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Glioblastoma (GBM) cells leverage complex endogenous and environmental

regulatory mechanisms to drive proliferation, invasion, and metastasis. Tumor

immune evasion, facilitated by a multifactorial network, poses a significant

challenge to effective therapy, as evidenced by the limited clinical benefits of

monotherapies, highlighting the adaptive nature of immune evasion. This review

explores glioblastoma’s immune evasion mechanisms, the role of ICIs in the

tumor microenvironment, and recent clinical advancements, offering theoretical

insights and directions for monotherapy and combination therapy in

glioblastoma management.
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1 Introduction

Glioblastoma, the most common primary tumor of the central nervous system (CNS),

originate from glial cells and account for over 80% of brain tumors. According to the World

Health Organization (WHO), gliomas are categorized into four grades, with grade IV,

known as glioblastoma, comprising 60–70% of all gliomas. GBM, the most prevalent

primary malignant CNS tumor, manifests with symptoms such as progressive neurological

deficits, headaches, nausea, vomiting, cognitive impairment, and seizures, depending on

tumor stage and location. The incidence of GBM is approximately 3.21 cases per 100,000

individuals, with prevalence increasing with age and a median diagnosis age of 65 years.

Males are more commonly affected than females, with a male-to-female ratio of 1.28:1 (1).

Despite advancements in surgical resection, radiotherapy, and temozolomide (TMZ)-

based chemotherapy, GBM prognosis remains poor, with a median survival of 15 months

and a five-year survival rate of 9.8% (2, 3). Challenges include its high migratory and

invasive properties, preventing complete resection, and frequent localized recurrence near

resected tissue, leading to patient mortality (4). Anti-angiogenic agents like bevacizumab

and tumor-treating fields (TTF) have shown limited success in prolonging survival,
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emphasizing the need for innovative therapies (5, 6).

Immunotherapy, a rapidly advancing field, aims to enhance

immune responses to suppress tumor progression (7–12).

However, GBM’s unique immune evasion mechanisms present

significant obstacles. Immunotherapeutic approaches, including

immune checkpoint inhibitors (ICIs), cytokine-based therapies,

dendritic cell vaccines, oncolytic virotherapy, CAR-T cell therapy,

and tumor-associated macrophage modulation, have shown

promise. ICIs, successful in cancers like melanoma and non-small

cell lung cancer, remain in early-stage research for GBM due to the

CNS’s unique anatomy and immune microenvironment (13–17).
2 Immunological characteristics
of glioblastoma

2.1 Anatomical and immune landscape

The CNS has traditionally been considered immune-privileged

due to the blood-brain barrier (BBB), lack of lymphatic drainage,

and limited immune cell presence, which restrict immune functions

(18). However, recent studies have challenged this view, showing

that glioma progression and inflammation increase BBB

permeability, allowing immune cells and biomolecules to access

the CNS (19–22). This disruption facilitates cytokine accumulation,

exacerbating the immunosuppressive tumor microenvironment

and reducing immunotherapy efficacy (23). Additionally, the

discovery of functional lymphatic vessels in dural sinuses and the

APC-like function of microglia and astrocytes has highlighted CNS-

peripheral immune interactions (24, 25). Tumor-specific

lymphocytes infiltrate the CNS through the BBB and choroid

plexus, exerting cytotoxic effects on gliomas (24, 26, 27).

Advances in nano-molecules and immune-targeting drugs have

improved BBB penetration, enhancing intracranial tumor therapies

(28). These findings advance glioma immunotherapy strategies.
2.2 Immune evasion characteristics and
mechanisms of GBM

GBM is characterized by its potent immune evasion capabilities,

shaped by the brain’s unique immunological environment and a

complex tumor microenvironment (TME). TME includes

peripheral immune cells such as myeloid-derived suppressor cells

(MDSCs) (29), natural killer (NK) cells, macrophages (30),

neutrophils, CD4+ helper T cells (Th), CD8+ cytotoxic T

lymphocytes (CTLs) (31), and regulatory T cells (Tregs), which

influence tumor progression, recurrence, and resistance by

modulating inflammatory responses (32). These immune cells are

controlled by complex signaling networks, transforming into

collaborators of tumor immune evasion and impairing immune

surveillance (Figure 1).

GBM immune evasion mechanisms include: (I) downregulation

of MHC-I molecules on tumor and antigen-presenting cells,

limiting immune recognition; (II) activation of immune

checkpoints like CTLA-4, PD-1/PD-L1, and LAG-3, suppressing
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immune responses; (III) secretion of immunosuppressive

biomolecules such as TGF-b, IL-10, prostaglandin E2, and VEGF,

creating a suppressive cytokine milieu; and (IV) infiltration of

immunosuppressive cells like Tregs, M2-polarized tumor-

associated macrophages (TAMs), and MDSCs, enhancing

immunosuppression (33). These mechanisms are interdependent,

amplifying immunosuppression, such as Tregs secreting TGF-b to

suppress dendritic cell maturation and expressing CTLA-4 to

inhibit effector T cell activation (34, 35). T-cell exhaustion also

plays a critical role in GBM progression. This phenomenon, marked

by the loss of effector functions and sustained expression of

inhibitory receptors (e.g., PD-1, TIM-3, LAG-3), is induced by

chronic antigen exposure and the immunosuppressive TME (36).

Engagement of PD-1 with PD-L1 on tumor cells inhibits T-cell

receptor (TCR) signaling, reducing cytokine production and

cytotoxicity. Similarly, interactions between TIM-3 and galectin-9,

and LAG-3 with MHC class II molecules, further suppress T-cell

activity and contribute to exhaustion. The simultaneous expression

of multiple immune checkpoints creates an environment that

promotes tumor immune evasion and supports GBM growth,

limiting the effectiveness of immunotherapies and contributing to

GBM’s resilience against immune clearance.

Exogenous factors such as prolonged use of cytotoxic

chemotherapy and immunosuppressive drugs, particularly

glucocorticoids, exacerbate immune deficiencies in GBM patients,

especially the elderly, leading to passive systemic immune

suppression (37). However, studies in mouse models suggest that

the CNS ’s unique immune features may alleviate some

glucocorticoid-induced effects on local tumor immunotherapy,

offering insights into optimizing treatments, though human

validation is needed (38). These immunological insights highlight

the potential for targeted immunotherapies to reverse

immunosuppression and induce durable anti-tumor immune

responses, offering promising avenues for improving GBM

treatment outcomes.
3 Advancements of IC inhibitors

The human immune system maintains equilibrium by

activating immune cells through antigen and co-stimulatory

signals while terminating responses via co-inhibitory receptors to

prevent tissue damage. Tumor cells exploit these immune

checkpoints (ICs) to evade surveillance, a key mechanism of

immune escape (39). IC inhibitors, targeting these pathways,

modulate immune cells in the tumor microenvironment rather

than acting directly on tumor cells, making them critical tools in

cancer immunotherapy with broad clinical applications (40).
3.1 Cytotoxic T-lymphocyte associated
protein 4

CTLA-4 is expressed on activated T cells and Tregs that

suppresses T cell activation by binding to CD80/CD86 and

enhances Treg activity in the tumor microenvironment.
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Preclinical glioma studies show that CTLA-4 inhibitors promote

CD4+ T cell proliferation and reduce Treg/CD4+ T cell ratios,

correlating CTLA-4 expression with poor prognosis in

glioblastoma (41, 42). Approved by the FDA for melanoma,

ipilimumab and tremelimumab are under investigation for GBM.

A Phase III trial (NCT02017717) comparing Ipilimumab and

Nivolumab to bevacizumab reported partial responses and disease

stabilization but was suspended due to subsequent failures (43, 44).

Retrospective data links low CTLA-4 expression to improved

survival (45). Interestingly, CTLA-4 blockade loses efficacy in

CD4+ T cell-depleted mice, suggesting its anti-tumor effects rely

on CD4+ T cell-mediated modulation of dendritic cells and

microglia, offering new insights into its role in GBM treatment (46).
3.2 PD-1/PD-L1 pathway

Programmed cell death protein 1 (PD-1) and its ligands, PD-

L1/PD-L2, suppress T cell activation and cytokine production,

marking a key mechanism of immune evasion. PD-1 expression

in GBM correlates with T cell exhaustion, reduced IFN-g
production, and poor survival (47–50). Tumor PD-L1 expression

inhibits T cell activity and promotes resistance to cytotoxicity,

accelerating glioblastoma progression (51, 52). Wild-type IDH

glioblastomas exhibit higher PD-L1 levels than mutant forms,
Frontiers in Immunology 03
further linking the pathway to tumor grade and immune

modulation (53, 54).

FDA-approved PD-1 inhibitors, such as Nivolumab and

Pembrolizumab, have demonstrated efficacy in various cancers. In

GBM, neoadjuvant PD-1 blockade enhances survival and local

immune responses, though the microenvironment remains

dominated by immunosuppressive myeloid cells (55, 56). Among

61 clinical trials, a completed study (NCT02337491) combining

Pembrolizumab and Bevacizumab improved progression-free

survival but increased toxicity (Table 1). Another (NCT02550249)

revealed modest survival benefits with neoadjuvant Nivolumab but

significantly boosted immune responses (57, 58). Trials on PD-L1

inhibitors like Avelumab, Durvalumab, and Atezolizumab

continue, with most results pending, emphasizing the need for

further optimization in this domain.
3.3 TIGIT/CD96

TIGIT and CD96 are critical co-inhibitory receptors in tumor

immune regulation. CD96, part of the immunoglobulin

superfamily, is a promising immunotherapy target due to its

regulatory roles in NK and CD8+ T cell activity and influence on

NK cell adhesion and migration. CD96 mitigates immune

reactivation after PD-1/PD-L1 blockade, with elevated expression
FIGURE 1

Immunotherapy approaches for glioblastoma.
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correlating with aggressive molecular phenotypes like IDH wild-

type and mesenchymal subtypes. In GBM, CD96 co-expressed with

PD-1 on CD8+ T cells indirectly promote tumor growth via

enhanced IFN-g secretion. Combined targeting of CD96, PD-1,

and TIGIT has shown significant antitumor efficacy (59).

Bioinformatics analyses reveal high CD96 mRNA expression

correlates with invasiveness and poor prognosis in IDH wild-type

GBM, underscoring its role as an independent prognostic factor

(60). Similarly, TIGIT facilitates immune evasion by competing

with CD115 for CD226 binding, while its ligand, CD155,

overexpressed in GBM, enhances tumor migration and invasion.

Monotherapy targeting TIGIT shows limited efficacy, but

combining anti-TIGIT with anti-PD-1 significantly improves

survival and immune response in GBM models (61). The TIGIT/

CD155 axis also correlates with lower survival in lower-grade

gliomas, making it a promising therapeutic target for GBM (61).
3.4 T cell immunoglobulin and mucin
domain 3

TIM-3, an inhibitory checkpoint protein, marks T cell dysfunction

in cancer and is highly expressed in tumor-infiltrating lymphocytes. It

binds ligands such as galectin-9 (Gal-9), HMGB1, and CEACAM1,

with the TIM-3/Gal-9 interaction suppressing Th1 responses and

promoting Treg development. In GBM and IDH wild-type gliomas,

TIM-3 is highly expressed and correlates with poor prognosis (62).

TIM-3 knockout enhances NK cell cytotoxicity against GBM,

supporting dual checkpoint blockade strategies for therapy (63).

TIM-3 also contributes to chemoresistance in high-grade GBM, as

silencing TIM-3 expression sensitizes tumor cells to temozolomide

while inducing apoptosis (64). Dual TIM-3 and PD-1 blockade restores

T cell function and demonstrates superior antitumor efficacy in

preclinical models, with several anti-TIM-3 antibodies currently in

clinical trials (65). These findings highlight TIM-3 as a critical target for

immunotherapy in high-grade GBM.
3.5 Lymphocyte activation gene 3

Lymphocyte activation gene-3 (LAG-3) is a type I

transmembrane protein structurally similar to CD4 and functions

as an inhibitory co-receptor critical in autoimmune diseases, tumor

immunity, and anti-infective immunity. As a second-generation

immune checkpoint inhibitor target, LAG-3 represents a promising
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therapeutic direction after PD-1. It is minimally expressed on

resting T cells but significantly upregulated on CD4 and CD8 T

cells upon antigen stimulation and is closely tied to Treg

homeostasis and function. LAG-3 often co-expresses with PD-1

on exhausted T cells, making it a key target in immunotherapy,

particularly in combination with PD-1/PD-L1 inhibitors. As an

early marker of T-cell exhaustion, LAG-3 inhibits T-cell activation

by disrupting CD4-MHC II interactions and intracellular signaling

(66) and directly suppresses CD8 T-cell functions.

In GBM, LAG-3 expression is associated with pathological

subtypes, predominantly observed in high-grade GBM but absent

in WHO grade II-III GBM. Preclinical studies showed that both

LAG-3 inhibitor monotherapy and combination therapy with PD-1

inhibitors significantly prolonged survival in GBM mouse models.

In human GBM, LAG-3 is mainly found on tumor-infiltrating

lymphocytes (TILs) and perivascular lymphocytes (67). Despite

promising preclinical data, the therapeutic implications in GBM

remain uncertain, with clinical trials on the LAG-3 inhibitor BMS-

986016 ongoing but unpublished.
3.6 IDO-targeted glioblastoma therapy

Indoleamine 2,3-dioxygenase (IDO), a tryptophan-metabolizing

enzyme, plays a key role in glioma immune evasion by depleting

tryptophan, essential for T-cell function, and promoting Treg

infiltration (68, 69), This dual mechanism suppresses effector T-cell

activity and facilitates glioma progression, with studies linking higher

IDO expression to increased tumor malignancy and worse prognosis

(69, 70). IDO inhibitors, including indoximod and PF-06840003, are

under clinical investigation, with three trials currently registered.

While one trial is completed, results are pending. Preliminary data

suggest potential for IDO-targeted glioblastoma therapies, but further

studies are needed to confirm their clinical efficacy and mechanisms.
4 Application of IC inhibitors
in glioblastoma

While monotherapy with immune checkpoint inhibitors (ICIs)

demonstrates limited efficacy in gliomas, combination strategies show

significant promise. Ferroptosis, for example, plays a crucial role in

reshaping the immunosuppressive microenvironment. The

combination of ferrostatin-1 and anti-PD-L1 antibodies significantly

prolonged survival, reduced tumor volume, and enhanced T-cell-
TABLE 1 Completed clinical trials evaluating immune checkpoint inhibitors in glioblastoma.

Target Register
number

Intervention Disease Phase Sample
size

Year
(start/end)

mPFS
(months)

mOS
(months)

ORR

NCT02550249 Nivolumab GBM II 29 2015/2017 4.1 7.3 60%

PD-1 NCT02337491 Pembrolizumab+Bevcizumab GBM II 50 2015/2018 4.1 8.8 20%

NCT02337491 Pembrolizumab GBM II 30 2015/2018 1.4 10.3 0%

NCT02968940 Avelumab GBM II 6 2017/2019 4.2 10.1 –
fro
GBM, GlioblasIoma; mPFs, Median progression-free survival; mOS, Median overall survival; ORR, Overall radiographic response.
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mediated antitumor activity in GBM mouse models (71). Similarly,

targeting PD-L1 expression, linked to glioblastoma cellular metabolism,

with hexokinase inhibition and anti-PD-1 therapy significantly reduced

immune evasion (72). Neutralizing IL-8 has been proposed as an

adjunct to anti-PD-L1 therapy, offering further therapeutic potential

(73). Approved ICIs include two anti-PD-1 antibodies (nivolumab and

pembrolizumab) and three anti-PD-L1 antibodies (atezolizumab,

avelumab, durvalumab) for solid tumors. Among glioblastoma

patients, nivolumab has shown survival benefits in primary cases but

limited efficacy in recurrent gliomas (58).

Dual immune checkpoint blockade holds potential for glioma

therapy optimization. The FDA-approved combination of

nivolumab and ipilimumab for hepatocellular carcinoma has

shown promising preclinical results in glioma models, where

CTLA-4 and PD-1 blockade significantly extended survival, with

74% of mice achieving long-term responses (74, 75). Combining

CTLA-4 blockade with IL-12 enhanced TH1 polarization, achieving

complete remission in glioma-bearing mice (76). Despite some

durable responses, clinical efficacy remains constrained by

immune-related adverse events, affecting 90% of patients and

causing high-grade toxicities, particularly with high-dose

ipilimumab. Only 20% of patients achieved stable disease at 12

weeks, with most discontinuing treatment due to progression or

toxicity. A median follow-up revealed over half succumbed to the

disease within 27.5 months (77), emphasizing the need for refined

patient selection to improve outcomes and minimize adverse effects.
4.1 IC inhibitors combination

IC molecules, including PD-1, TIM-3, and LAG-3, regulate

immune responses and are often co-expressed in various tumors,

contributing to T-cell exhaustion and impaired function. Studies

show that dual blockade of IC molecules restores T-cell function

more effectively than single-agent inhibition, underscoring the

synergistic potential of combination therapies (67, 78–81). For

example, PD-1 and IDO induce CTLA-4 expression in Tregs,

while CTLA-4 binding to CD80/CD86 upregulates IDO,

highlighting interactions between pathways (82–84). Clinical trials

increasingly adopt multi-ICI combinations to counteract T-cell

dysfunction, though their efficacy in gliomas awaits further

validation (82–84).
4.2 Combination of IC inhibitors and
conventional therapy

Conventional cancer treatments—surgical resection,

chemotherapy, and radiotherapy—often leave residual tumor cells

that can lead to relapse and metastasis due to their resistance and

extensive infiltration into surrounding tissues. To address this,

recent strategies integrate immune checkpoint (IC) inhibitors

with these traditional modalities, enhancing therapeutic efficacy

through synergistic mechanisms. For instance, in brainstem glioma

patients, the combination of the PD-1 inhibitor nivolumab with

repeated radiotherapy has significantly improved overall survival,
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likely due to radiation-induced tumor antigen release that promotes

immune cell infiltration into the tumor microenvironment (85, 86).

Similarly, in murine glioma models, the co-administration of

temozolomide with PD-1 or IDO inhibitors has markedly

extended survival and inhibited tumor growth compared to

monotherapy (87, 88). Despite these promising outcomes, further

research is necessary to determine optimal dosing schedules and to

evaluate potential additive toxicities when integrating IC inhibitors

with conventional treatments.
4.3 Combination of IC inhibitors and anti-
angiogenic therapy

Additionally, combining IC inhibitors with anti-angiogenic

therapies represents a pivotal advancement in cancer treatment.

Tumor-induced aberrant angiogenesis, primarily driven by pro-

angiogenic factors like VEGF, creates a hypoxic microenvironment

that suppresses anti-tumor immune responses and facilitates pro-

tumor inflammatory cell infiltration, thereby limiting the efficacy of

IC inhibitors (89). Preclinical studies have demonstrated that

VEGF-blocking antibodies can downregulate multiple IC

molecules, revealing the interplay between angiogenesis and

immune suppression. The development of anti-angiogenic agents

such as recombinant human endostatin has shown enhanced

outcomes when used alongside PD-1 inhibitors in tumor models

(90–92). Clinical trials are currently exploring combinations of IC

inhibitors with anti-angiogenic drugs like bevacizumab, adatinib,

axitinib, and endostar, which have shown preliminary efficacy in

various solid tumors, including renal cell carcinoma, breast cancer,

non-small cell lung cancer, and hepatocellular carcinoma. However,

their effectiveness in glioma patients remains to be fully elucidated,

necessitating further investigation to optimize these combination

therapies for maximal clinical benefit.
4.4 Integration into novel treatment and
comparison with standard therapies

Advancements in ICB therapy now encompass innovative

approaches beyond traditional blocking antibodies. MicroRNAs

(miRNAs) (93), such as miR-138 and miR-34a, have emerged as

promising modulators of IC expression (94, 95). For instance, miR-

138 suppresses CTLA-4 and PD-1 in T cells, while miR-34a

downregulates PD-L1, enhancing anti-tumor immunity (96, 97).

Additionally, targeting upstream regulators like PTEN and CDK5,

which influence IC expression, can potentiate the efficacy of IC

inhibitors (98, 99). Integrating these strategies with conventional

treatments, such as chemotherapy and radiotherapy, may overcome

resistance mechanisms and improve therapeutic outcomes. For

example, combining miR-34a mimics with temozolomide has

demonstrated synergistic effects in preclinical models, resulting in

increased apoptosis and reduced tumor growth.

Compared to traditional therapies, these emerging strategies

offer enhanced specificity and the ability to target multiple

oncogenic pathways simultaneously, reducing the likelihood of
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resistance and minimizing collateral damage to healthy tissues.

Furthermore, personalized treatment regimens based on miRNA

profiles and upstream regulator status can tailor therapies to

individual tumor characteristics, improving efficacy and reducing

adverse effects. This integration not only complements existing

modalities but also addresses the molecular mechanisms underlying

glioblastoma’s immune evasion, providing a more robust and

sustained anti-tumor response (100).
5 Conclusion

Tumor cells enhance their proliferative, invasive, and metastatic

capabilities through complex endogenous and environmental

regulatory mechanisms, with immune evasion being a

multifactorial process involving extensive regulatory networks.

Monotherapies targeting single pathways, such as PD-1 inhibitors

like Nivolumab or Pembrolizumab, have shown limited success in

prolonging progression-free survival in recurrent high-grade

gliomas. This underscores the adaptability and diversity of tumor

immune evasion strategies, indicating that single immune

checkpoint blockade is often insufficient.

Consequently, multi-target combination therapies have become

a focal point in cancer immunotherapy. These multidimensional

approaches integrate multiple immune regulatory mechanisms to

effectively counteract the intricate immune evasion networks

employed by tumors. Strategies such as combining immune

checkpoint inhibitors with metabolic regulation targets, utilizing

gene editing technologies to modulate immune cell functions, and

applying single-ce l l mult i -omics to analyze immune

microenvironment changes post-treatment hold significant

promise. These emerging combination therapies are poised to

enhance therapeutic efficacy and offer breakthrough options for

treating aggressive cancers, including high-grade gliomas.
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