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Ferroptosis, an iron-dependent form of regulated cell death driven by lipid

peroxidation, plays a pivotal role in various physiological and pathological

processes. In this review, we summarize the core mechanisms of ferroptosis,

emphasizing its intricate connections to lipid metabolism, including fatty acid

synthesis, phospholipid remodeling, and oxidation dynamics. We further highlight

advancements in detection technologies, such as fluorescence imaging, lipidomics,

and in vivo PET imaging, which have deepened our understanding of ferroptotic

regulation. Additionally, we discuss the role of ferroptosis in human diseases, where it

acts as a double-edged sword, contributing to cancer cell death while also driving

ischemia-reperfusion injury and neurodegeneration. Finally, we explore therapeutic

strategies aimed at either inducing or inhibiting ferroptosis, including iron chelation,

antioxidant modulation, and lipid-targeted interventions. By integrating mechanistic

insights, disease relevance, and therapeutic potential, this review provides a

comprehensive perspective on ferroptosis as a crucial interface between lipid

metabolism and oxidative stress.
KEYWORDS

ferroptosis, l ipid peroxidation, iron metabolism, antioxidant defense,
therapeutic targeting
1 Introduction

Ferroptosis is a non-apoptotic form of regulated cell death driven by iron-dependent

membrane lipid peroxidation, which compromises plasma membrane permeability and

integrity, ultimately leading to membrane rupture and cell death (1–3). A defining hallmark

of ferroptosis is lipid peroxidative damage, which can occur either nonenzymatically or

through enzyme-catalyzed processes (4). In both cases, iron availability and the
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accumulation of lipid peroxides are crucial preconditions for the

initiation of ferroptosis. As a self-protection mechanism,

antioxidant enzymes such as glutathione peroxidase 4 (GPX4)

and ferroptosis suppressor protein 1 (FSP1, also known as

AIFM2) function to monitor and regulate cellular lipid peroxide

levels, preventing them from reaching toxic thresholds. Inhibition

of GPX4 results in a significant increase in lipid peroxidation (5–7).

Conceivably, the fate of ferroptosis ultimately depends on the

balance between lipid peroxidation and cellular surveillance

mechanisms. Additionally, as ferroptosis is intrinsically

intertwined with lipid metabolism, it is tightly regulated by

cellular lipid composition, synthesis, storage, availability, and

degradation. Among all lipid species, phospholipids (PLs)

acylated with polyunsaturated fatty acids (PUFAs) are the most

prone to lipid peroxidation, making them the primary driving force

of ferroptosis (8).

Though ferroptosis is a relatively newly discovered form of

regulated cell death, ferroptosis has gained considerable attention,

and increasing evidence suggested that it plays a critical role in

various diseases, including cancer, neurodegenerative diseases, and

tissue ischemia injury (9). It has been shown that ferroptosis causes

neuronal cell death and synaptic damage in Alzheimer’s disease,

and its inhibition mitigates disease progression and improves

cognitive function in patients (10–12). In cancer treatment, drug-

resistant cancer cells can be effectively eliminated by ferroptosis-

inducing compounds (13, 14). Therefore, understanding the

molecular mechanism of ferroptosis and elucidating its regulatory

pathways in physiological and pathological conditions hold great

potentials for developing new therapeutic strategies for human

diseases. In this review, we summarize the underlying

mechanisms of ferroptosis, with a particular focus on its intricate

connections to lipid metabolic pathways and their regulation. We

highlight advancements in detection techniques and methodologies

for studying ferroptosis. Furthermore, we discuss the pathogenic

roles of ferroptosis in different kinds of human diseases, as well as its

therapeutic potentials.
2 Mechanisms of ferroptosis

Mechanistically, cellular lipid peroxidation occurs in three key

steps: (1) Initiation, where reactive oxygen species (ROS) abstract a

hydrogen atom from PUFAs-containing membrane phospholipids,

generating lipid radicals (L•); (2) Propagation, where the lipid

radicals react with oxygen, leading to production of lipid peroxyl

radicals (LOO•), which further react with additional PUFA-

containing phospholipids, producing lipid peroxides ((LOOH))

and propagating the lipid peroxidation chain reaction; (3)

Termination, where antioxidants such as GPX4 neutralize

oxidizing molecules, particularly lipid peroxyl radicals and lipid

peroxides, preventing further oxidative damage (15, 16). Disruption

in redox or lipid homeostasis, or deficiencies in antioxidant defense,

result in an excessive accumulation of lipid peroxides, ultimately

triggering ferroptotic cell death. Free intracellular iron or iron-

containing enzymes serve as catalytic drivers of ferroptosis, actively

participating in all three steps of lipid peroxidation (17, 18). In
Frontiers in Immunology 02
following subsections, we discuss iron dysregulation, lipid

peroxidation, and the antioxidant defense system in detail.

Figure 1 provides an overview of the three key steps of

ferroptosis, highlighting crucial enzymes and compounds

involved in the process.
2.1 Catalytic role of iron

As indicated by its name, ferroptosis is iron-dependent, and

iron plays a pivotal role in both the initiation and regulation of

ferroptosis. Within cells, most iron is bound in iron-sulfur clusters

or stored in ferritin, an iron storage protein, since free intracellular

iron is highly reactive and can catalyze the Fenton reaction,

producing highly reactive hydroxyl radicals (•OH). These

hydroxyl radicals then react with membrane PUFAs, generating

lipid radicals that initiate lipid oxidation (19, 20). Ferrous ions

(Fe2+) can also interact with lipid peroxides to produce peroxyl

radicals, accelerating the propagation of lipid peroxidation and

promoting ferroptosis (21). Additionally, iron overload inhibits

GPX4, causing the accumulation of lipid peroxides to toxic levels

(22). Dysregulated iron metabolism and overload are linked to

aberrant ferroptosis, contributing to the pathogenesis of various

diseases (23). Q-z Tuo and colleagues have demonstrated that

ischemia-reperfusion injury induces ferroptotic iron accumulation

in brain by impairing the iron efflux function (24). Studies also

have revealed that deletion of the gene encoding iron storage

protein ferritin enhances ferroptosis in cardiovascular cells and

hepatocytes (25, 26).
2.2 Lipid peroxidation in ferroptosis

Due to the weak double bonds present in polyunsaturated fatty

acids (PUFAs), hydrogen atoms are more easily abstracted from

PUFAs than from saturated or monounsaturated fatty acids.

Cellular or organelle membranes are rich in phospholipids that

are incorporated with PUFAs, making them highly susceptible to

peroxidation. The peroxidation of PUFAs-containing

phospholipids in membranes compromises membrane integrity,

increases permeability, and ultimately leads to membrane rupture

and cell death. Lipid peroxidation also generates toxic byproducts,

including 4-hydroxynonenal (HNE) and malondialdehyde (MDA),

which further damage proteins, DNA, and lipids by forming

adducts with these biommolecules (16).

Lipid peroxidation occurs through either nonenzymatic or

enzymatic pathways. Nonenzymatically lipid peroxidation can be

initiated by hydroxyl and/or peroxyl radicals, which are products of

Fenton reaction that is catalyzed by labile iron. Once lipid peroxides

are formed, they propagate the peroxidation to the neighboring

PUFAs-containing phospholipids with the presence of ferrous iron,

and produce more lipid hydroxyl and peroxyl radicals, unless they

are rapidly neutralized (Figure 1) (27, 28).

Alternatively, enzymatic lipid peroxidation is mediated by

various iron-dependent enzymes (18) . Among them,

lipoxygenases (LOXs) are the most well-characterized oxygenase
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involved in lipid peroxidation. LOXs are a family of non-heme iron-

containing dioxygenases that insert oxygen into PUFAs, producing

lipid radicals. There are six different LOXs in human, each with

distinct substrate selectivity and oxidation site specificity (29). For

example, arachidonate 5-lipoxygenase (ALOX5) preferentially

oxidizes the PUFA arachidonic acid at carbon-5, resulting in the

formation of 5- hydroperoxyeicosatetraenoic acid (5-HPETE) (30).

Another key enzyme family involved in lipid peroxidation is

cytochrome p450 (CYPs), a group of heme-containing

monooxygenases capable of directly catalyzing lipid peroxidation.

CYPs accept electrons transferred by NADPH-cytochrome P450

reductase (POR) and generate ROS to initiate the peroxidation (31).

However, there enzymes are not indispensable in ferroptosis, as

nonenzymatic lipid peroxidation can drive the ferroptosis

independently (18).
2.3 Antioxidant defense systems

Antioxidant defense systems play a critical role in counteracting

ferroptotic stress in cell. The well-known system Xc-/GSH/GPX4

axis is an canonical mechanism that safeguards cells from lipid

oxidation. Figure 2 displayed the antioxidant defense systems under

the ferroptotic stress. In this pawthway, cystine/glutamate

antiporter (system Xc-) imports cystine, which is subsequently

reduced to cysteine for glutathione (GSH) synthesis (29). GSH

acts as a key cofactor for GPX4, the only known mammalian

enzyme capable of reducing phospholipid hydroperoxides
Frontiers in Immunology 03
(PLOOH) into non-toxic phospholipid alcohol (PLOH), thereby

preventing peroxidative damage to membranes (30–33). Disrupting

this pathway—either by inhibiting system Xc- with small molecule

erastin or directly inactivating GPX4 with RSL3, depletes GSH,

inactivates GPX4, and allows lethal LOOH accumulation (34, 35).

Beyond GPX4, the FSP1/CoQ10 system provides an

independent line of defense. Ferroptosis suppressor protein 1

(FSP1) regenerates reduced ubiquinol (CoQ10H2) from oxidized

ubiquinone (CoQ10) using NAD(P)H, enabling ubiquinol to act as

a radical-trapping antioxidant that halts lipid peroxidation chain

reactions (36). The mevalonate pathway further supports

ferroptosis resistance by supplying CoQ10 precursors, linking

cellular metabolism to antioxidant capacity (37).

Additionally, the GCH1/BH4 axis also contributes to lipid

protection. GTP cyclohydrolase 1 (GCH1), the rate-limiting

enzyme in tetrahydrobiopterin (BH4) biosynthesis, safeguards

cellular membranes against ferroptosis by orchestrating

antioxidant defense and lipid remodeling (38). By elevating

intracellular levels of BH4 and its oxidized form BH2, GCH1

enables these metabolites to directly neutralize lipid radicals and

selectively inhibit peroxidation of phospholipids. Moreover, the

GCH1/BH4 axis promotes ferroptosis resistance by regenerating

reduced CoQ10H2 (39, 40). The dual functionality of this pathway

is evidenced by the ability of BH4/BH2 supplementation to restore

cell viability under ferroptosis-inducing conditions.

Regulatory networks, such as the p62-Keap1-NRF2 pathway,

integrate cellular stress signals to modulate ferroptosis sensitivity

(41). Under oxidative stress, p62 sequesters Keap1, allowing nuclear
FIGURE 1

Lipid peroxidation: initiation, propagation, and termination. ROS, such as hydroxyl radicals (•OH) and peroxyl radicals (HOO•), initiate lipid
peroxidation by attacking PUFA-PLs, forming lipid radicals (PLO•). These radicals propagate the reaction by reacting with oxygen to form lipid
peroxyl radicals (PLOO•), which further oxidize adjacent PUFA-PLs. GPX4, Glutathione Peroxidase 4; LOX, Lipoxygenase; POR, P450 Oxidoreductase;
RATs, Redox-Active Transporters; FASP1, Ferroportin 1.
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factor erythroid 2-related factor 2 (NRF2) to translocate to the

nucleus and activate antioxidant and iron-regulatory genes. NRF2

upregulates enzymes involved in GSH synthesis (e.g., GCLC,

GCLM), GPX4, and heme oxygenase-1 (HO-1) while

simultaneously enhancing iron storage (via ferritin) and export

(via ferroportin) (42). This dual regulation mitigates both oxidative

damage and labile iron accumulation, highlighting NRF2 as a

master regulator of ferroptosis resistance.
3 Interconnection between ferroptosis
and lipid metabolism

How cells store, remodel, and metabolize lipids can either

exacerbate or mitigate lipid peroxidation, directly affecting their

sensitivity to ferroptosis (16). Lipid metabolic pathways, including

fatty acid synthesis, uptake, b-oxidation, phospholipid synthesis

and remodeling, lipid storage, and release, interact with the cell’s

antioxidant defenses to regulate ferroptosis sensitivity (43). These

metabolic processes influence the availability of substrates for

peroxidation and the capacity of cells to cope with oxidative

stress. Understanding how lipid metabolism intersects with

oxidative stress responses provides valuable insight into how cells

balance lipid homeostasis, either promoting survival or triggering

ferroptotic death in response to environmental stresses.
Frontiers in Immunology 04
3.1 Fatty acid synthesis

The synthesis of saturated fatty acids (SFAs) and

monounsaturated fatty acids (MUFAs) is primarily mediated by

enzymes such as acetyl-CoA carboxylase (ACC) and fatty acid

synthase (FASN). These enzymes convert acetyl-CoA into

malonyl-CoA and further into palmitic acid, the SFA, which can

be desaturated into MUFAs by stearoyl-CoA desaturase 1 (SCD1)

(44, 45). In cancer cells, the overexpression of these enzymes

supports fatty acid synthesis for energy and membrane

biogenesis. However, the synthesis of SFAs and MUFAs generally

confers resistance to ferroptosis, as these fatty acids are less

susceptible to peroxidation than polyunsaturated fatty acids

(PUFAs) (46). Conversely, the synthesis of PUFAs, which cannot

be produced de novo in mammals, relies on dietary intake and

subsequent desaturation and elongation reactions catalyzed by

enzymes such as FADS1, FADS2, and ELOVL5. These PUFAs are

incorporated into phospholipids, making cellular membranes more

prone to ferroptosis due to their high susceptibility to lipid

peroxidation (47).
3.2 Lipid uptake

Cells can absorb free fatty acids or lipoproteins from the

extracellular environment through transporters such as CD36,
FIGURE 2

The System Xc−/GSH/GPX4 axis imports cystine for glutathione synthesis, with GPX4 neutralizing lipid hydroperoxides. The FSP1/CoQ10 system
regenerates reduced ubiquinol to halt lipid peroxidation, while the GCH1/BH4 axis protects membranes by neutralizing lipid radicals. Under oxidative
stress, Nrf2 translocates to the nucleus and activates the expression of antioxidant enzymes, including GPX4 and glutathione synthase, enhancing
the cell’s ability to neutralize ROS and prevent ferroptosis. SLC3A2, Solute Carrier Family 3 Member 2; SLC7A11, Solute Carrier Family 7 Member 11;
NRF2, Nuclear Factor Erythroid 2-Related Factor 2; KEAP1, Kelch-like ECH-associated Protein 1; GCLC, Glutamate-Cysteine Ligase Catalytic Subunit;
GCLM, Glutamate-Cysteine Ligase Modulatory Subunit; GSH, Reduced Glutathione; GSSG, Oxidized Glutathione; GPX4, Glutathione Peroxidase 4;
FSP1, Ferrostatin-1; CoQ10, Coenzyme Q10; CoQ10H2, Reduced Coenzyme Q10; NADP+, Nicotinamide Adenine Dinucleotide Phosphate; NADPH,
Reduced Nicotinamide Adenine Dinucleotide Phosphate; RSL3, Ras-selective lethal 3; P62, Sequestosome 1.
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fatty acid transport proteins (FATPs), and fatty acid-binding

proteins (FABPs) (48, 49). CD36-mediated FA uptake can induce

LPO and ferroptosis in tumor-infiltrating CD8+ T cells, blocking

CD36 and restoring their antitumor activity (50). The cholesterol

metabolite 27-hydroxycholesterol (27HC) enhances lipid uptake

and metastatic capacity in aggressive breast cancer cells resistant to

ferroptosis (51).
3.3 b-Oxidation

b-Oxidation is a process that breaks down fatty acids into

acetyl-CoA units, primarily occurring in the mitochondria. This

process is initiated by converting fatty acyl-CoA to carnitine esters

by carnitine palmitoyltransferase 1 (CPT1), allowing the fatty acids

to enter the mitochondria. Inside the mitochondria, fatty acyl-CoA

is released from carnitine by CPT2 and undergoes a series of

reactions that cleave two carbon units from the acyl chain

(52, 53). The rate-limiting enzyme for b-oxidation of unsaturated

fatty acids is 2,4-dienoyl-CoA reductase 1 (DECR1), which

catalyzes the reduction of double bonds in fatty acids (54). b-
Oxidation generally suppresses ferroptosis by reducing the

availability of unesterified PUFAs, which are substrates for lipid

peroxidation. In cancer cells, inhibiting b-oxidation can enhance

ferroptosis by increasing the levels of free PUFAs and promoting

lipid peroxidation (55, 56). Additionally, b-oxidation can influence

the balance between fatty acid synthesis and degradation, affecting

the overall lipid composition of cellular membranes and the

susceptibility to ferroptosis (43).
3.4 Phospholipid synthesis and remodeling
in ferroptosis

Phospholipid synthesis and remodeling dedicates structural and

oxidative properties of cellular membranes, directly influencing

their ferroptosis sensitivity. Acyl-CoA synthetase long-chain

family member 4 (ACSL4) and lysophosphatidylcholine

acyltransferase 3 (LPCAT3) are the two main players involved in

such pathways (57). ACSL4 activates long-chain PUFAs, such as

arachidonic acid (AA) and adrenic acid (AdA), by conjugating

them to coenzyme A (CoA) to form PUFA-CoA derivatives (58).

This activation step is necessary for their subsequent incorporation

into phospholipids, leading to an increase in PUFAs-containing

phospholipids in membranes (50). LPCAT3 functions in parallel to

ACSL4 by catalyzing the reacylation of lysophospholipids to

generating PUFA-containing phospholipids, including

phosphatidylcholine (PC) and phosphatidylethanolamine (PE)

(59, 60). PUFA-PEs are highly reactive for LOX-driven lipid

peroxidation (Figure 3), which triggers ferroptotic membrane

destabilization greatly. Cells with a high expression profile of

ACSL4 and LPCAT3 have a higher level of PUFA-containing

phospholipids, predisposing them to ferroptotic damage due to

the reactivity of these lipids toward oxidative stress (61). In contrast,

inhibition of these enzymes diverts lipid metabolism toward
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monounsaturated fatty acids (MUFAs), which resist peroxidation

and provide a survival advantage against ferroptotic stress (28).
3.5 Lipid storage

Cells store excessive fatty acids in lipid droplets in the form of

triglycerides (TAGs), which can serve as a protective reservoir

against lipid oxidation stress (62). Under metabolic stress, fatty

acids are mobilized from lipid droplets through lipolysis, mediated

by lipases, or lipophagy, a selective form of autophagy that degrades

lipid droplets (63). The released fatty acids are readily available for

phospholipid synthesis and remodeling, thereby alternating

membrane lipid composition and ferroptosis susceptibility (64).

Lipid storage in lipid droplets regulate ferroptosis in a dynamic way.

In one hand, PUFAs can be stored in lipid droplets, rigorously

controlling the incorporation of PUFAs to phospholipids in

membranes to increase their resistance to lipid peroxidation; In

the other hand, lipid droplets may facilitate the synthesis of PUFA-

containing phospholipids as a PUFAs sources (37, 64).
4 Techniques for ferroptosis detection
and analysis

Due to its complexity, a comprehensive characterization and

understanding of ferroptosis require the implementation of diverse

techniques across multiple scales, from subcellular structural

changes to molecular alterations, lipidomic profiling, and in vivo

validation. Microscopy and fluorescence imaging capture

ferroptosis-associated morphological changes, while biochemical

assays and immunodetection techniques provide insights into

molecular pathways. Lipidomics and mass spectrometry-based

approaches enable precise identification of oxidized phospholipids

and lipid peroxidation byproducts, key markers of ferroptosis.

Finally, in vivo models establish the physiological relevance of

ferroptosis in disease contexts. Table 1 summarizes the commonly

used approaches for ferroptosis research.
4.1 Subcellular structure changes

Ferroptosis is characterized by distinct subcellular structural

changes at the organelle level, particularly in mitochondria and

plasma membranes, which serve as key indicators of ferroptosis.

Transmission electron microscopy (TEM) has also been widely used

to visualize ferroptotic morphological features, including increased

mitochondrial membrane density, cristae reductions, and outer

membrane shrinkage—all of which differentiate ferroptosis from

other types of cell death (68). Nuclear imaging can help distinguish

ferroptosis from apoptosis and necrosis, as ferroptotic cells retain

nuclear integrity, whereas nuclear fragmentation or condensation is

a hallmark of apoptosis and necrosis (67). Immunohistochemistry

(IHC) and immunofluorescence are widely employed to detect key

proteins and markers involved in ferroptosis, including GPX4,
frontiersin.org
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SLC7A11, ACSL4, KEAP1, and p62 (41, 70–72). These techniques

provide spatial and quantitative insights into the expression and

localization of ferroptosis-related proteins at both the cellular and

tissue levels, offering valuable tools for studying ferroptosis’s

molecular mechanisms and pathological roles.

Real-time imaging techniques further enhance ferroptosis

detection by capturing membrane and organelle-specific

biophysical alterations. Fluorescence imaging utilizing polarity-

sensitive Mem-C1C18 and viscosity-sensitive MN-V probes

allows researchers to monitor membrane integrity loss and

mitochondrial viscosity shifts, providing dynamic insights into

ferroptotic progression (74, 75).
4.2 Analyzing molecules and pathways
in ferroptosis

At the molecular scale, ferroptosis is driven by reactive oxygen

species (ROS), iron dysregulation, and lipid peroxidation,
Frontiers in Immunology 06
necessitating targeted analytical techniques for detection. Selective

fluorescent probes have been developed to detect key ROS species,

including hydrogen peroxide (HO) and hypochlorous acid (HClO),

enabling real-time monitoring of oxidative stress within ferroptotic

cells (73, 74).

Since iron catalyzes lipid peroxidation through the Fenton

reaction, ferroptosis detection also involves tracking labile ferrous

iron (Fe2+) dynamics. Reactivity-based fluorescent probes have

been designed to visualize intracellular iron fluctuations,

providing high-resolution insights into iron homeostasis and

ferroptotic vulnerability (75).

To assess the antioxidant response and redox balance, the

System Xc−/GSH/GPX4 axis can be monitored using

fluorescence-based glutathione probes like RealThiol, which

enable live-cell quantification of glutathione depletion (79).

Add i t i ona l l y , immunoh i s tochemis t ry ( IHC) and

immunofluorescence are widely used to detect ferroptosis-related

proteins, such as glutathione peroxidase 4 (GPX4), solute carrier

family 7 member 11 (SLC7A11), acyl-CoA synthetase long-chain
FIGURE 3

ACSL4 and LPCAT3 promote ferroptosis by facilitating the formation of polyunsaturated fatty acid phospholipids, thereby increasing susceptibility to
lipid peroxidation. PUFA, Polyunsaturated Fatty Acid; ACSL4, Acyl-CoA Synthetase Long-chain Family Member 4; PUFA-CoA, Polyunsaturated Fatty
Acyl-CoA; LPCAT3, Lysophosphatidylcholine Acyltransferase 3; PUFA-PL, Polyunsaturated Fatty Acid Phospholipid; LOX, Lipoxygenase; POR, P450
Oxidoreductase; PLLOH, Phospholipid Hydroperoxide.
TABLE 1 Tools and techniques for probing ferroptosis across subcellular, molecular, and in vivo levels.

Type Approach Target References

Subcellular structure Fluorescence Imaging Membrane Integrity, Mitochondrial Viscosity (65, 66)

Nuclear Imaging Nuclear Structure Integrity (67)

Transmission Electron Microscopy (TEM) Mitochondrial Membrane
Density, Cristae Reductions

(68)

Immunohistochemistry (IHC) GPX4, SLC7A11, ACSL4, KEAP1, p62 (41, 69–72)

Molecules and pathways Endogenous Markers ROS, Lipid Peroxidation, Iron Metabolism (73, 74)

Reactive Oxygen Species (ROS) Probes Hydrogen Peroxide (H2O2), Hypochlorous Acid (HClO) (73, 74)

Reactivity-Based
Fluorescent Probes

Labile Fe2+ (75)

Lipid Peroxidation Probes C11-BODIPY, Oxidized Phospholipids (76, 77)

Chemoproteomic Tools Protein Carbonylation (78)

System Xc−/GSH/GPX4
Axis Probes

Glutathione Dynamics (79)

Flow Cytometry, Cell Activity Assays, Western Blotting ROS, Lipid Metabolites
(MDA), Mitochondrial Damage

(80–82)

Omics lipidomics Phospholipids (83–86)

In Vivo Studies Bioluminescence Labile Fe2+ Levels (87)

Positron Emission Tomography (PET) Ferroptosis Markers (88)
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family member 4 (ACSL4), Kelch-like ECH-associated protein 1

(KEAP1), and sequestosome 1 (p62) (41, 69–72). These techniques

provide spatial and quantitative data, offering insights into both

cellular and tissue-level ferroptosis regulation.

Complementary techniques such as flow cytometry, cell

viability assays, and western blotting are frequently employed to

quantify ROS levels, lipid peroxidation byproducts (e.g.,

malondialdehyde, MDA), and mitochondrial damage, further

broadening the arsenal of ferroptosis detection tools (80–82).
4.3 In vivo studies

Advanced imaging technologies, including bioluminescence

and positron emission tomography (PET), have become

powerful tools for detecting ferroptosis in living organisms.

B io luminescent probes l ike ICL-1 enab le rea l - t ime ,

longitudinal tracking of labile ferrous iron (Fe2+) levels,

offering dynamic insights into ferroptotic activity. Meanwhile,

PET tracers such as 18F-TRX allow high-resolution, three-

dimensional imaging of ferroptosis markers, facilitating the

study of ferroptotic processes in disease models and the

assessment of therapeutic interventions (87, 88).
4.4 lipidomics and mass-spectrometry-
based approach

Lipidomics and mass spectrometry-based techniques have

become essential tools for investigating ferroptosis, enabling

precise characterization of lipid composition, metabolic flux, and

spatial lipid remodeling. Morgan’s study demonstrated that PUFA-

containing phospholipids (PUFA-PLs) determine ferroptosis

susceptibility, with T cells being more vulnerable due to higher

PUFA-PL levels, while myeloid cells resist ferroptosis due to lower

PUFA-PL content. Wang et al. (2024) applied single-cell lipidomics

to analyze lipid remodeling in foam cells, linking neutral lipid

accumulation, sphingolipid depletion, and glutathione oxidation to

ferroptosis progression (83).

Advanced isotope-resolved lipidomics by Reimers et al. (2023)

revealed that phosphatidylethanolamines (PEs) are the primary

peroxidation targets in ferroptosis (84). In an in vivo study,

Gorman et al. (2024) employed spatial lipidomics with mass

spectrometry imaging (MSI) to map iron and lipid distribution in

ferroptotic ovarian tumors, showing localized accumulation of

sphingolipids and triglycerides in iron-rich regions, while PUFA-

containing phospholipids were enriched in peroxidized areas (85).

Earlier, Doll and Kagan (2017) introduced redox phospholipidomics,

identifying PEs as key substrates for lipid peroxidation upon GPX4

inhibition. Collectively, these studies highlight the power of

lipidomics and mass spectrometry in deciphering ferroptotic lipid

metabolism, advancing both mechanistic insights and biomarker

discovery in ferroptosis research.
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5 Ferroptosis in disease and
therapeutic targeting

Ferroptosis plays a dual role in disease, acting as both a therapeutic

target in cancer and a pathogenic driver in degenerative and ischemic

conditions.Certaincancercells, particularlymesenchymal-like subtypes,

arehighlysusceptibletoferroptosisduetotheirelevatedmetabolicactivity

and reactive oxygen species (ROS) burden (89). Ferroptosis-inducing

compounds,suchaserastin,disruptglutathionehomeostasisbyinhibiting

systemXc-, leading to lethal lipid peroxidation (90). Additionally, tumor

suppressor p53 sensitizes cancer cells to ferroptosis by downregulating

SLC7A11, further impairing antioxidant defenses (91).

Conversely, ferroptosis contributes to tissue damage in ischemia-

reperfusion (I/R) injuries, such as stroke and myocardial infarction,

where excessive ROS production triggers lipid peroxidation and cell

death (92). Glutamate-induced excitotoxicity inhibits system Xc−,

driving ferroptosis in neurons during stroke, while in the heart,

ferroptotic cardiomyocyte death worsens ischemic injury (93, 94).

Ferroptosis is also implicated in neurodegenerative diseases, fibrosis,

and autoimmune disorders, where iron dysregulation and lipid

peroxidation drive cell death and disease progression (95–101).

Given its contrasting roles, therapeutic strategies targeting

ferroptosis depend on disease context, aiming either to induce

ferroptosis (e.g., in cancer) or inhibit it (e.g., in degenerative and

ischemic diseases). Over the past decade, advances in iron

metabolism regulation, antioxidant therapies, pathway modulation,

and nanoparticle-based drug delivery have paved the way for clinical

applications of ferroptosis-targeting strategies.
5.1 Regulating iron metabolism

Since iron accumulation catalyzes lipid peroxidation and

ferroptosis, iron chelation therapy is widely used to prevent

ferroptotic damage in conditions like thalassemia and

hemochromatosis (102). Chelators such as deferoxamine (DFO),

deferasirox (DFX), and deferiprone (DFP) bind excess iron, reducing

oxidative stress and lipid peroxidation (103). In clinical settings, DFO

has been shown to inhibit ferroptotic cardiomyocyte death, improving

cardiac function in patients with iron overload, while DFX protects

hepatocytes by preventing iron-driven ferroptosis (104–106).
5.2 Antioxidant-based ferroptosis inhibition

Since oxidative stress is central to ferroptosis, antioxidant-based

therapies aim to restore redox balance. N-acetylcysteine (NAC), a

glutathione (GSH) precursor, has demonstrated ferroptosis inhibition

in diseases where GSH depletion exacerbates oxidative damage (107–

109).CoenzymeQ10(CoQ10),aradical-trappingantioxidant(RTA),has

been studied for its protective effects in neurodegeneration,

cardiovascular disease, and cancer (110). Clinical trials (NCT01964001)

suggestthatCoQ10supplementationinhepatocellularcarcinoma(HCC)

patients improves antioxidant capacity and reduces inflammation,

potentially by suppressing ferroptosis (111).
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5.3 Targeting the SLC7A11/GPX4 axis

The SLC7A11/GPX4 pathway is a critical ferroptosis regulator,

making it a key therapeutic target. GPX4 stabilizers and activators

offer protection against ferroptotic damage in degenerative diseases

(13, 112). Sulforaphane, a natural Nrf2 activator, enhances GPX4

expression, mitigating ferroptotic stress in various disease models

(113). Clinical trials (NCT02255682) are currently evaluating

CoQ10 ’ s ro le in fer roptos i s prevent ion in d iabe t i c

cardiomyopathy (114).
5.4 Nanoparticle-based therapies

Nanotechnology provides targeted delivery of ferroptosis

modulators, enhancing therapeutic efficacy and bioavailability.

Triphenylphosphine-modified quercetin nanoparticles (TQCN)

selectively inhibit ferroptosis in neurons by chelating iron and

activating Nrf2-mediated antioxidant responses (115). Similarly,

pH/GSH-responsive polyamino acid nanogels (NG/EDA) deliver

edaravone to ischemic brain tissue, preventing ferroptotic damage

and improving neurological recovery (116). These nanoparticle-

based strategies hold significant potential for precisely modulating

ferroptosis in clinical applications.
6 Conclusion

Ferroptosis represents a unique intersection of lipid metabolism,

oxidative stress, and iron regulation, offering fresh insights into cell

death mechanisms and their implications in disease. Characterized by

the iron-dependent peroxidation of polyunsaturated fatty acids

(PUFAs), ferroptosis is implicated in a wide range of pathological

conditions, including cancer, neurodegenerative diseases,

cardiovascular disorders, and metabolic syndromes. By unraveling

its molecular underpinnings—such as the roles of ACSL4, GPX4, and

lipid remodeling enzymes— researchers have identified promising

opportunities for therapeutic intervention.

Modulating ferroptosis presents a dual therapeutic strategy:

inducing ferroptotic cell death to eliminate cancer cells or

inhibiting it to protect tissues from oxidative damage in diseases

driven by lipid peroxidation. Advances in dietary, pharmacological,

and genetic approaches targeting lipid metabolism and iron

homeostasis further underscore its therapeutic potential.

However, significant challenges remain, including understanding

tissue-specific ferroptotic responses and overcoming resistance

mechanisms in cancer therapy (117).

Future research should aim to refine in vivo models, identify

reliable biomarkers, and develop precise, context-dependent

therapeutic strategies. Integrating lipidomics and systems biology
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will be critical for deciphering ferroptosis regulatory networks,

paving the way for innovative treatments. Ultimately, as a regulated

cell death pathway driven by iron-dependent lipid peroxidation,

ferroptosis bridges lipid metabolism, redox biology, and metal

homeostasis. This intersection not only redefines our understanding

of cellular demise but also unveils novel therapeutic avenues for

diseases ranging from cancer to neurodegeneration (35, 118).
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