

predictive enrichment in clinical trials is advantageous as

hyperinflammatory and hypoinflammatory phenotypes respond

differentially to treatment.

Classifying patients based on their inflammatory profiles may

aid in identifying individuals who benefit most from various

medications, thereby improving the efficacy and safety of sepsis

treatment. Defining and characterizing sepsis hyperinflammatory

and hypoinflammatory subphenotypes clarifies clinical

heterogeneity and facilitates phenotype-guided therapy.

Examining biomarkers and therapeutic targets related to these

traits could improve patient outcomes, inform clinical decision-

making, and increase the effectiveness of sepsis treatment.

3.2.3 Fluid resuscitation and recovery
Effective fluid management is essential in sepsis and septic

shock to enhance hemodynamic stability and organ perfusion

(28). A phenotype-driven strategy for fluid therapy is essential,

since both excessive and inadequate fluid resuscitation can

adversely affect patient outcomes. Research indicates that fluid

resuscitation affects mortality risk and recovery across many

sepsis subtypes (150, 151). A 2018 Latent Profile Analysis of

14,993 sepsis patients showed four categories regarding fluid

balance and mortality risk (150). The results indicated that

responses to fluid resuscitation varied markedly among different

morphologies. Subtype 2 got a lesser volume of fluid compared to

subtype 3, which necessitated a greater volume within 24 hours.

Notably, augmenting fluid administration during the initial 48

hours elevated mortality in subtype 4, while concurrently

reducing mortality in subtype 3, which exhibited hallmarks of

circulatory shock, including diminished mean arterial pressure

and heightened vasopressor requirements (150). These findings

underscore the necessity of tailoring fluid resuscitation to the

individual characteristics of each patient.

A dynamic treatment regime (DTR) model enhanced fluid

resuscitation for septic shock in 2021. More than 1,400 patients

were assessed to delineate five phenotypes, ranging from the most

severely ill (Phenotype 2) to the healthiest (Phenotype 5) (152).

Early, vigorous fluid resuscitation succeeded by a de-resuscitation

period to mitigate fluid excess was determined to be the optimal

fluid management strategy. Phenotype-specific fluid quantities and

norepinephrine dosages enhanced mortality outcomes, with certain

patients gaining advantages from early administration, while others,

particularly the critically ill, benefitted from delayed treatment

(152). This study indicates that treatment for sepsis should be

tailored to its varied phenotypes. A 2022 study investigated fluid

balance in patients with clinical sepsis to validate these findings

(151). Patients were classified into categories of multiple organ

failure (MOF), respiratory dysfunction (RD), nervous system
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dysfunction (ND), and others (151). The data indicated

considerable phenotypic differences in fluid balance and

mortality. MOF exhibited the highest mortality rate at 48.4%,

whilst OP demonstrated the lowest at 13.7% (151). At different

time intervals post-therapy, MOF and ND patients exhibited the

highest fluid volumes balances, indicating that fluid management

must be customized for each phenotype.

A recent study proposed utilizing transcriptome data to guide

fluid management in septic shock patients through a ‘benefit score’

(109). A comprehensive review of multi-omics data from 494 septic

shock patients revealed distinct subgroups with varying responses

to fluid therapy strategies and established a “benefit score” derived

from transcriptomic data and a proteomic signature to assist

clinicians in customizing fluid management approaches (109).

This study employs a systems biology approach utilizing multi-

omics data to enhance our comprehension of sepsis heterogeneity

and to offer novel strategies for personalized treatment. These

findings are valuable; nevertheless, prospective validation, rapid

detection methods, and cost-effectiveness analysis are necessary

prior to their implementation in clinical practice.

These studies underscore the importance of accurate fluid

management in sepsis treatment, along with comprehending the

molecular and clinical diversity of sepsis phenotypes. Identifying

and targeting phenotype-specific fluid resuscitation methods

enables the optimization of treatment, diminishes complications,

and ultimately enhances patient outcomes in sepsis and

septic shock.
4 Future directions for
sepsis phenotyping

4.1 Advancing phenotype-guided therapies

Investigations into sepsis subphenotypes have yielded essential

understanding of the disease’s heterogeneity and shown the

potential for phenotype-directed therapeutic strategies. The
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results underscore the need for additional validation and

enhancement in converting subphenotypic insights into effective

treatment strategies that enhance patient outcomes. A deeper

comprehension of sepsis heterogeneity is essential for developing

phenotype-specific treatments. Current subphenotypic research are

significant, but they are limited by a lack of standardized validation

across diverse demographics and clinical circumstances. Numerous

studies depend on retrospective or cohort data (Table 3);

nevertheless, prospective research is crucial for creating effective,

real-time phenotyping instruments that can immediately impact

treatment decision-making (153–155). Clinical trials have shown

that subphenotypes are associated with different treatment

responses, emphasizing the necessity of screening these

phenotypes ahead of time to optimize therapy and enhance

prognosis. Illustrations from various domains exemplify the

pragmatic efficacy of phenotype-guided therapy. In a chronic pain

management study, 60 patients were randomly divided into two

groups: one receiving opioid medicine guided by CYP2D6, m-opioid
receptor (OPRM1), and catechol-O-methyltransferase (COMT)

genotyping, and the other receiving standard care (156). The

genotype-guided group experienced significantly better pain relief

and quality of life compared to the control group. This case

underscores the significance of integrating genetic and phenotypic

data to enhance therapeutic outcomes. Similar strategies could be

adapted for sepsis management, emphasizing the need for

prospective studies to evaluate their applicability.
4.2 Challenges in sepsis phenotyping

Sepsis phenotyping has several challenges, including data

heterogeneity, validation difficulties, and the integration of

emerging techniques such as ML and AI. The variability in

patient demographics, clinical environments, and sampling

methods restricts the generalizability and reliability of

phenotyping studies (157, 158). Establishing uniform terminology

such as “phenotype,” “subphenotype,” and “subgroup” is essential
TABLE 3 Comparison of multi-omics and clinical indicators in sepsis phenotyping.

Category Multi-omics-Based Approach Clinical Indicator-Based Approach

Core Objective ➢ Elucidate sepsis heterogeneity; enable phenotype-driven therapies. ➢ Rapid phenotype assessment to support clinical decisions.

Advantages
• Reveals biological mechanisms and therapeutic targets.
• Supports precise stratification and personalized treatment.
• Enhances reproducibility and robustness of research outcomes.

• Widely accessible, simple to implement.
• Enables real-time monitoring and adaptive treatments.
• Suited for resource-constrained settings.

Limitations
♦ High costs and lengthy development cycles.
♦ Reliance on advanced data integration technologies.

♦ Variability in patient populations and sampling timepoints.
♦ Limited generalizability of findings to diverse cohorts.

Key Insights
▪ Phenotype-driven identification of novel biomarkers and therapeutic

targets.
▪ Integration of machine learning for dynamic classification.

▪ Improved data standardization and real-time monitoring
platforms..

▪ Optimized clinical workflows for phenotype-based strategies.

Future
Directions

➢ Refine individualized therapies based on phenotypic diversity.
➢ Establish multicenter collaborations for data sharing and validation.

➢ Enhance synergy with multi-omics approaches.
➢ Develop standardized tools for clinical phenotype evaluation.
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for enhancing clarity and collaboration. Standardized methods,

precise nomenclature, and cohesive research methodologies are

essential to resolve overlaps among subphenotypes and enhance

classification systems for precision medicine.

A notable challenge is the limited accessibility of contemporary

multi-omics technologies, attributed to elevated costs and technical

intricacies, especially in resource-limited settings (1). Phenotypic

models should be tested across diverse populations to guarantee

their global applicability and fairness in sepsis research.

Interdisciplinary collaboration integrating clinical, biological, and

computational expertise is crucial for synthesizing diverse datasets

and improving phenotype-guided methodologies. International efforts

to standardize procedures and disseminate data can accelerate

discoveries and facilitate access to advanced methodologies.

Emerging tools, including machine learning and artificial

intelligence, can identify underlying diversity in treatment

responses, even within large studies that yield neutral results

(130, 159–161). Despite the potential of machine learning and

artificial intelligence to find variability in treatment responses and

uncover novel biomarkers, obstacles such as insufficient

transparency, scalability issues, and challenges in integrating into

clinical workflows hinder their widespread adoption (162, 163).

Developing economical, interpretable AI models and scalable

platforms is essential for practical implementation. Moreover,
Frontiers in Immunology 13
robust ethical frameworks for data protection and governance are

essential for the proper utilization of patient data. Surmounting

these obstacles will advance sepsis phenotyping, facilitating more

tailored therapies and improved patient outcomes.
4.3 Expanding the scope of
phenotypic research

4.3.1 Cross-organ system investigations
A comprehensive understanding of sepsis requires extending

beyond blood-based evaluations to incorporate cross-organ system

analyses that elucidate the complex interactions influencing disease

progression (164). Although omics technologies provide significant

molecular insights, the gap between these findings and clinical

results highlights the necessity for more thorough phenotypic

evaluations. Sepsis often impacts many organ systems, resulting

in differing levels of dysfunction; therefore, it is essential to

investigate gene expression, protein function, and metabolite

regulation across tissues (13). Broadening phenotypic studies to

encompass organ-specific abnormalities, particularly in the lungs,

liver, and kidneys, will enhance our comprehension of sepsis

etiology and facilitate the creation of therapies aimed at organ-

specific harm (20, 165, 166). Future study ought to integrate multi-
FIGURE 4

Dynamic subtyping and real-time decision-making address sepsis heterogeneity by combining clinical, biomarker, and molecular data to identify
more homogeneous subpopulations. This methodology promotes phenotype-driven medicines, facilitates the discovery of new markers and targets
through various treatment responses, and improves patient outcomes by providing accurate pharmaceuticals to the appropriate individuals at the
right time.
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omics methodologies with cross-organ studies to develop a whole

comprehension of sepsis and propel advancements in detection

and treatment.

4.3.2 The temporal dynamics of phenotypes
The evolving characteristics of sepsis phenotypes present both

challenges and opportunities for precision treatment (167).

Determining the optimal intervention window and tracking

phenotypic changes is critical for tailoring therapy to individual

patients and improving long-term outcomes (Figure 4).

Nevertheless, the majority of contemporary research employs single

time-point cross-sectional data, which constrains their ability to

differentiate between ephemeral chemical states and persistent

phenotypic characteristics. For example, phenotypes identified in

early hyperinflammatory stages may shift to immunosuppressive

states during later stages of sepsis progression (147). Without

longitudinal sampling, it is challenging to distinguish transient

changes from stable molecular characteristics, potentially leading to

misclassification. This limitation raises the concern that current

subtyping studies may reflect transient stages of sepsis progression

rather than stable, distinct patient subtypes. longitudinal sampling,

coupled with multi-omics integration, can surmount these limitations

by monitoring molecular and clinical markers over time. This

method facilitates the discovery of stable phenotypes, improves

categorization systems, and directs the development of stage-

specific therapies. Emphasizing dynamic studies will allow

researchers to customize treatment strategies to the evolving

characteristics of sepsis, enhancing patient outcomes and advancing

the field of precision medicine.
5 Conclusions

Understanding the heterogeneity of sepsis is pivotal for

advancing phenotype-based therapeutic strategies and improving

patient outcomes. This review synthesizes advances in clustering

algorithms, multi-omics technologies, and artificial intelligence,

providing a comprehensive framework for identifying distinct

sepsis subtypes with varied treatment responses. These insights lay

the groundwork for discovering novel biomarkers and therapeutic

targets, underscoring the transformative potential of precision

medicine to tailor treatments based on phenotypic diversity.

However, challenges such as phenotyping standardization, dynamic

data integration, and clinical translation must be addressed through

interdisciplinary collaboration and innovative research. By bridging

these gaps, future efforts can fully implement phenotype-driven

therapies, transforming sepsis management, enhancing survival

rates, and establishing a new paradigm for precision medicine in

complex diseases.
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