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Dietary behaviors significantly influence tumor progression, with increasing focus

on high-salt diets (HSD) in recent years. Traditionally, HSD has been regarded as a

major risk factor for multiple health issues, including hypertension, cardiovascular

disease, kidney disease, cancer, and osteoporosis. However, recent studies have

uncovered a novel aspect of HSD, suggesting that HSD may inhibit tumor growth

in specific pathological conditions by modulating the activity of immune cells that

infiltrate tumors and enhancing the effectiveness of PD-1 immunotherapy. This

review focused on the duelmolecularmechanisms of HSD in cancer development,

which are based on the tumor microenvironment, the gut microbiota, and the

involvement of sodium transporter channels. The objective of this review is to

explore whether HSD could be a potential future oncological therapeutic strategy

under specific situation.
KEYWORDS

high-salt diet (HSD), immunotherapy, tumor microenvironment (TME), gut microbiota,
sodium transporter channels
1 Introduction

According to the Global Cancer Observatory (GLOBOCAN) statistics for the year 2022,

approximately 20 million new cancer cases were reported worldwide. It is estimated that

approximately one in five individuals, regardless of gender, will develop cancer during their

lifetime. Specifically, approximately one in every nine males and one in every twelve females
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will ultimately succumb to cancer (1). Furthermore, 90% of cancer

deaths are attributed to metastasis (2–4). The development of cancer

is the result of a complex interplay between risk factors and genetic or

epigenetic changes, which provide cells with a selective advantage,

allowing them to evade immune surveillance and undergo malignant

transformation (5). Risk factors for cancer can be broadly classified

into two categories: exogenous and endogenous. Exogenous factors

include, but are not limited to smoking (6), an unhealthy diet (7),

being overweight, lack of physical activity (8) and the microbial

environment (9). Endogenous factors, on the other hand, include

genetic susceptibility (10), individual DNA repair capacity (11). Poor

dietary habits are considered one of the most dangerous exogenous

factors that play a crucial role in the progression of cancer. Studies

have shown that a high-fat diet can facilitate cancer progression

through the activation of the mTORC1 signaling pathway mediated

by the intestinal microbiota in myeloid progenitor cells (12).The

French NutriNet-Santé prospective cohort study found that high-

sugar diets are also strongly associated with cancer development,

particularly in the context of breast cancer (13). The ketogenic diet

activates AMP-activated protein kinase (AMPK), which in turn

stimulates tumor suppressor genes such as p53 and LKB1. This

process inhibits cell proliferation, mitigates inflammation, and

restrains cell growth (14). The Mediterranean diet is abundant in

monounsaturated fatty acids, notably oleic acid (OA). Research has

demonstrated that oleic acid mitigates oxidative stress and

inflammation (15). In conclusion, dietary patterns have a

significant influence on the cancer development. Adopting healthy

eating habits may be an effective way to prevent cancer, while

unhealthy eating habits may increase the risk of cancer.

HSD has previously been identified as a potential risk factor for

tumor formation. This is largely due to its ability to induce a chronic

inflammatory microenvironment (16), which in turn stimulates

continuous cell proliferation, DNA damage and cancer

transformation (17) For instance, the released IL-17 activates the

MAPK/ERK signaling pathway, promoting the proliferation,

migration and invasion of human breast cancer cells (18). HSD has

been demonstrated to enhance cancer cell proliferation and metastasis.

High salt exposure activates salt-inducible kinase-3 (SIK-3), a key

regulator of mitogenic activity (19), while nuclear factor of activated T

cells 5 (NFAT5) signaling upregulates VEGF expression in breast

cancer cells, thereby facilitating cancer metastasis (20). However,

recent studies have indicated that HSD may have a paradoxical role

in cancer treatment. It has been demonstrated to enhance the effector

function of CD8+ T cells (21), reduce the expansion and accumulation

of MDSCs in the blood, spleen, and tumors (22), and increase the

function of NK cells by affecting the intestinal flora, specifically

Bifidobacterium (23). These effects promote the transformation of

immunosuppression to immunogenicity. Thus, the role of HSD in

cancer process appears to be double-edged.

A comprehensive review of the relationship between HSD and

cancer progression, as well as its impact on tumor microenvironment

reshaping, gut microbiome regulation, and the role of iron channel, is

currently lacking. This paper aims to summarize the role of HSD in

cancers progression. The intricate relationship between diet, the

immune system, and cancer progression offers a fertile ground for
Frontiers in Immunology 02
further investigation, with the potential to yield innovative

immunotherapeutic strategies. Gaining insight into suitable diet

patterns for both health individuals and cancer patients, as well as

the role of immunotherapy efficacy, is crucial in this regard.
2 HSD is a double sword in tumor
treatment strategies

2.1 HSD promote cancer process

In the modern era, the relationship between dietary habits and

cancer has become an increasingly prominent area of scientific

research. The health effects of HSD have been extensively studied,

particularly in the context of cardiovascular diseases (24) and

autoimmune diseases (25). However, the relationship between

HSD and cancer development is still not fully understood. After a

median follow-up of 17.3 years, 485 histologically confirmed cases

of epithelial renal small-cell carcinoma and 4,438 subcohort

members were included in the analysis. The results indicated that

higher sodium intake was significantly associated with an increased

risk of renal small-cell carcinoma (26). Furthermore, prospective

studies have consistently demonstrated positive associations

between dietary salt intake and elevated risks of esophageal (27)

and gastric cancers (28). Recent studies suggest that HSD may

impact cancer progression through various mechanisms, including

modulation of immune responses, changes in the composition of

the gut flora, and the promotion of inflammation (Figure 1). It has

been demonstrated that chronic HSD increase the frequency of

tumor-initiating stem cells (TISCs), enhance the expression of

CD80 on the surface of TGF-b-mediated TISCs, weaken the anti-

tumor response of CD8+ T and CD4+ T cells, and elevate the levels

of CTLA4, a marker of immune depletion, which is associated with

an increase in immune depletion (29). In an in vivo HSD model in

MMTV-PyVT mice with spontaneous tumor-forming properties,

HSD was found to promote breast cancer development and lung

metastasis, and to increase the frequency of circulating Th17 cells.

This may contribute to breast cancer growth by activating the

MAPK signaling pathway in breast cancer cells through the

secretion of IL-17F (18). Research has identified that salt-

inducible kinase-3 (SIK-3) is specifically upregulated in breast

cancer cells exposed to high salt concentrations. SIK-3 plays a

critical role in facilitating the G0/G1 phase transition of the cell

cycle, thereby enhancing mitogenic activity. Additionally, it

increases the surface expression of the CXCR4 chemokine

receptor, which promotes tumor metastasis (19). Moreover, the

production of metabolic byproducts essential for cellular building

blocks is crucial. Under normoxic conditions, cancer cells

predominantly undergo glycolysis, a phenomenon known as

aerobic glycolysis or the Warburg effect (30). High sodium

concentrations further enhance this effect in cancer cells (31).

Vascular endothelial growth factor (VEGF) is a key mediator of

angiogenesis (32). High salt levels increase VEGF expression in

breast cancer cells via nuclear factor of activated T cells 5 (NFAT5)

signaling, thereby promoting cancer metastasis (20).
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Inflammatory bowel disease (IBD) has been identified as a risk

factor for colorectal cancer (33). In our previous work, we identified

that HSD promote DSS-induced UC process in an necroptosis-

dependent manner (34). HSD have been also shown to affect the

homeostasis of the intestinal mucosal barrier and to exacerbate colitis

by inducing dysbiosis in the intestinal flora. This occurs through the

reduction of beneficial bacteria, such as Lactobacillus, and the

decrease in the concentration of butyrate, a short-chain fatty acid

(SCFA) that is crucial for maintaining intestinal immune

homeostasis. Previous studies have demonstrated that butyrate has

a protective effect against colitis (35). HSD is also a significant risk

factor for gastric cancer. At elevated salt concentrations, the levels of

VacA toxin secreted by Helicobacter pylori significantly increase.

VacA is a critical virulence factor that can compromise cellular

membranes, resulting in cellular damage and apoptosis (36). HSD

has been shown to irritate the gastric mucosa, leading to atrophic

gastritis, increased DNA synthesis and cellular accretion, promotion

of H. pylori colonization and penetration of other carcinogenic

compounds, and an increased risk of gastric carcinogenesis (37, 38).
2.2 Potential mechanisms of HSD in
antitumor response

2.2.1 Tumor microenvironment
The term “tumor microenvironment” (TME) refers to the local

environment in which a tumor grows. This environment contains a

variety of elements, including cancer cells, cancer-associated
Frontiers in Immunology 03
fibroblast cells (CAFs), surrounding tissue cells, blood vessels,

different immune cells, extracellular matrix, and various bioactive

molecules. The ongoing interaction between tumor cells and the

tumor microenvironment is a critical factor in tumor genesis,

progression, metastasis and response to therapy (39). Cancer cells

can influence their microenvironment by secreting a range of

cytokines, chemokines and other factors. This leads to the

reprogramming of surrounding cells, which then promote tumor

growth and survival (40). HSD has been shown to promote

inflammation and immune suppression within TME, which may

facilitate cancer growth and metastasis. Additionally, HSD may

disrupt the balance of beneficial and harmful bacteria in the gut,

leading to changes in the production of metabolites that can affect

the tumor microenvironment. These changes may further promote

the development and progression of cancer (Figure 2).

A high level of macrophage infiltration is associated with a poor

prognosis in many types of tumor, including breast cancer, gastric

cancer, lung cancer, liver cancer and others (41–43). In some cases,

macrophages can make up as much as 50% of the tumor mass (44),

indicating a significant contributor of macrophages in tumor

development. Macrophages can be classified into two distinct

polarization states: the pro-inflammatory M1 state and the

immune-suppressive M2 state (45). In the initial stage of tumor

development, M1 macrophages are the predominant type.

However, as the tumor progresses, there is a gradual polarization

of M1macrophages to M2macrophages. An increase in the number

of M2 macrophages is indicative of poor prognosis (45, 46). The

high proportion of M2 macrophages in tumors renders
FIGURE 1

Mechanisms by which high-salt diet (HSD) promotes cancer development. The diminished capacity of CD4+T and CD8+T to eradicate tumors in the context
of HSD may be attributable to an immune deficiency resulting from HSD. HSD has been demonstrated to increase the number of circulating Th17 cells. And
the release of IL-17F has been observed to activate the MAPK signaling pathway, which in turn has been shown to promote the growth of breast cancer.
HSD has been demonstrated to disrupt the immune balance, result in a reduction in probiotics (lactobacillus), and lead to a decline in favorable SCFA
(butyrate), thereby promoting the development of colorectal cancer. HSD has been demonstrated to cause gastric mucosal damage, promote the increase
of H. pylori colonization, facilitate the penetration of cancer substances, and contribute to the development of gastric cancer.
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macrophage-mediated killing of cancer cells ineffective in the TME,

thereby facilitating tumor growth, proliferation, angiogenesis,

metastasis, and epithelial-mesenchymal transition (EMT) (47).

High-salt intake has been shown to have dual effects on

macrophages. On one hand, the generation of mitochondrial

reactive oxygen species (mtROS) under hypertonic conditions

activates both NLRP3 and NLRC4 inflammasomes, resulting in

elevated IL-1b production through a Caspase-1-dependent pathway

(48, 49). Furthermore, after stimulation of macrophages with 500

mMNaCl (about 3% NaCI) for 8 h, secretion of IL-1b and il-18 was

detected, and IL-1b release was inhibited after knocking down

NLRP1 (50). This promotes the function of M1 macrophages. On

the other hand, high salt intake can inhibit the function of M2

macrophages. This is achieved by impeding mitochondrial

metabolism and the AKT/mTOR signaling transduction pathway

in M2 macrophages (25, 51). Additionally, the NCX1 protein on

macrophages responds to increased levels of extracellular sodium

(Na+) irons concentrations. This response activates the downstream

NFAT5 pathway, which lead to an increase in the expression and

production of nitric oxide (NO) and tumor necrosis factor (TNF).

As a result, there is an enhancement of M1-type macrophage

function (52, 53). Furthermore, studies have shown that high-salt

concentrations can have been demonstrated to induce M1 and

proinflammatory characteristics through the p38/cFos/AP1 and
Frontiers in Immunology 04
Erk1/2/cFos/AP1 signaling pathways. In addition, it also inhibited

the M2 type through the Erk1/2/signal transducer and activator of

transcription 6 (STAT6) pathway (54).

Natural killer (NK) cells are the prototype members of innate

lymphoid cells (ILC1) and can be categorized into two distinct

subsets: CD56hi CD16+/− and CD56low CD16hi. These subsets are

distinguished by their CD16 and CD56 expression levels, as

previously mentioned. CD56hi CD16+/− NK cells have been

observed to secrete inflammatory cytokines. CD56lo CD16hi NK

cells specialize in cytotoxic functions and cell-mediated killing.

Notably, NK cells are also play a crucial role in limiting tumor

metastasis and eliminating malignant cells during cancer

progression (55). A study demonstrated that HSD impeded the

proliferation, activation, and functionality of NK cells in mice.

Specifically,HSD reduces the expression of CD122 in NK cells

and inhibits the response to interleukin IL-15, thereby hindering

NK cell maturation in the spleen and bone marrow (56). In contrast,

another study observed that HSD induced natural killer (NK) cell-

mediated tumor immunity by suppressing the expression of

programmed death-1 (PD-1) while enhancing interferon gamma

(IFN-g) production and serum hippurate levels. These findings

suggest that high salt has different effects on mouse NK cells

depending on the disease context. Given the immunosuppressive

nature of TME, numerous cytokines have the potential to impair
FIGURE 2

Effects of high salt or sodium ions on immune cells in the tumor microenvironment. HSD induced M1-type macrophages and inhibited M2-type
macrophages by increasing the release of NO, TNF-a, and IL-1b, hindering mitochondrial metabolism in M2-type macrophages and the AKT/mTOR signaling
pathway. HSD decreased the sensitivity of NK cells to IL-15 and the expression of self-cd122, hindering the proliferation, activation, and function of NK cells.
In another study, HSD was able to increase Bifidobacteria colonization into tumors and increase their anti-tumor capacity. HSD promotes DC maturation
and enhances their secretion of pro-inflammatory cytokines via P38/MAPK-STAT1, epithelial sodium channel (ENaC). HSD enhances the anti-tumor capacity
of CD8+ cells, and the CD4+ subset, Th17 is increased in response to HSD. Th17 has different roles depending on the disease background. HSD facilitated the
conversion of M-MDSC to pro-inflammatory and anti-tumor phenotypes, and alleviated the inhibitory effect of PMN-MDSCs on T cell function.
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NK effector function (23). Therefore, investigating the impact of

HSD on NK cells in various disease states could provide a promising

avenue for the treatment and prevention of cancer.

Dendritic cells (DCs) play a crucial role in boosting protective

immunity by initiating pathogen-specific T cell responses. In order to

effectively stimulate adaptive immune responses, dendritic cells must

first recognize, capture, and present antigens, then up-regulate

costimulatory molecules, produce inflammatory cytokines, and

finally migrate to secondary lymphoid organs to present antigens to

T cells (57). In the context of cancer, DCs are widely known as tumor-

infiltrating dendritic cells (TIDCs). The immunogenic or tolerogenic

nature of TIDC depends on the environmental signals present (58).

Tumors often reprogram their surrounding microenvironment to

support their own survival. The immunosuppressive factors secreted

by tumors, including vascular endothelial growth factor (VEGF), IL-10,

transforming growth factor b (TGF-b), prostaglandin E2 (PGE2), and

other cytokines, can influence the transcriptional and metabolic

activities of enzymes and proteins like: IDO, Arg1, iNOS, and

STAT3 (59). This results in changes in DC metabolism, metabolites

production energy transfer, and/or the accessibility of chromatin. It

also inhibits DCs maturation into immunogenic cells and promotes

their development into a tolerogenic phenotype (60). However, studies

have shown that high salt concentrations can stimulate the maturation

of mouse dendritic cells (DCs) and enhance their secretion of pro-

inflammatory cytokines. It has been demonstrated that mice with

systemic lupus erythematosus (SLE) exposed to high levels of salt can

activate the dendritic cell system (DCS) through the p38/MAPK-

STAT1 pathway (61). Similarly, excess sodium can enter DCS via

sodium-sensitive channels, including the epithelial sodium channel and

the a and g subunits of the Na+-H+ exchanger. This leads to the

production of immunogenic isolG-protein adducts and interleukin-1b
(IL-1b), and promotes the production of cytokines IL-17A and

interferon-g (IFN-g) by T cells (62).

T cells play a crucial role in tumor immune surveillance and

immune editing. tumor cells can be identified and destroyed by T

cells through the expression of specific antigens. CD8+ T cells,

particularly cytotoxic T lymphocytes (CTLs), identify antigen

peptide complexes presented by MHC-I molecules on the surface

of tumor cells through their T cell receptors (TCR). After

recognizing these complexes, CD8+ T cells eliminate tumor cells

by secreting perforin and granzyme (63–65). However, tumors

can impede the cytotoxic capacity of CD8+ cells by influencing

the tumor microenvironment (TME). On the one hand, the local

concentration can be regulated and a profound immunomodulatory

effect on T cell behavior produced through the metabolites

produced by the tumor, including spermidine, glutamate and

kynurenine. This can include the induction of T cell exhaustion,

the impairment of cytotoxic activity and the alteration of T cell

metabolism (66). Additionally, regulatory T cells (Tregs) within the

TME can inhibit the functionality of CD8+ T cells through the

secretion of transforming growth factor-b (TGF-b) and other

inhibitory cytokines (67). Interestingly, studies by Scirgolea et al.

demonstrated that the addition of NaCl to CD8+ T cell cultures

resulted in the differentiation of effector cells, the production of

interferon-g (IFN-g), and cytotoxicity, while preserving the gene

networks responsible for stem-like plasticity. HSD has been
Frontiers in Immunology 05
demonstrated to inhibit terminal differentiation and enhance the

effector capacity of CD8+ T cells in a CD8+ T cell-dependent

manner, thereby inhibiting tumor growth (21). Furthermore,

elevated sodium levels alter the activity of alterations in sodium-

potassium pump enzyme, leading to an increase in membrane

potential (Vm) hyperpolarisation and calcium ion influx. This, in

turn, promotes the up-regulation of the BATF3 gene and LTA

gene, which encode for cytotoxic effector proteins. This enhances

the metabolic adaptability, vitality, and memory development of

CD8+ T cells, and improves T cell metabolic adaptability and

cytotoxicity (68). Furthermore, the number of CD4+ T cells was

increased in response to HSD, with these cells predominantly

expressing IL-17, suggesting an augmentation of the CD4+

subtype cells Th17 (69, 70). Nevertheless, the impact of Th17 cells

on tumors is intricate and multifaceted. On the one hand, IL-17

produced by Th17 has been demonstrated to promote angiogenesis,

which can facilitate the progression of human hepatocellular

carcinoma (HCC) (71). Additionally, it induces the production of

IL-6, which then activates the oncogenic signal STAT3, leading to

the up-regulation of anti-apoptotic and angiogenic genes (72).

Muranski and colleagues demonstrated that IFN-g-dependent
production of tumor-specific Th17 cells inhibited tumor growth

in a B16 melanoma mouse model. IFN-g has direct pro-apoptotic
and anti-angiogenic effects, activates innate immunity, and

upregulates the expression of MHC molecules on tumors (73). It

also increases immunogenicity and susceptibility to immune-

mediated lysis. These results suggest that Th17 cells obtain the

ability to exert an indirect anti-tumor effect by recruiting other

tumor-specific immune cells and/or promoting anti-tumor immune

responses (74, 75).

Myeloid-derived suppressor cells (MDSC), an intrinsic part of

the myeloid lineage, are a heterogeneous population consisting of

myeloid progenitors and precursors of myeloid cells. On the one

hand, MDSC can support tumor growth by providing growth

factors such as vascular endothelial growth factor (VEGF) (76),

on the other hand, they can inhibit the antitumor function of

various other immune cells, such as CTL, Th1, and B cells, dendritic

cells (DC) and natural killer cells (NK), through various inhibitory

molecular mechanisms, thereby promoting an immunosuppressive

states (77, 78). MDSCs can be divided into M-MDSCs (monocytic

myeloid-der ived suppressor ce l l s ) and PMN-MDSCs

(polymorphonuclear myeloid-derived suppressor cells). In the

tumor microenvironment, M-MDSCs suppress T-cell responses

by secreting immunosuppressive molecules such as IL-10 and

TGF-b, as well as arginase 1 (ARG1) and nitric oxide (NO) (79).

Increased ARG1 activity leads to increased L-arginine catabolism

and then modulated T cell anti-tumor response (80). In addition,

MDSC can consume tryptophan via IDO (81), which damages T-

cell function by consuming non-essential amino acids that are

crucial for T cell function. However, increased NO activity leads

to an increase in ROS, which not only plays an important role in

MDSC oxidative stress but also catalyzes the nitration of TCR/CD8

molecules, preventing TCR/MHC peptide interactions (82–84).

However, HSD can promote the accumulation of NaCl in tumors

and increase tissue osmolality. This leads to the transformation of

M-MDSC into a pro-inflammatory, anti-tumor phenotype by
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increasing the expression of NOS2, TLR4, TNF-a and IFN-g and

decreasing IDO1 and ARG1. In addition, the number of M-MDSCs

in the HSD group was significantly higher than in the control group.

Although the number of PMN-MDSCs did not change, PMN-

MDSCs isolated from the HSD group lost the function of inhibiting

T cells, but increased the ability of T cells to proliferate (22). HSD

significantly inhibits tumor growth in two independent murine

tumor transplantation models, and this effect is largely independent

of adaptive immune cells, but by modulating the function of

MDSCs. HSD can activate the p38/MAPK-NFAT5 regulatory

axis, promote the differentiation of M-MDSCs into anti-tumor

macrophages and enhance anti-tumor immune responses (22, 85).

Overall, the discovery of the anti-tumor capability of a high-salt

diet (HSD) has challenged the traditional view of high salt’s role in

tumor progression. It highlights the dual role of HSD in biological

function, as it can both promote and suppress tumor growth

depending on the context. This section summarizes the novel anti-

tumor response of high sodium in the tumor microenvironment

(TME). This novel finding suggests that HSD may have therapeutic

potential in cancer treatment, although further research is needed to

fully understand its mechanisms and potential side effects.

2.2.2 Gut microbiome
Gut microbiota refers to the collection of microorganisms,

including bacteria, viruses, fungi, and other microbial species, that

reside in the human gut (86). In recent years, a significant amount

of evidences have shown that the commensal (or symbiotic)

microorganisms in the human body are the crucial factors that

can influence health or pathological conditions. A range of diseases,

such as inflammatory bowel disease (87), coronary atherosclerosis

(88), diabetes (89), non-alcoholic fatty liver disease (90), and others,

have been linked to flora dysbiosis. Furthermore, gut microbiota

can also interact with immune cells with metabolic to alter the

immunogenicity of tumor cells, thereby compromising the anti-

tumor effect of the host’s immune system (91–93). Additionally, gut

microbiota can also cause an imbalance in DNA mismatch repair

and increase the frequency of DNA mutations, thereby increasing

the incidence of cancer (94). For example,Shigella flexnei induces

P53 degradation in host cells through the secretases IpgD and VirA,

increasing the frequency of DNA mutations (95).

The high-salt intake can result in alterations to the composition of

the intestinal flora, whichmay subsequently lead to an imbalance in the

intestinal ecosystem. It has been reported that in high-salt animal

models, an increase in the relative abundance of Alloprevotella,

Prevotella 9, Allobaculum, Turicibacter, and Parasutterella spp was

observed. Conversely, the relative abundance of Prevotella NK3B31,

Oscillibacter, Pseudoflavonifractor, Clostridium XIVa, Johnsonella, and

Rothia was decreased (96–98). Several studies have demonstrated that

mice with HSD exhibit a higher ratio of Trichomonas to Bacteroidetes

(F/B). The F/B ratio is amarker for the evaluation of intestinal health. A

ratio that is either too high or too low indicates an imbalance in the

intestinal ecosystem (99, 100).

The impact of HSD on the gut microbiota and metabolites is

multifaceted, with implications for cancer development. In a BALB/

c mouse model, lactic acid bacteria were found to stimulate
Frontiers in Immunology 06
dendritic cells (DC) to secrete IL-12, which in turn, inhibits the

formation of skin cancer (101). Furthermore, the derived

“ferrochromium” has been shown to be directly activated through

the JNK pathway, leading to tumor cell apoptosis (102). In human

and mouse models of colorectal cancer, B. fragilis has been observed

to induce apoptosis of intestinal epithelial cells in the ileal crypt and

to recruit TFH, which interfered with proximal colon tumors and

inhibited tumor growth in an IL-1R and IL-12-dependent manner

(103), However, on a high-salt diet, the abundance of lactobacilli

and Bacteroides fragilis decreased (35, 98), while bifidobacterium

increased, leading to increased intestinal permeability and enhanced

NK cell function, which promoted tumor regression (23).

Furthermore, HSD can also contribute to the development of

tumors by influencing the metabolites produced by the gut

microbiota. Short-chain fatty acids (SCFAs) such as butyrate,

propionate, and acetate are produced by the gut microbiota. It

has been demonstrated that propionate and butyrate induce

autophagy in human colon cancer cells and increased

phosphorylation of AMPKa, leading to cellular ATP depletion

and excessive production of reactive oxygen species (ROS) by

reducing mTOR activity and enhancing AMP kinase activity

(104). The absolute concentrations of acetate, propionate, and

butyrate in the faecal samples of mice on the HSD were found to

be lower than those in the control group, and the abundance of

Firmicutes and Bacteroidetes, which are responsible for SCFA

production, was also observed to be reduced (105, 106).

Trimethylamine oxide (TMAO) is a co-metabolite of choline and

carnitine produced by the gut microbiota and host diet. Elevated

plasma TMAO concentrations were observed in mice exposed to

2% sodium chloride (NaCl) for a period of two weeks, and these

concentrations were correlated was decreased urinary excretion of

TMAO (107). TMAO produced by the gut microbiota has been

observed to stimulate anti-tumor immunity mediated by CD8+ T

cells and improve the efficacy of immunotherapy in mice with

triple-negative breast cancer. Furthermore, patients with elevated

TMAO levels in tumor tissue or blood exhibit enhanced responses

to immunotherapy. The mechanism by which TMAO enhances

CD8+ T cell-mediated anti-tumor immunity in vivo is through the

induction of tumor cell pyroptosis mediated by the activation of ER

stress kinase PERK (108). Analysis of 16S rDNA gene sequencing

demonstrated that HSD altered the faecal microbiome, leading to a

depletion of Lactobacillus and a significant reduction in the content

of indole lactic acid (ILA) and indole acetic acid (IAA) in the faeces

of mice, while the content of IAld remained unaltered (98). ILA

interacts with the chromatin insulator protein CTCF of CD8+ T

cells, resulting in the reduction of SAA3 expression, an important

gene regulating cholesterol metabolism in CD8+ T cells. This, in

turn, leads to a decrease in the cholesterol level of CD8+ T cells, an

enhancement in the function of tumor-infiltrating CD8+ T cells and

an inhibition of tumor growth (109).

In conclusion, there is a complex interplay between HSD, gut

microbiota and cancer (Figure 3). HSD may influence tumor

occurrence and development by altering the composition and

function of the gut microbiota. These effects may be achieved by

regulating the host immune response and metabolic pathways.
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2.2.3 Sodium ion channel
A significant amount of attention has been devoted to the

reprogramming of tumor metabolism, particularly the

reprogramming of glucose metabolism, which is also known as

the “Warburg effect”. This effect describes the tendency of tumor

cells to produce energy through the glycolysis pathway, even in the

presence of sufficient oxygen. This metabolic shift is crucial for

tumor cells because it allows them to obtain energy and promote

their abnormal growth, proliferation, and metastasis (110). In this

process, sodium-glucose co-transporters(SGLT) play a pivotal role,

utilizing the electrochemical potential energy of sodium ions to

facilitate glucose transport against the concentration gradient (111).

Specifically, the expression of SGLT1 in colorectal adenoma and

colorectal cancer tissues has been shown to increase a progressively.

Furthermore, the positive expression rate of SGLT1 protein in the

adenocarcinoma group is significantly higher than that in other

groups, indicating that SGLT1 may be involved in the occurrence

and development of colorectal polyp cancerogenesis (112).

Furthermore, according to the chemo-osmotic hypothesis, the

synthesis of ATP, the main source of cellular energy, in

mitochondrial is driven by an electrochemical gradient of protons

across the inner mitochondrial membrane (113). Recent studies

have shown that this process also involves the transport of sodium

ions, which are exchanged for protons by mitochondrial complex I.

This results in a sodium gradient parallel to the proton gradient,

accounting for half of the mitochondrial membrane potential and

being essential for ATP production (114). The processes of sodium

ion transport and maintenance are inextricably related to the

sodium ion channels that facilitate these functions. Numerous
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studies have indicated that sodium channels are highly expressed

in cancerous cells, thereby suggesting a potential correlation

between sodium channels and cancer development (115–117).

The Na+/K+ ATPase is a crucial transmembrane protein

responsible for maintaining the concentration gradient of sodium

and potassium between the intracellular and extracellular

environments. Studies have shown that the expression level of the

alpha 1 subunit of the sodium-potassium pump (ATP1A1) is linked

to tumor progression and clinical outcome in gastric cancer (GC).

Specifically, high expression level of ATP1A1 is associated with

poor prognosis in gastric cancer patients, and knockdown

experiments on GC cell lines have shown that inhibiting ATP1A1

can suppress cell proliferation and induce apoptosis (118).

Furthermore, the sodium-potassium pump inhibitor ouaben has

been found to inhibit the growth and migration of glioma U-87MG

cells by inhibiting the Akt/mTOR signaling pathway and

downregulating HIF-1a expression (119).

Sodium-dependent glucose transporters (SGLTs) are generally

responsible for active glucose uptake in the kidney and are also

functionally expressed in many types of cancers (120, 121). In

addition, the electrically neutral Na+-K+-Cl- cotransporter (NKCC),

which is a crucial regulator of osmotic balance and cell volume that

facilitates Na+, K+ and 2Cl- transport into cells. This cotransporter

is also upregulated in many cancers (122). This combination of

these nutrient and electrolyte transport mechanisms not only

depends on Na+ homeostasis in the tumor microenvironment,

but also enhances Na+ influx. This, in turn, leads to the increased

Na+ signaling tumors. Furthermore, Na+ channels expressed on

tumor cells also allow Na+ influx and Na+ efflux.
FIGURE 3

Effects of HSD on gut microbiota and gut metabolites. The administration of HSD resulted in a notable alteration in the composition of the intestinal
microbiota. This led to an increase in the abundance of several bacterial species, including Alloprevotella, Prevotella 9, Allobaculum, Turicibacter,
Parasutterella spp. and Bifidobacterium. Conversely, the prevalence of Prevotella NK3B31, Oscillibacter and Clostridium XIVa declined. The
abundance of bacteria such as Faecalibacterium, Pseudoflavonifractor, Clostridium XIVa, Johnsonella, Rothia, Lactobacilli and Bacteroides fragilis
was found to be reduced. Furthermore, the metabolites produced by the intestinal microbiota, including SCFAs, ILA and IAA, were observed to
decline, while TMAO levels increased.
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Voltage-gated Na+ channel (VGSC) proteins are commonly

expressed in electrically excited cells, where they trigger action

potentials via Na+ influx. These proteins are expressed in many

tumor cell types, and promote cancer cell invasion and metastasis

(123, 124). Although the voltage-dependent opening of these channels

is transient, they also conduct a “sustained” inward Na+ current under

resting conditions, a mechanism that provides a pathway for Na+ to

enter the cytoplasm of non-excited tumor cells (124, 125).

Amiloride-sensitive epithelial Na+ channels (ENaC) and related

acid-sensitive ion channels (ASics) are both Na+ selective ion

channels, which allow voltage independent inward Na+ currents.

Both ENaC and ASIC have been implicated in the proliferation,

migration, invasion, and metastasis of various cancers (126, 127).

Na+ flux through ENaC and ASIC is regulated by extracellular H+

(128). Therefore, in an acidic environment, both channels may

contribute to increased intracellular Na+ concentrations in tumor

cells. In addition, the N-methyl-D-aspartate receptor (NMDAR)

can also increase the concentration of Na+ influx into tumor cells.

These ligand-gated, non-selective cation channels are normally

expressed in the central nervous system (CNS) and are activated

by the neurotransmitter glutamate. NMDARs are expressed in

many tumor types, including non-neuronal tumors such as

pancreatic, breast and ovarian cancers, where they regulate

invasion and are associated with poor prognosis (129–131).

Proteins that form G protein-coupled receptor-activated Na

leak channels (NALCN) have been proposed as potential sites of

cancer susceptibility (132). Indeed, NALCN-mediated sodium

influx into cancer cells maintains intracellular calcium oscillations

through specific ion transporter chains. And then, a series of

signaling cascades that promote Src kinase activity, actin

remodeling, and proteolytic enzyme secretion of the NACLN-

colocalized proto-oncogene. These processes increase thereby

increasing cancer cell invasion potential and metastatic lesions in

vivo (133). Additionally, the two-pore (TPC) family of lysosomal

and endosomal cation channels can increase cytosolic Ca2+ and Na+

concentrations and have been shown to promote lung cancer cell

migration (134), epithelial-mesenchymal transition in breast cancer

cells (135) and hepatocellular carcinoma cell proliferation (136).

Sodium channels play multiple roles in tumor cells, not only

supporting basic cellular functions, but also being closely associated

with tumor invasiveness and metastasis. Currently, various

pharmacological agents have demonstrated anti-tumor activity by

inhibiting sodium channels (Figure 4) (121, 137–139). These findings

hint that sodium channel blockers may represent a novel class of anti-

tumor agents, capable of inhibiting tumor cell proliferation and

invasion by modulating sodium channel activity. This presents a

promising direction for the development of new therapeutic strategies

and potential drug targets for cancer treatment.

In total, The role of HSD in tumor development is complex and

showed a double-sword role in tumorigenesis, as outlined in

Table 1. While HSD can have certain inhibitory effects on tumor

growth by stimulating the release of inflammatory factors from

immune cells, which can transform the immunosuppressive tumor

microenvironment into an immunogenic TME, they also have other

effects. Specifically, HSD can modulate the composition of the gut

microbiota and enhance intestinal permeability. This allows the
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migration of specific gut microbes, such as Bifidobacteria, to localize

within the tumor, which in turn enhances immune cell function.

Additionally, HSD can also impact the oxidative stress, epigenetic

change, and hormonal imbalances, and other things.
3 Discussion

This article provides a comprehensive review of how a high salt diet

(HSD) influences cancer development and the immune

microenvironment through various biological pathways. Chronic

high salt intake in daily life continuously stimulates the body’s

immune system, leading to an imbalance that skews towards anti-

inflammatory and pro-tumor responses. As clinical correlation studies

have indicated, HSD is one of the risk factors associated with tumor

development. However, in the context of specific diseases, short-term

high salt intake can transiently enhance immune function, such as by

inhibiting the differentiation of myeloid-derived suppressor cells

(MDSCs), promoting the differentiation and anti-tumor activity of

CD8+ T cells, promoting the proliferation and activation of NK cells

and improving their killing ability to tumor cells. Moreover,

inflammatory factors induced by high salt intake can shift the tumor

microenvironment towards a pro-inflammatory state, which may

inhibit tumor progression. Therefore, HSD can be developed as one

of the treatments for cancer patients in the future, but salt intake and

when to adopt HSD treatment strategies need to be carefully

considered in the development of treatment strategies.

The relationship between the gut microbiome and human cancer

constitutes a complex and multifaceted field wherein these

microorganisms influence tumor development through host

interactions, modulate immune system maturation, and impact

systemic responses. Alterations in the intestinal flora are associated

with tumor development. Probiotics can exert anti-tumor effects by

producing short-chain fatty acids (SCFAs) and activating the immune

system. Moreover, prebiotics and microbial metabolites may enhance

tumor therapeutic efficacy by modulating the composition and

function of gut microbiota. Probiotics play a crucial role in

maintaining the homeostasis of the intestinal flora. On the one hand,

probiotics can inhibit the growth of harmful bacteria by competing for

nutrients and adhesion sites, thereby promoting the proliferation of

beneficial bacteria (such as Lactobacillus, Bifidobacterium, etc.) in the

gut and maintaining the balance of intestinal flora. On the other hand,

probiotics can increase the proportion of beneficial bacteria and reduce

the number of opportunistic and pathogenic bacteria to improve the

structure of intestinal flora. Observations have shown that HSD can

decrease the abundance of certain probiotics like Lactobacillus

while increasing levels of Bifidobacteria under specific conditions,

which exhibit anti-tumor properties. These findings suggest that a

“high-salt diet”may have context-dependent effects on different disease

states. Probiotic therapy has demonstrated potential to reverse some

adverse effects of HSD on the gut microbiome, including reductions in

Th17 cell counts. However, there is insufficient evidence to support the

notion that probiotic therapy can mitigate the effects of HSD on tumor

progression. Future studies should further elucidate these interactions

and verify whether probiotic therapy can be used as a new therapeutic

strategy for cancer prevention and treatment.
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Ion channels are crucial in the initiation, progression, and

metastasis of tumors. They modulate key biological processes such as

cell proliferation, apoptosis, invasion, and metastasis by regulating ion

flux across cellular membranes. Elevated sodium concentrations in

tumor tissues and aberrant expression of sodium channels in various

cancer cells indicate a significant correlation between these factors and

tumor development. Currently, inhibitors targeting sodium-related

channels have demonstrated significant inhibitory effects on tumor
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progression. Developing specific targeted therapies for distinct subtypes

of sodium channels may represent a promising therapeutic strategy.

Sodium channels play a crucial role in tumor progression through the

modulation of sodium ion flow and the activation or inhibition of

various downstream signaling pathways. Therefore, an in-depth

investigation into the mechanisms of sodium channels and their

associated signaling pathways in tumors holds significant potential

for developing novel anti-tumor therapeutic strategies.
FIGURE 4

Schematic of the mechanism by which sodium channel inhibition exerts anti-tumor effects. Ouabain activates caspase through the mitochondrial
pathway, induces hypoosmotic stress by inhibiting the Na+/K+ ATPase pump, sensitizes cells to anoikis, and inhibits tumor cell metastasis.
Canagliflozin has the capacity to down-regulate oxidative phosphorylation, reduce the intracellular concentration of ATP, up-regulate AMPK
phosphorylation, and induce cell cycle arrest in the G1/G0 phase, as well as apoptosis. The objective is to stimulate STING expression, activate the
IRF3/IFN-b pathway, and ultimately inhibit AKT phosphorylation and tumor growth. Celecoxib was observed to downregulate NHE-1, increase Ca2+

content, and induce apoptosis via activated calpain9. Diphenylhydantoin has been demonstrated to target the Nav1.5 channel, reducing the content
of MMP9 and MMP2, inhibiting the acidification of the extracellular matrix, and reducing the migration and invasion ability of tumors.
TABLE 1 Complex role of high salt diet in tumorigenesis.

Aspect Type Mechanism Functions Reference

Promotion of Gastric Cancer Gastric Cancer H. pylori colonization↑ Pro-tumor (28)

Inflammatory Responses Melanoma
CD8+ T cell effector functions↑
MDSCs function, growth↓

Anti-tumor
(68)

(68)

Oxidative Stress Pancreatic Cancer Inflammation and oxidative stress↑ Pro-tumor (140)

Alteration of Gut Microbiota
Colorectal Cancer

Melanoma
Lactobacillus,butyrate IBD↑

Bifidobacterium,gut permeability, NK cells ability↑
Pro-tumor
Anti-tumor

(35)
(23)

Hormonal Imbalances Colorectal Cancer IL-17A and iNOS,colonic polyps↓ Anti-tumor (141)

Renal Function Impairment Renal Cell Carcinoma Hypertension↑ Pro-tumor (26)

Epigenetic Changes Breast Cancer
T cell differentiation, cytotoxicity, IFN-g production↑
MDSCs differentiation T cell anti-tumor response.↑

Anti-tumor
(21)

(22)

Interaction with Other Factors Breast Cancer Tumor-initiating stem cells (TISC),TGF-bR2 and CD80↑ Pro-tumor (29)
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In conclusion, future research is needed to elucidate the specific

mechanisms by which HSD impacts tumor initiation, progression,

and immune regulation. It is also important to fully consider the

influence of individual differences and pathological conditions

when studying these effects. Building on this understanding On

this basis, the development of targeted dietary intervention

strategies and new drugs could lead to more precise and effective

cancer treatment plans. Additionally with the development of

microbiome research, the use of microbial regulatory

interventions to rationally regulate human salt intake may be an

important future development direction in the field of public health.
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