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Identification and validation of
m6A RNA methylation and
ferroptosis-related biomarkers in
sepsis: transcriptome combined
with single-cell RNA sequencing
Jinshuai Lu, Jianhao Wang, Kun Han, Yuxia Tao, Jiyi Dong,
Xiaoyu Pan and Xiaolan Wen*

Department of Emergency, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
Background: Sepsis, a systemic inflammatory response syndrome triggered by

infection, is associated with high mortality rates and an increasing global

incidence. While N6-methyladenosine (m6A) RNA methylation and ferroptosis

are implicated in inflammatory diseases, their specific genes and mechanisms in

sepsis remain unclear.

Methods: Transcriptomic datasets of sepsis, along withm6A-related genes (m6A-

RGs) and ferroptosis-related genes (FRGs), were sourced from public databases.

Differentially expressed genes (DEGs) were identified between the sepsis and

control groups, and m6A-RGs were analyzed through weighted gene co-

expression network analysis (WGCNA) to uncover m6A module genes. These

were then intersected with DEGs and FRGs to identify candidate genes.

Biomarkers were identified using two machine learning methods, receiver

operating characteristic (ROC) curves, and expression validation, followed by

the development of a nomogram. Further in-depth analyses of the biomarkers

were performed, including functional enrichment, immune infiltration, drug

prediction, and molecular docking. Single-cell analysis was conducted to

identify distinct cell clusters and evaluate biomarker expression at the single-

cell level. Finally, reverse transcription–quantitative PCR (RT-qPCR) was

employed to validate biomarker expression in clinical samples.

Results: DPP4 and TXN were identified as key biomarkers, showing higher

expression in control and sepsis samples, respectively. The nomogram

incorporating these biomarkers demonstrated strong diagnostic potential.

Enrichment analysis highlighted their involvement in spliceosome function and

antigen processing and presentation. Differential analysis of immune cell types

revealed significant correlations between biomarkers and immune cells, such as

macrophages and activated dendritic cells. Drug predictions identified

gambogenic acid and valacyclovir as potential treatments, which were

successfully docked with the biomarkers. Single-cell analysis revealed that the

biomarkers were predominantly expressed in CD4+ memory cells, and CD16+

and CD14+ monocytes. The expression of DPP4 was further validated in

clinical samples.
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Conclusions: DPP4 and TXN were validated as biomarkers for sepsis, with

insights into immune infiltration and therapeutic potential at the single-cell

level, offering novel perspectives for sepsis treatment.
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1 Background

According to the 2016 Third International Consensus Definitions

for Sepsis and Septic Shock, sepsis is described as “a syndrome of life-

threatening organ dysfunction resulting from an abnormal host

response to infection” (1). Characterized by high morbidity and

mortality, sepsis remains a leading cause of death in modern

intensive care units, contributing significantly to rising healthcare

costs (2). The 2020 Global Burden of Disease report indicates that

approximately 49 million individuals experience sepsis annually, with

11 million fatalities, accounting for approximately 20% of global

mortality (3, 4). Notably, 90% of sepsis-related deaths occur in Asia

and Africa (5). In 2017, the World Health Organization (WHO)

recognized sepsis as a top-priority public health issue (6). Sepsis can

result from trauma, severe burns, infections, major surgery,

and other causes. Its pathogenesis is multifaceted, involving

imbalances in inflammatory responses, immune dysfunction,

mitochondrialdamage, coagulation abnormalities, neuroendocrine-

immune network disruptions, endoplasmic reticulum stress,

autophagy,and other pathophysiological mechanisms (7).

Immunosuppression has emerged as a key factor contributing to

sepsis mortality (8). Disruption of immune homeostasis triggers

sepsis-induced immunosuppression, characterized by the release of

anti-inflammatory cytokines, aberrant death of immune effector cells,

unchecked proliferation of immunosuppressive cells, and the

upregulation of immune checkpoints (9). Preclinical studies have

shown that reversing immune dysfunction and enhancing host

resistance can be achieved by targeting immunosuppression,

particularly through immune checkpoint inhibitors. While

antibiotics, fluid resuscitation, and organ support therapies are

commonly used, they have limited impact on patient prognosis.

Therefore, understanding the pathological role of sepsis-induced

immunosuppression and identifying novel biomarkers is crucial for

improving prevention and treatment strategies.

N6-Methyladenosine (m6A) methylation is an epigenetic

modification that primarily affects RNA molecules, including

mRNA, lncRNA, and circRNA (10). This modification regulates

gene expression by influencing RNA stability and fate. m6A has

been shown to affect the half-life of mRNA in the cytoplasm, with

clustered m6A sites promoting mRNA degradation (11). Recent

studies suggest that m6A modification plays a role in various

biological processes, including tumorigenesis, immune responses
02
to viral infections, and several inflammatory diseases (12).

Specifically, the heterogeneity of sepsis may be linked to m6A

regulation (13), with analysis of m6A regulatory factors in sepsis

revealing their involvement in sepsis development, immune cell

infiltration, and inflammation (14). Ferroptosis, a recently

recognized form of regulated cell death, is iron-dependent and

results from an imbalance between reactive oxygen species (ROS)

production and degradation (15). Ferroptosis is implicated in the

pathogenesis and progression of numerous diseases, and its

signaling pathways offer promising druggable targets (16).

The potential of ferroptosis inhibitors in sepsis treatment has

been increasingly demonstrated (17). Understanding sepsis

pathogenesis and developing drugs that target these underlying

mechanisms are essential for advancing treatment strategies in

this field.

Single-cell RNA sequencing (scRNA-seq) is a high-throughput

technique that provides detailed insights into the transcriptomes of

individual cells (18). By examining cells at the single-cell level,

scRNA-seq enhances data resolution and precision, revealing the

distribution and functional status of diverse cell types within tissues.

Advances in scRNA-seq technology and data analysis methods have

facilitated the identification of molecular characteristics in immune

cell populations within sepsis, offering a novel approach to

discovering functional biomarkers (19).

This study leveraged bioinformatics tools to identify m6A- and

ferroptosis-related biomarkers in sepsis using publicly available

transcriptome data. Following this, various analyses were performed

on these biomarkers, and their expression at the single-cell level was

explored, providing a theoretical foundation for understanding the

mechanisms and improving the diagnosis of sepsis.
2 Methods

2.1 Source of data

Three sepsis transcriptomic datasets were retrieved from the

Gene Express ion Omnibus (GEO) database (https : / /

www.ncbi.nlm.nih.gov/geo/). The GSE65682 dataset (GPL13667)

contained human blood samples, with a sepsis:control ratio of

760:42, serving as the training set. GSE13904 (GPL570),

comprising human blood samples with a sepsis:control ratio of
frontiersin.org
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52:18, was used as the validation set. The training dataset used in

this study primarily originated from an adult population, whereas

the validation dataset was sourced from a pediatric population. Due

to time and computational resource constraints, it was not possible

to mix the two datasets and reanalyze them at this stage.

Additionally, the GSE167363 (GPL24676) dataset, consisting of

peripheral blood mononuclear cells (PBMCs) with a sepsis:

control ratio of 2:10, was employed for single-cell analysis (20).

Furthermore, 834 ferroptosis-related genes (FRGs) were extracted

from the FerrDb database (http://www.zhounan.org/ferrdb/

current/) (Supplementary Table S1), and 17 m6A-related genes

(m6A-RGs) were obtained from a published study (14)

(Supplementary Table S2).
2.2 Selection of candidate genes

First, differential expression analysis was performed on the

training set to identify differentially expressed genes (DEGs)

between sepsis and control samples. DEGs were selected with |

log2Fold Change (FC)| > 0.5 and p < 0.05 using the “limma”

package (v 3.58.1) (21). Volcano map and heat map were generated

using the “ggplot2” (v 3.3.6) (22) and “ComplexHeatmap” (v 2.14.0)

(23) packages for DEG visualization. The volcano plot displayed the

number of DEGs and the top 10 up- and downregulated DEGs,

ranked by |log2FC| in descending order, while the heatmap showed

the distribution and expression of the top 10 up- and

downregulated DEGs. Next, to assess the variation of m6A-RGs

between sepsis and control samples in the training set, single-

sample gene set enrichment analysis (ssGSEA) was conducted

using the “GSVA” package (v 1.50.0) (24). Each m6A-RG was

scored, and the Wilcoxon test was used to compare the ssGSEA

scores of m6A-RGs between sepsis and control samples (p < 0.05).

Subsequently, to identify module genes highly correlated with

ssGSEA scores, weighted gene co-expression network analysis

(WGCNA) was performed. Prior to WGCNA, the presence of

outlier samples and sample clustering were checked using the

goodSamplesGenes and hclust functions from the “WGCNA”

package (v 1.72-5) (25). At the same time, the median absolute

deviation (MAD) of each gene was calculated, and the genes with

MAD values in the bottom 25% were removed to screen out genes

with larger expression changes. The optimal soft threshold (power)

was determined based on a scale-free fit index (R2 = 0.85) and the

mean connectivity approach (power = 0). Genes were grouped into

different modules based on this power, with a minimum of 200

genes per module to ensure the modules had clear biological

meaning and statistical reliability. The module fusion threshold of

0.35 was set to merge highly similar modules. Pearson’s correlation

was used to examine the relationships between module eigengene

(ME) scores and ssGSEA scores of m6A-RGs. Gene modules with

the highest positive and negative correlations (|correlation (R)| >

0.3, p < 0.05) with ssGSEA scores were selected as key modules, with

R > 0.3 being a commonly used threshold in WGCNA (26), and the

genes within these key modules were regarded as m6A module

genes. Finally, the DEGs, m6A module genes, and FRGs were
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intersected to identify candidate genes using the “ggvenn”

package (v 0.1.10) (DOI: 10.32614/CRAN.package.ggvenn).
2.3 Enrichment analyses and protein–
protein interaction of candidate genes

Potential biological functions and pathways of candidate genes

were explored using the “clusterProfiler” package (v 4.7.1.3) (27)

through Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) analyses (p < 0.05). The top 5 significantly

enriched terms in each GO category [biological process (BP),

molecular function (MF), and cellular component (CC)] and the

top 5 KEGG pathways, ranked by ascending p-values, were

presented. To investigate protein-level interactions of the

candidate genes, they were uploaded to the STRING database

(http://string-db.org/) with parameters (species = human,

confidence > 0.9). The protein–protein interaction (PPI) network

was constructed using “Cytoscape” (v 3.10.2) (28), and interacting

candidate genes were extracted for further analysis.
2.4 Identification and validation
of biomarkers

Two machine learning algorithms, least absolute shrinkage and

selection operator (LASSO) and support vector machine recursive

feature elimination (SVM-RFE), were used to identify candidate

biomarkers. The “glmnet” package (v 4.1-8) (29) was applied to

create the LASSO regression model, and model optimization was

guided by 10-fold cross-validation, where lambda was the

regularization parameter that determined the strength of L1

regularization. In particular, lambda.min corresponds to the value

that produces the minimum cross-validation error, and lambda.1se

provides the most concise model within a standard error range of

the minimum error. In this discovery phase, we prioritize the

retention of biologically reasonable candidate genes, and

therefore, the genes were selected according to lambda.min. For

SVM-RFE, the “caret” package (v 6.0-94) (30) was utilized to

evaluate the importance of genes. The accuracy rate of each

iteration was computed, and genes were selected when accuracy

reached its highest value. The overlap of genes selected by both

algorithms was considered as candidate biomarkers. To assess the

diagnostic performance of the candidate biomarkers, receiver

operating characteristic (ROC) curves were generated for the

biomarkers in the GSE65682 and GSE13904 datasets using the

“pROC” package (v 1.18.5) (31). A candidate biomarker with an

area under the curve (AUC) > 0.7 was deemed to have high

diagnostic accuracy and was forwarded for further analysis.

Lastly, the expression levels of the candidate biomarkers were

compared between the sepsis and control groups in the

GSE65682 and GSE13904 datasets using the Wilcoxon test (p <

0.05). Biomarkers exhibiting differential expression between the two

groups and consistent expression trends across both datasets were

identified as potential diagnostic biomarkers.
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2.5 Nomogram establishment

After identifying biomarkers, the role of these biomarkers in

diagnosing sepsis was quantified by creating a diagnostic nomogram

using the “rms” package (v 6.5-0) (32), based on the expression levels

of the biomarkers. The nomogram included both individual and total

points, where the total points indicated the patient’s morbidity risk

for sepsis. Higher total points corresponded to a higher likelihood of

sepsis. To evaluate the nomogram’s effectiveness, a calibration curve,

generated with the “rms” package, the Hosmer–Lemeshow (HL) test,

and the ROC curve plotted by the “pROC” package (v 1.18.5) were

employed. A calibration curve that closely matched the ideal curve, a

p-value from the HL test greater than 0.05, and an AUC of the ROC

curve greater than 0.7 indicated that the nomogram had strong

predictive capability.
2.6 Correlation and function analyses
of biomarkers

To elucidate the correlation and function of the biomarkers,

Spearman’s correlation coefficients were calculated using the “cor”

function in R (v 4.2.2) for biomarkers in the training set, where |R| >

0.3 and p < 0.05 were considered significant correlations.

Additionally, Gene Set Enrichment Analysis (GSEA) was

conducted on the biomarkers to identify the biological pathways

they were involved in. Spearman’s correlation coefficients between

each biomarker and all genes in the sepsis samples from the training

set were calculated, and the coefficients were ranked in descending

order to create gene lists for each biomarker. GSEA was performed

using the “GSVA” (v 1.50.0) package with thresholds of p < 0.05, |

normalized enrichment score (NES)| > 1, and false discovery rate

(FDR) < 0.25. The reference gene set “c2.cp.kegg.v7.4.symbols.gmt”

was imported from the Molecular Signatures Database (MSigDB,

https://www.gsea-msigdb.org/gsea/msigdb), and the top 5 enriched

results, ranked by FDR in ascending order, were visualized using the

“enrichplot” package (v 1.22.0) (33).
2.7 Analysis of immune infiltration

Since the immune system plays a key role in the development of

sepsis, the ssGSEA scores of 28 types of immune cells (34) were

calculated using the “GSVA” package (v 1.50.0) to assess immune

cell infiltration levels in the training set. Differential immune cell

infiltration between the sepsis and control groups was identified

using the Wilcoxon test (p < 0.05). The “psych” package (v 2.2.5)

(35) was used to examine correlations between differential immune

cells and biomarkers (|R| > 0.3, p < 0.05).
2.8 Drug prediction and molecular docking

To predict drugs targeting the biomarkers, the Drug–Gene

Interaction Database (DGIdb; www.dgidb.org) was used to
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identify potential drugs for sepsis based on the biomarkers.

A drug prediction network was constructed using “Cytoscape”

(v 3.10.2). Furthermore, to explore biomarker–drug interactions

in more detail, the top 3 drugs with the highest interaction

scores for each biomarker were selected for molecular docking.

The three-dimensional structures of the drugs and biomarkers

were retrieved from the PubChem database (https ://

pubchem.ncbi.nlm.nih.gov/) and the Protein Data Bank (PDB;

https://rcsb.org/), respectively. Molecular docking was performed

using the CB-Dock2 website (https://cadd.labshare.cn/), and the

Vina scores were calculated using AutoDock Vina (v 1.2.0) (36) to

assess the binding energy between the drugs and biomarkers. Lower

Vina scores indicated stronger binding between the drugs

and biomarkers.
2.9 Single-cell data processing

For single-cell analysis, the “Seurat” package (v 5.0.1) (37) and

the GSE167363 dataset were used. First, during single-cell quality

control (QC), the number of detected genes per cel l

(nFeature_RNA), total RNA counts per cell (nCount_RNA), and

the percentage of mitochondrial gene expression (percent.mt) were

assessed. Cells were excluded if they contained fewer than 200 genes

or if they were represented by fewer than three genes. Cells with

nFeature_RNA >200 and <6,000, nCount_RNA >500 and <10,000,

and percent.mt < 10% were selected for subsequent analysis. Next,

the NormalizeData function was used to normalize the data, and the

top 2,000 highly variable genes were identified using the

FindVariableFeatures function. These genes were exported for

further analysis. To reduce the dimensionality of the data,

principal component analysis (PCA) was performed using the

RunPCA function, and the results were visualized and filtered by

the JackStrawPlot and Elbowplot functions (p < 0.05). The principal

components (PCs) from PCA were then passed to the

FindNeighbors and FindClusters functions to conduct

unsupervised clustering. t-Distributed stochastic neighbor

embedding (t-SNE) clustering was performed using the RunTSNE

function (resolution = 0.6) to group the data, and cell clusters

were identified.
2.10 Cell annotation and expression
verification in cell clusters

To annotate the cell clusters obtained from t-SNE, marker genes

extracted from a published paper (38) (Table 1) were used to classify

the cell clusters into different cell types. The Dotplot function in the

“Seurat” package (v 5.0.1) was used to display the expression of

marker genes for each cell cluster, with highly expressed markers

highlighted. After determining the cell types, the distribution of

cell types between the sepsis and control groups was examined.

Finally, the expression and distribution of biomarkers in each cell

type were explored and visualized using the FeaturePlot and

VlnPlot functions.
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2.11 Experimental validation

RT-qPCR was performed to assess the expression of biomarkers

in clinical samples from patients with sepsis and healthy controls. A

total of 10 whole human blood samples were collected from the

People’s Hospital of Xinjiang Uygur Autonomous Region (sepsis:

control = 5:5). Informed consent was obtained from all participants,

and the study was approved by the Ethics Committee of People’s

Hospital of Xinjiang Uygur Autonomous Region. A portion of the

collected samples was used for transcriptome sequencing, while the

remaining samples were stored at −80°C for subsequent RT-qPCR

experiments. Total RNA was extracted using TRIzol reagent, and

reverse transcription was performed to synthesize complementary

DNA (cDNA). Quantitative PCR was conducted using cDNA as

the template with primers listed in Supplementary Table S7, and

gene expression levels were quantified using the 2−DDCt method.

The GraphPad Prism (v 5.0) (39) software was used for

result visualization.
2.12 Statistical analysis

All bioinformatics analyses were performed using the R

programming software (v 4.2.2). The Wilcoxon test was applied

to compare differences between the two groups, and the t-test was

used to analyze differences in RT-qPCR data. A p-value of <0.05 was

considered statistically significant.
3 Results

3.1 A total of 85 candidate genes
were identified

Differential expression analysis identified 3,755 DEGs in the

training set, including 1,524 upregulated and 2,231 downregulated

genes (Figure 1A). The top 10 up- and downregulated DEGs were

labeled, and their expression and distribution are presented in

Figure 1B. Prior to performing WGCNA, the ssGSEA scores for

m6A-RGs in the training set were significantly elevated in the control

group (p < 0.05) (Figure 1C), confirming the suitability of proceeding

with WGCNA. After excluding one outlier sample, the remaining

training set samples were clustered (Supplementary Figure S1A). The
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optimal “power” threshold was determined to be seven based on the

scale-free fit index (R2 = 0.85) and the mean connectivity approach

(Figures 1D, E), resulting in the construction of a gene co-expression

network. This network revealed that genes from six modules were

successfully clustered, excluding the gray module (Figure 1F).

Correlation analysis identified MEbrown as the most positively

correlated module (R = 0.61, p < 0.05) and MEblue as the most

negatively correlated (R = −0.73, p < 0.05) (Supplementary Figure S1B),

leading to the identification of 3,313 genes in these modules as m6A-

related genes. A subsequent intersection of these 3,313 m6A genes,

3,755 DEGs, and 834 FRGs yielded 85 candidate genes (Figure 1G).
3.2 Enrichment results and PPI network of
candidate genes

GO enrichment analysis of the candidate genes identified 754

entries, comprising 643 BPs, 36 CCs, and 75 MFs (Supplementary

Table S3). The most significantly enriched BPs included myeloid

cell differentiation (GO:0030099) and mononuclear cell

differentiation (GO:1903131), key CCs included mitochondrial

matrix (GO:0005759) and iron–sulfur cluster assembly complex

(GO:1990229), and prominent MFs included DNA-binding

transcription factor binding (GO:0140297) and RNA polymerase

II-specific DNA-binding transcription factor binding

(GO:0061629) (Supplementary Figure S2), indicating that the

candidate genes were largely involved in differentiation and gene

expression regulation. Additionally, 22 KEGG pathways were

enriched (Supplementary Table S4), including the FoxO signaling

and mTOR signaling pathways (Figure 2A). The PPI network

revealed protein interactions among 32 candidate genes, including

GABARAPL1, ULK1, and FOXO3 (Figure 2B), which were thus

selected as potential biomarkers.
3.3 TXN and DPP4 were identified
as biomarkers

Subsequently, machine learning was applied to the 32 candidate

genes. LASSO analysis identified 12 candidate biomarkers (TXN,

PPARG, LPIN1, HSPB1, NFS1, FXN, IGF2BP3, SDHA, CS, CD74,

DPP4, and ATG4D) at lambda.min = 0.001309 (Figure 3A,

Supplementary Figure S3). Concurrently, SVM-RFE selected four

candidate biomarkers (CD74, TXN, DPP4, and LPIN1) based on

the highest model accuracy (Figure 3B, Supplementary Table S5),

leading to the identification of four overlapping biomarkers (CD74,

TXN, DPP4, and LPIN1) (Figure 3C). ROC curve analysis

demonstrated AUC values >0.7 for TXN and DPP4 in both the

training and validation sets, indicating their potential to effectively

distinguish patients with sepsis (Figures 4A, B). Further expression

analysis revealed that TXN and DPP4 were differentially expressed

in both datasets (p < 0.05) and exhibited consistent trends

(Figures 4C, D). Specifically, TXN was upregulated in the sepsis

group, while DPP4 was elevated in the control group, positioning

TXN and DPP4 as potential biomarkers.
TABLE 1 Cell makers.

Cell type Marker genes

B cells "MS4A1", "CD79A","CD37"

CD16+ and CD14+ monocytes "CD68", "CD14","S100A12"

CD4+ memory cells "IL7R", "CD27","CCR7"

CD8+ T cells "CD8A", "CD8B"

Megakaryocyte progenitors "PF4", "PPBP", "PLA2G12A"

Natural killer (NK) cells "CD160","NKG7", "GNLY"
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FIGURE 1

Screening for biomarkers related to m6A RNA methylation and ferroptosis. (A) Volcano plot of the differential analysis of the GSE65682 gene set,
highlighting significant variations in gene expression. (B) Expression density heatmap and expression heatmap. The expression density heatmap at
the upper part of the figure shows kernel density estimation of expression distribution for each gene, with red colors indicating higher density. At the
bottom of the figure is the expression heatmap. (C) ssGSEA score raincloud plot, with the ssGSEA score as the abscissa. ****, p < 0.0001. (D) Scale-
free fitting exponent analysis with multiple soft threshold powers. (E) The average connectivity analysis with multiple soft threshold powers.
(F) Dendrogram of genes based on clustering using the topological overlap matrix measure, with the color band displaying results obtained from
automatic single-block analysis. (G) Venn diagram of the intersection of differentially expressed genes, m6A-related genes, and iron-related death
genes. m6A, N6-methyladenosine; ssGSEA, single-sample gene set enrichment analysis.
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3.4 A nomogram was developed
and verified

By utilizing the expression of two biomarkers, a nomogram was

constructed to predict sepsis morbidity (Figure 5A), indicating that

higher total points correlate with an increased sepsis risk. The

nomogram’s predictive performance was subsequently assessed:

the AUC of the ROC curve exceeded 0.9 (Figure 5B), and the

apparent and ideal curves closely aligned in the calibration plot,

with a p-value > 0.05 from the HL test (Figure 5C), collectively

confirming the nomogram’s robust predictive ability.
3.5 Correlation and GSEA results
of biomarkers

Further correlation analysis and GSEA revealed the functions of

these biomarkers. A significant negative correlation was observed

between the two biomarkers (cor = −0.43, p < 0.05) (Figure 6A).

GSEA identified that TXN was enriched in 39 pathways, including

oxidative phosphorylation, spliceosome, and antigen processing

and presentation (Figure 6B, Supplementary Table S6), while

DPP4 was involved in 42 pathways such as ribosome biogenesis,

spliceosome, and complement and coagulation cascades (Figure 6C,

Supplementary Table S6). Notably, both biomarkers were co-

enriched in pathways such as spliceosome and antigen processing

and presentation, suggesting their close association with immune

responses and gene expression regulation.
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3.6 Results of immune infiltration

Immune cell infiltration levels across 28 immune cell types were

compared between the sepsis and control groups in the training set

(Supplementary Figure S4). Differential analysis revealed 24 immune

cell types with significant differences in infiltration; activated

dendritic cells, plasmacytoid dendritic cells, central memory CD8 T

cells, gamma delta T cells, macrophages, mast cells, neutrophils,

regulatory T cells, and type 17 T helper cells had higher infiltration

levels in the sepsis group, whereas the remaining 15 cell types were

more abundant in the control group (p < 0.05) (Figure 7A).

Correlation analysis further showed that DPP4 exhibited strong

positive correlations with effector memory CD8 T cells and

activated CD8 T cells (R > 0.3, p < 0.05), while macrophages and

activated dendritic cells were negatively correlated with DPP4 (R <

−0.3, p < 0.05) and positively correlated with TXN (R > 0.3, p < 0.05).

Conversely, effector memory CD8 T cells and central memory CD4 T

cells showed a strong negative correlation with TXN (R < −0.3, p <

0.05) (Figures 7B, C).
3.7 The drug prediction network and
molecular docking results

Based on drug prediction analysis, 50 drugs were identified to

target DPP4, including alogliptin and begelomab, while four drugs

were found to target TXN, such as biotinylated gambogic acid and

gambogenic acid. No drug was predicted to target both biomarkers
frontiersin.or
FIGURE 2

Enrichment results and PPI network of candidate genes. (A) Diagram of the KEGG analysis. The left half shows the enriched gene names, and the
shade represents the logFC magnitude. The right half shows the enriched functional pathways. (B) Protein interaction network diagram. PPI,
protein–protein interaction; KEGG, Kyoto Encyclopedia of Genes and Genomes.
g

https://doi.org/10.3389/fimmu.2025.1543517
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lu et al. 10.3389/fimmu.2025.1543517
simultaneously (Figure 8A). Molecular docking of the top 3 drugs,

selected based on their interaction scores with each biomarker, was

then performed (Figures 8B, C). However, docking between

dutogliptin and DPP4 yielded no successful binding. The highest

Vina scores were observed between gambogenic acid and TXN (−6.7)

and between valacyclovir and DPP4 (−6.7, Table 2), indicating a

stronger binding affinity of these drugs to the respective biomarkers.
3.8 Identification of cell clusters and
expression of biomarkers in single-
cell data

In single-cell analysis, raw data from GSE167363 underwent QC.

The pre- and post-QC data are shown in Supplementary Figures S5A

and B, with 45,265 cells and 20,696 genes retained for subsequent

analyses. The top 2,000 highly variable genes were identified, including

HBB, HBA2, and HBA1 (Figure 9A). PCA revealed no obvious outliers

(Figure 9B), although statistical significance declined after the 30th PC,
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as reflected in the PC fragmentation curve, leading to the selection of 30

PCs for further analysis (Figure 9C, Supplementary Figure S5C). The t-

SNE clustering grouped the cells into 26 distinct clusters (Figure 9D).

Using marker gene expression (Supplementary Figure S5D), these

clusters were annotated into six cell types: B cells, megakaryocyte

progenitors, CD4+ memory cells, natural killer (NK) cells, CD16+ and

CD14+ monocytes, and CD8+ T cells (Figure 9E). Notably,

megakaryocyte progenitors and CD4+ memory cells were

predominantly found in the sepsis group (Figure 10A). Expression

analysis of the biomarkers revealed that DPP4 was primarily expressed

in CD4+ memory cells, while TXN was predominantly expressed in

CD16+ and CD14+ monocytes, NK cells, CD4+ memory cells, and B

cells (Figure 10B, Supplementary Figures S5E, F).
3.9 RT-qPCR validation

The expression levels of the biomarkers in clinical samples were

assessed using RT-qPCR. The results showed significantly higher
FIGURE 3

Machine learning screening. (A) The process of selecting the optimal parameter l for the LASSO regression model using cross-validation. (B) Results
of the SVM-RFE algorithm. (C) Venn diagram of genes investigated by SVM and LASSO. LASSO, least absolute shrinkage and selection operator;
SVM-RFE, support vector machine recursive feature elimination.
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expression of DPP4 in the control group (Figure 11) (p < 0.05), and

its expression trend was consistent with the dataset, suggesting that

DPP4 has strong diagnostic potential for sepsis and can be

effectively validated in clinical settings. However, the expression

trend of TXN was opposite to that in the dataset, which may have

been due to the small sample size, leading to result bias.
4 Discussion

Sepsis is a highly heterogeneous clinical syndrome (1) and

remains a leading cause of global morbidity and mortality (40).

Despite extensive research efforts over the past decades, the precise

pathogenesis of sepsis remains elusive, and both its diagnosis and

treatment continue to pose significant challenges. Current

therapeutic approaches primarily focus on symptomatic

management, including stabilization of hemodynamic parameters,

anti-infective treatment, and organ function support. At present,

however, there are no specific diagnostic or therapeutic strategies

available (41, 42). As sepsis severity escalates, the mortality rate rises

accordingly, underscoring the critical importance of timely

identification and intervention to improve clinical outcomes.

Delayed treatment can markedly impact survival (43). While

biomarkers are central to sepsis diagnosis, risk stratification, and

prognosis, no definitive marker or therapeutic tool has yet been
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established. In recent years, the roles of m6A methylation and

ferroptosis in sepsis have garnered increasing attention.

This study was conducted within this context, aiming to explore

the expression profiles and diagnostic potential of FRGs and m6A-

RGs in sepsis through comprehensive bioinformatics analysis. The

goal was to identify potential biomarkers for early diagnosis and

therapeutic intervention. Two GEO datasets, GSE65682 (training

set) and GSE13904 (validation set), were used to identify 3,755

DEGs, including 1,524 upregulated and 2,231 downregulated genes

in sepsis versus control samples. WGCNA was performed on m6A-

RGs to identify relevant gene modules, which were intersected with

FRGs, resulting in 85 candidate genes. Following PPI network

analysis, and SVM-RFE and LASSO machine learning, as well as

ROC curve validation and expression level verification, two

biomarkers—DPP4 and TXN—were identified. These two key

biomarkers were then integrated into a nomogram, which

illustrated the prediction process and demonstrated predictive

accuracy. The nomogram’s performance was further validated

using a calibration curve, confirming its robust predictive

capability. GSEA revealed that DPP4 and TXN were significantly

enriched in pathways such as spliceosome activity and antigen

processing and presentation. Additionally, immune infiltration

analysis was performed, identifying 24 immune cell types with

significantly distinct expression levels between the sepsis and

control groups. Correlation analysis between the biomarkers and
FIGURE 4

ROC curve and expression level validation for screening biomarkers. (A, B) ROC curves of the training and validation sets of candidate biomarkers.
(C, D) Analysis of expression levels in the training and validation sets of sepsis biomarkers. **, p < 0.01; ***, p < 0.001. ROC, receiver
operating characteristic.
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differentially expressed immune cells was also conducted. To

predict potential therapeutic drugs, the Comparative

Toxicogenomics Database (CTD) was employed, and network

diagrams were constructed to visualize the results. Molecular

docking was performed for the top three drugs targeting each

biomarker. Finally, the expression profiles of these biomarkers at

the single-cell level were investigated, offering valuable insights and

novel concepts for the early diagnosis and intervention of sepsis.

A series of bioinformatics analyses identified two biomarkers,

DPP4 and TXN. Expression validation revealed that DPP4 was

predominantly highly expressed in the control group, while TXN

exhibited elevated expression in the sepsis group. DPP4, also known

as CD26, functions as a T-cell costimulatory molecule. It is an

endogenous type II transmembrane glycoprotein and serine

exopeptidase capable of cleaving X-proline dipeptides from the

N-terminus of polypeptides. Its diverse substrates are implicated in

sepsis (44). DPP4 exists in both membrane-bound and soluble

forms (sDPP4), with the latter circulating throughout the body (45).

Prior research has shown that sDPP4 can be released from adipose

tissue as an inflammatory adipokine, establishing a link between

insulin resistance and low-grade inflammation (46). DPP4 plays key
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roles in glucose and insulin metabolism, as well as immune

regulation—processes highly relevant to sepsis. In a nested case–

control study by Chia-Jen Shih et al., no significant association was

found between DPP4 inhibitor use and sepsis development in

hospitalized patients with type 2 diabetes (47). However, other

studies suggest that patients with type 2 diabetes starting treatment

with SGLT2 inhibitors experience a higher incidence and mortality

of sepsis compared to those treated with DPP4 inhibitors (48).

Furthermore, some studies have reported a significant reduction in

DPP4 expression in patients with sepsis and septic shock (49), while

higher DPP4 expression correlates with improved patient survival

(50). These findings align with the expression patterns observed in

this study, suggesting that DPP4 may serve as a potential prognostic

biomarker for sepsis.

TXN is a protein-coding gene involved in various redox

reactions, catalyzing disulfide–disulfide bond exchanges through

the reversible oxidation of its active site, disulfide, into a disulfide

bond (51). The TXN gene regulates B-cell differentiation and

function and has been implicated in cardiac damage resulting from

severe inflammation (52). Previous research has highlighted TXN’s

critical role in inflammation, with ongoing investigations into its
FIGURE 5

The construction and validation of the nomogram. (A) Sepsis prediction nomogram. The frequency distribution is shown above the axis. (B) ROC
curve of the prediction model. (C) Calibration curve of the prediction model. ROC, receiver operating characteristic.
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therapeutic potential for a variety of diseases (53). Yi Zhou et al.

demonstrated that TXN is a unique endoplasmic reticulum-

associated gene in sepsis, with significantly upregulated expression

in septic rats, positioning it as a potential biomarker for sepsis

diagnosis (54). Similarly, TXN was identified as a candidate

diagnostic gene for sepsis-induced acute respiratory distress
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syndrome in a study focused on key iron death genes (55).

Additionally, TXN has been recognized as an important differential

gene and potential diagnostic marker for early pediatric septic shock

compared to healthy children (56). Literature also suggests that

inhibiting the pathway mediated by TXN may aid in the treatment

of inflammatory diseases (57, 58) and cancer (59–61). In conclusion,
FIGURE 6

Correlation distribution map of biomarkers and GSEA functional enrichment map. (A) Scatter plot of the expression correlation between TXN and
DPP4. (B) GSEA result map of TXN. (C) GSEA result map of DPP4. GSEA, Gene Set Enrichment Analysis.
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TXN has emerged as a central or key gene in sepsis research,

consistently showing significant upregulation in sepsis samples,

aligning with the findings of this study.

To further investigate the biological roles of the identified

biomarkers, correlation analysis and GSEA were performed on the

two genes. The correlation analysis revealed a significant negative

relationship between TXN and DPP4 (r = −0.43, p < 0.05)

(Figure 5A). GSEA was then employed to uncover the functional

pathways associated with these biomarkers. Both TXN and DPP4

were found to be enriched in several shared pathways, including

spliceosome, antigen processing and presentation, primary

immunodeficiency, and regulation of autophagy. The spliceosome,

a multi-megadalton ribonucleoprotein (RNP) complex composed of

five snRNPs and numerous proteins, catalyzes precursor mRNA

splicing. During this process, an intricate RNA–RNA and RNP
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network forms and is reorganized repeatedly to align the pre-

mRNA motifs for catalytic processing (62). Previous studies have

shown that spliceosome-related pathways are downregulated in the

blood of patients with sepsis (63). Immune dysfunction in sepsis often

manifests as antigen presentation defects and adaptive

immunodeficiencies, which affect T- and B-cell functions (64).

Antigen presentation involves the internalization, processing, and

peptide binding of antigens to MHC-I molecules, followed by their

transport to the cell surface (65). This process is primarily facilitated

by monocytes or macrophages, which play key roles in both adaptive

immunity and inflammatory modulation in the innate immune

response (66). Immunodeficiencies, whether primary or secondary,

are a major contributing factor to the progression of sepsis. Prior

research has highlighted a link between sepsis and pathways related

to primary immunodeficiencies (67). Additionally, abnormal
FIGURE 7

Immune infiltration analysis. (A) Box plot of differential immune cell infiltration. (B) Correlation between DPP4 and differential immune cells. ns
represents no significance; *, p < 0.05; **, p < 0.01; ***, p < 0.001. (C) Correlation between TXN and differential immune cells. (B, C) The circle size
represents the correlation size, and the line color shade represents the p-value size.
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autophagy in macrophages or mitochondria plays a critical role in

sepsis pathogenesis (68, 69). Autophagy, which is closely linked to

inflammation and immunity, may confer a protective role in sepsis by

negatively modulating macrophage activation, altering macrophage

polarization, reducing inflammatory vesicle activation and

inflammatory factor release, and controlling macrophage apoptosis.

However, excessive autophagy may lead to macrophage autophagic

death, exacerbating the inflammatory response (70).
We conducted molecular docking for the top 3 drugs with the

highest interaction scores from the drug prediction results for two

biomarkers. Among the three predicted drugs for DPP4, dutogliptin,
FIGURE 8

Biomarkers and drug prediction. (A) Drug–biomarker interaction network. (B) Results of docking between DPP4 and drug molecules. On the left is
ALOGLIPTIN_BENZOATE, and on the right is VALACYCLOVIR. (C) Results of docking between TXN and drug molecules. On the left is
BIOTINYLATED_GAMBOGIC_ACID, in the middle is GAMBOGENIC_ACID, and on the right is PX-12.
TABLE 2 Molecular docking scores.

Protein Molecule Vinascore

TXN PX-12 -3.9

TXN BIOTINYLATED_GAMBOGIC_ACID -6.5

TXN GAMBOGENIC_ACID -6.7

DPP4 VALACYCLOVIR -6.7

DPP4 DUTOGLIPTIN NA

DPP4 ALOGLIPTIN_BENZOATE -5.3
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an orally effective selective DPP4 inhibitor, failed in docking and may

require further experimental validation of its efficacy. Although

primarily used for antiviral treatment, valacyclovir exhibited a high

binding score (−6.7) with DPP4, suggesting potential cross-

interactions. Recent studies have found that valacyclovir can

regulate granulocyte-macrophage infiltration by reducing pro-

inflammatory cytokines such as TNF-a and IL-6, thereby

improving inflammatory responses (71). Alogliptin benzoate, an
Frontiers in Immunology 14
approved DPP4 inhibitor, had a binding score (−5.3) that supports

its interaction with DPP4. Studies have shown that alogliptin reduces

leukocyte activation and oxidative stress levels by inhibiting DPP4

activity, significantly improving survival rates in sepsis mouse models

(72). In the molecular docking of the three predicted drugs for TXN,

PX-12, as a TXN inhibitor, showed a lower Vina score (−3.9),

indicating a weaker binding affinity for TXN. Previous studies have

shown that PX-12 can act as an antitumor drug by enhancing
FIGURE 9

Single-cell sequencing analysis. (A) Screening of highly variable genes. The red color in the figure represents highly variable genes, and the top 10
most significantly variable genes are marked. (B) PCA sample cell distribution map. (C) JackStraw map. (D) Cell t-SNE clustering diagram. Different
colors correspond to different clusters. (E) Cell annotation t-SNE diagram. PCA, principal component analysis; t-SNE, t-distributed stochastic
neighbor embedding.
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oxidative stress-induced apoptosis, but its mechanism of action in

sepsis requires further exploration (73). Biotinylated gambogic acid

and gambogenic acid exhibited higher binding potential (Vina score

−6.5 and −6.7), potentially regulating redox balance by targeting

TXN. Gambogic acid and its derivatives have been shown to alleviate

inflammatory responses in sepsis-induced myocardial injury models

by inhibiting the NF-kB pathway (74).

In the development of sepsis, a complex immune response is

initiated within the body, which ultimately leads to widespread
Frontiers in Immunology 15
impairment of cellular function and overall organ dysfunction.

Increasing evidence suggests that immune cell infiltration plays a

critical role in the pathogenesis of sepsis. In this study, an immune

infiltration analysis of 28 immune cell types was performed in both

the sepsis and control groups of the training set. Our findings

revealed that nine immune cell types were significantly more

infiltrated in the sepsis group, while 15 others showed higher

infiltration in the control group. Correlation analysis between the

two biomarkers (DPP4 and TXN) and the 24 immune cell types that
FIGURE 10

Cell clustering and verification of prognostic gene expression. (A) t-SNE clustering diagram of cells in different groups, with the control group of
normal cells clustered on the left and the disease group of cells clustered on the right. (B) Gene t-SNE plot, with the distribution of the DPP4 gene
in immune cells on the left and the distribution of the TXN gene in immune cells on the right. t-SNE, t-distributed stochastic neighbor embedding.
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displayed these differential infiltration patterns showed that DPP4

was strongly positively correlated with effector memory CD8 T cells

and activated CD8 T cells but negatively correlated with

macrophages and activated dendritic cells. DPP4 was also

positively correlated with TXN. However, TXN showed a strong

negative correlation with both effector memory CD8 T cells and

central memory CD4 T cells. In this study, the positive correlation

(R > 0.3) between DPP4 and both effector memory CD8 T cells and

activated CD8 T cells may reflect the importance of DPP4 in

maintaining the phenotypic and functional characteristics of T-

cell memory. The long-term survival of effector memory CD8 T

cells relies on the homeostasis of metabolic and signaling pathways

(41). DPP4 may enhance the survival and function of effector

T cells by modulating the activity of relevant chemokines,

thereby potentiating the immune response against infections.

In sepsis, T-cell exhaustion and immunosuppression are core

pathological features (46). High expression of DPP4 may delay

immunosuppression by maintaining effector T-cell function, which

is consistent with the trend of high DPP4 expression in the control

group observed in this study. Macrophages drive the inflammatory

response in the early stages of sepsis by releasing pro-inflammatory

cytokines such as TNF-a and IL-6. The membrane-bound form of

DPP4 can inhibit macrophage activation (50); thus, low DPP4

expression may exacerbate the pro-inflammatory phenotype of

macrophages, leading to increased tissue damage. TXN

(thioredoxin) positively correlates with macrophages and

dendritic cells: TXN is a key regulatory molecule in oxidative
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stress. High expression of TXN may maintain the survival of

macrophages and dendritic cells by scavenging ROS while

simultaneously promoting their pro-inflammatory functions (54).

In sepsis, this mechanism may contribute to an imbalance of

inflammation. TXN influences T-cell metabolism by regulating

redox balance. Overactivation of TXN may exacerbate

mitochondrial oxidative stress, leading to T-cell apoptosis or

functional failure (54). In the late stages of sepsis, T-cell

exhaustion serves as a marker of immunosuppression (68). High

expression of TXN may accelerate T-cell dysfunction by promoting

oxidative damage, which is consistent with the high TXN

expression observed in the sepsis group in this study. The ability

to develop and maintain memory CD8 T cells following infection or

immunization is a hallmark of the adaptive immune response and

forms the basis for effective vaccination against infectious diseases

(75). However, prior studies have shown that sepsis significantly

reduces the number of lymphocytes, including memory CD8 T

cells, through apoptosis, resulting in immune paralysis during the

early stages of sepsis (76). Additionally, our study identified that the

pathways co-enriched with both DPP4 and TXN in GSEA included

macrophage autophagy-related pathways. These pathways are

upregulated during sepsis, potentially reducing macrophage

apoptosis and influencing immune responses. Dendritic cells

(DCs) play a central role in the innate immune system, regulating

both innate and adaptive immunity (77). DCs are essential for

recognizing harmful pathogens, presenting antigens, activating

adaptive immunity, and promoting autoimmune immune

tolerance, while also having a pro-inflammatory function in the

context of sepsis (78).

Subsequent single-cell analysis revealed that DPP4 is

predominantly expressed in CD4+ memory cells, while TXN is

primarily expressed in CD16+ and CD14+ monocytes. This finding

suggests that both biomarkers may contribute to the progression of

sepsis through these cell types. CD4+ T cells, particularly memory

cells, undergo significant depletion during the acute phase of sepsis.

This depletion leads to a transient decline in the number of pre-

existing memory CD4+ T cells, along with sustained dysfunction,

which increases susceptibility to secondary infections in sepsis

survivors (79). The observed depletion of memory CD4+ T cells

in patients with sepsis is consistent with the higher expression of

DPP4 in these cells, supporting its potential role in sepsis

progression. Monocytes, a heterogeneous cell population, are

classified into three subpopulations based on the differential

expression of CD14 [lipopolysaccharide (LPS) receptor] and

CD16 (FcgIII receptor): classical CD14++CD16−, intermediate

CD14++CD16+, and non-classical CD14+CD16+ (80). CD14 is a

55-kDa glycosylphosphatidylinositol-anchored receptor that is

widely expressed in cells, existing in either cytosolic or secreted

protein forms (81). CD14 expression is induced during infectious

and inflammatory conditions (82). Recent studies have shown that

soluble CD14 isoforms (presepsin) have diagnostic and prognostic

values in sepsis (83). The CD16+ monocyte subpopulations,

characterized by higher pro-inflammatory cytokine production

and enhanced antigen presentation ability, are thought to play a
FIGURE 11

Relative expression bar chart for DPP4. ****, p < 0.0001.
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key role in sepsis (84). In a study by Guanguan Qiu and colleagues,

CD14++CD16+ (CD16+) monocytes were positively correlated with

severe sepsis and early disease severity scores in infectious

shock (85).

The low expression of DPP4 in sepsis observed in this study

aligns with the findings of Vliegen et al. (44), who reported a

significant reduction in DPP4 activity in the plasma of patients with

septic shock. Additionally, the research by Lambeir et al. (45)

supports the crucial role of DPP4 in immune regulation, which

concurs with our single-cell analysis showing that DPP4 is primarily

expressed in CD4+ memory T cells. Regarding TXN, our findings

are consistent with those of Zhou et al. (54), who identified a

significant upregulation of TXN in a sepsis rat model, suggesting its

potential as a diagnostic biomarker. Furthermore, the study by Li

et al. (67) also confirms that TXN is a key ferroptosis-related gene in

sepsis-induced acute respiratory distress syndrome. This study is

the first to reveal the expression patterns of DPP4 and TXN in

specific immune cell subsets at the single-cell level. We found that

DPP4 is predominantly expressed in CD4+ memory T cells, while

TXN is highly expressed in CD16+ and CD14+ monocytes. This

discovery provides a new perspective on understanding immune

cell dysfunction in sepsis. Notably, CD16+ monocytes have been

shown by Qiu et al. (85) to positively correlate with the severity of

sepsis, which corroborates our findings. This study is the first to

report a significant negative correlation between DPP4 and TXN in

sepsis (r = −0.43, p < 0.05). This finding offers new insights into the

interplay between oxidative stress and immune regulation in sepsis.

Although there are currently no direct studies exploring the

interaction between DPP4 and TXN in sepsis, the research by Xu

et al. (58) indicates that TXN plays a pivotal role in oxidative stress-

related diseases, providing indirect support for our observations.

RT-qPCR results in this study demonstrated that DPP4

expression was significantly higher in the control group (p <

0.05), aligning with findings from the database. These results

support the hypothesis that DPP4 has strong diagnostic potential

for sepsis. Moreover, they validate the true expression of DPP4 in

clinical samples, underscoring the reliability of our diagnostic

model. Despite the significant upregulation trend of TXN

observed in database analysis, its expression trend was

inconsistent with the database results in our RT-qPCR validation.

This may be the result of the combined effects of multiple factors.

First, the sample size used in experimental validation was relatively

small, which may not comprehensively and accurately reflect the

true expression profile of TXN, thus leading to discrepancies with

the database results. In addition, factors such as sample

heterogeneity, the timing of sample collection, and the severity of

sepsis may also have an impact on the outcomes. Sample

heterogeneity: Differences in ethnicity, geography, age, and other

aspects may exist between the samples in the database and our

clinical samples, potentially leading to variations in gene expression.

The training set patients in our study were all European Caucasian

adults with an average age of approximately 59 years, the validation

set patients were all American Caucasian children with an average
Frontiers in Immunology 17
age of approximately 2 years, and the patients we validated using

RT-qPCR were East Asian adults with an average age of

approximately 42 years. The differences in race and age among

these three groups are notable. Additionally, studies have indicated

that there may be significant differences in immune responses and

gene expression regulation among different ethnic groups, which

may in turn affect the expression levels of TXN. Timepoints of

sample collection: The expression of TXN may vary at different

disease stages (e.g., early, middle, and late stages). The samples in

the database did not clearly indicate the specific sampling time and

the severity of the patients’ conditions, potentially originating from

patients at different disease stages, whereas our clinical samples

were collected within 4 hours after sepsis diagnosis, which may

contribute to the differences in expression levels. Severity of sepsis:

The expression of TXN may be influenced by the severity of sepsis.

The samples in the database may have included patients with

varying degrees of severity, whereas our clinical samples focused

on the early stage of sepsis, which could also lead to differences in

expression levels. Since the severity of sepsis was not clearly

indicated in the training and validation datasets, we were unable

to compare it with the severity of the patients we validated. In the

future, we will further validate the expression of TXN by expanding

the sample size to include a more diverse patient population,

encompassing patients with varying severity of sepsis, diverse

demographic characteristics, and a broader range of underlying

diseases, as well as by optimizing experimental conditions.

Additionally, we will explore its potential role in sepsis.

In this study, a comprehensive analysis of m6A-RGs and FRGs

was conducted in sepsis using publicly available data, yielding several

valuable insights. Nevertheless, certain limitations should be

acknowledged. Although this study has revealed the diagnostic

value of DPP4 and TXN in sepsis and their correlation with

immune infiltration through bioinformatics methods, the specific

molecular mechanisms still require further experimental validation.

For instance, the high expression of TXN in CD16+ monocytes may

affect the progression of sepsis by regulating the release of pro-

inflammatory cytokines or the ferroptosis pathway, while the

absence of DPP4 expression in memory CD4+ T cells may

exacerbate immune suppression. Future studies will combine

animal models and functional experiments to directly validate the

functions of these biomarkers in sepsis and their regulatory pathways.

Second, although this study conducted RT-qPCR to validate the

expression of biomarkers, there remains a lack of functional

experimental validation for DPP4 and TXN. Therefore, we plan to

directly verify the roles of DPP4 and TXN in the pathogenesis of

sepsis through gene knockout or overexpression experiments in the

future and to explore their specific molecular mechanisms. In

addition, we intend to combine in vitro cell models and animal

experiments to further investigate the functions of DPP4 and TXN in

pathways such as immune regulation and oxidative stress in order to

gain a comprehensive understanding of their roles in sepsis.

Simultaneously, we will also confirm the reliability of the

transcriptome data through protein-level validation (such as
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Western blotting), further strengthening the functional and

regulatory mechanisms of these biomarkers in sepsis and providing

more direct evidence for future targeted therapies. The data utilized in

this study were sourced from public databases. While these databases

provide abundant transcriptome data, their heterogeneity may impact

the research findings. Specifically, there are significant differences in

the subject populations between the training and validation sets, with

the training dataset primarily derived from adult populations and the

validation dataset from pediatric populations. Variations among

studies may stem from differences in sample processing, sequencing

platforms, and data analysis methods, which can affect the accuracy

and reliability of the results. To enhance the reliability of our findings,

we plan to more carefully select and integrate higher-quality,

multicenter, and multiethnic public datasets in the future. By

implementing standardized preprocessing procedures, including

uniform data cleaning, format conversion, and other operations, we

aim to reduce data heterogeneity arising from technical differences.

Randomized splitting will be conducted to minimize the impact of

heterogeneity on the results and to validate the generalization ability

of the model. Additionally, we will collect more samples

encompassing various types, targeting different populations (such as

adults/children, different races) and disease stages (such as varying

severities of sepsis). Stratified analysis or mixed data resampling

techniques (such as cross-validation) will be employed to assess the

generalization ability of the model, thereby improving the broad

applicability of the research conclusions and enhancing the

representativeness and robustness of the study Furthermore, we

conducted drug prediction and molecular docking to explore the

issue of targeted therapy modified by the biomarkers we screened.

However, the aforementioned drugs still need to be validated and

their mechanisms of action explored in sepsis in vitromodels. Various

concentrations of these drugs should be tested to assess their

inhibitory effects on DPP4/TXN, as well as their impacts on

immune cell function, apoptosis, and inflammatory cytokines.

Through experiments on cell proliferation, cytokine release,

immune cell infiltration, and other aspects, we aim to verify the

potential therapeutic effects of these compounds in sepsis models.

This investigation will continue to examine the roles of m6A

methylation and ferroptosis while advancing novel research

methods and approaches to provide more precise and actionable

insights for sepsis diagnosis and treatment. Additionally, broader

participation in this field is encouraged to further deepen and expand

sepsis research.

The translation of the findings on DPP4 and TXN in this study

into clinical practice can be approached from the following aspects.

Potential directions for diagnostic tool development—rapid test kit

development: Based on the differential expression of DPP4 and TXN

in the blood (with DPP4 highly expressed in the control group and

TXN highly expressed in the sepsis group), we plan to collaborate

with in vitro diagnostic companies to develop rapid test kits using

ELISA or microfluidic technology. For instance, by detecting

decreased DPP4 concentrations or increased TXN concentrations

in patient sera, combined with clinical scores [such as the Sequential

Organ Failure Assessment (SOFA) score], the early diagnostic
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efficiency for sepsis can be enhanced. Similar strategies have been

successfully applied in the clinical detection of procalcitonin (PCT)

and presepsin (83). Dynamic monitoring and prognostic assessment:

The high expression of TXN is associated with oxidative stress and

immunosuppression, and its dynamic changes may reflect patients’

responses to treatment. In the future, multi-timepoint sampling can

be used to assess the correlation between TXN levels and organ

dysfunction (such as acute respiratory distress syndrome) or

mortality, providing a basis for individualized treatment (55).

Translational potential of therapeutic strategies—preclinical

validation of targeted drugs: Molecular docking results indicate that

gambogenic acid (targeting TXN) and valacyclovir (targeting DPP4)

have high binding potential. We plan to validate the efficacy of these

drugs in sepsis mouse models, such as those induced by

intraperitoneal injection of LPS or cecal ligation and puncture

(CLP), observing their impact on inflammatory cytokines (e.g.,

TNF-a and IL-6) and survival rates. Studies have shown that the

DPP4 inhibitor alogliptin can improve survival rates in sepsis mouse

models (72), providing indirect support for the drug predictions in

this study. Exploration of immunomodulatory therapy: Single-cell

analysis reveals high expression of DPP4 in CD4+ memory T cells,

which are significantly depleted in sepsis. Future research can

investigate the regulatory role of DPP4 on memory T-cell function

through in vitro experiments (e.g., T-cell coculture), exploring its

potential as an immune checkpoint molecule.
5 Conclusions

Two biomarkers, DPP4 and TXN, were identified and validated

in the context of sepsis. Immune infiltration and therapeutic potential

were also assessed at the single-cell level, offering new perspectives for

sepsis treatment. Based on the expression characteristics and

molecular mechanisms of DPP4 and TXN, future research will

focus on 1) developing rapid detection kits, 2) validating the

efficacy of targeted drugs, and 3) exploring immunomodulatory

strategies. Additionally, multicenter cohort studies and functional

experiments will lay the foundation for further translation.
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scatter plot of the expression level of each gene in each term. Red represents
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control. (B) Violin plots of nFeature_RNA, nCount_RNA and percent_mt after

single-cell data quality control. (C) Principal component inflection point

diagram. (D) Cell marker dot plot. (E) Gene violin plot, with the distribution
of the DPP4 gene in immune cells. (F)Gene violin plot, with the distribution of

the TXN gene in immune cell.
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Glossary

m6A N6-methyladenosine
Frontiers in Immunol
m6A-RGs m6A-related genes
FRGs ferroptosis-related genes
DEGs differentially expressed genes
WGCNA weighted gene co-expression network analysis
ROC receiver operating characteristic
RT-qPCR reverse transcription–quantitative PCR
WHO World Health Organization
ROS reactive oxygen species
scRNA-seq single-cell RNA sequencing
GEO Gene Expression Omnibus
PBMCs peripheral blood mononuclear cells
ssGSEA single-sample gene set enrichment analysis
ME module eigengene
GO Gene Ontology
KEGG Kyoto Encyclopedia of Genes and Genomes
BP biological process
MF molecular function
ogy 22
CC cellular component
STRING Search Tool for the Retrieval of Interaction Gene/Proteins
LASSO least absolute shrinkage and selection operator
SVM-RFE support vector machine recursive feature elimination
AUC area under curve
HL Hosmer–Lemeshow
GSEA Gene Set Enrichment Analysis
NES normalized enrichment score
FDR false discovery rate
MSigDB Molecular Signatures Database
DGIdb Drug–Gene Interaction Database
PDB Protein Data Bank
PCA principal component analysis
PCs principal components
t-SNE t-distributed stochastic neighbor embedding
cDNA complementary DNA
DCs dendritic cells
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