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Elite controllers (ECs) and post-treatment controllers (PTCs) represent important

models for achieving a functional cure for HIV. This review synthesizes findings

from immunological, genetic, and virological studies to compare the

mechanisms underlying HIV suppression in ECs and PTCs. Although ECs

maintain viral control without antiretroviral therapy (ART), PTCs achieve

suppression following ART discontinuation. Both groups rely on adaptive and

innate immunity, host genetic factors, and characteristics of the HIV reservoir;

however, they exhibit distinct immune responses and genetic profiles. These

differences provide insights into strategies for sustained ART-free remission.

Understanding the shared and unique mechanisms in ECs and PTCs can inform

the development of novel therapeutic approaches, including immune-based

therapies and genome editing, to achieve a functional cure for HIV-1.
KEYWORDS

HIV controllers, functional cure, immune response, genetic polymorphisms,
HIV reservoirs
1 Introduction

Current antiretroviral therapy (ART) effectively suppresses plasma viral RNA to

undetectable levels for extended durations, preventing viral evolution. ART is generally

prescribed for interventions during the chronic phase of infection. However, in most

patients, a rapid rebound in viremia is observed within weeks of ART interruption (1, 2).

This dependence poses several challenges, including side effects, drug resistance, stigma,

and economic burden. Consequently, researchers are exploring various therapeutic

strategies to prevent or delay viral rebound following treatment interruption, aiming for

post-treatment remission or a functional cure for HIV (3). A functional cure for HIV refers

to a state where patients can cease ART. The main research directions include gene therapy
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and immunotherapy. These treatment methods aim to

fundamentally change the body’s ability to control HIV to achieve

long-term virus control without ART (4). Despite substantial

progress, achieving sustained ART-free remission remains elusive

for the majority of HIV-infected individuals.

Special populations such as elite controllers (ECs) and post-

treatment controllers (PTCs) offer invaluable insights into the

mechanisms of ART-free HIV remission. ECs, who are able to

maintain viral suppression (<50 copies/mL) without initiating ART

for prolonged periods (5), provide potential directions for a

functional cure (6). The existence of HIV ECs indicates that the

goal of ART-free HIV remission is possible, likely because of

favorable genetic and immunological profiles (7). However, they

represent a very small subset of the population (<1%) (8–10). In

contrast, PTCs, identified in therapeutic intervention studies, sustain

low or undetectable viremia following ART discontinuation and

constitute a larger proportion of patients (5–15% in some studies)

(11, 12). The existence of ECs and PTCs demonstrates the feasibility

of ART-free remission and inspires efforts to emulate these natural

mechanisms of control in broader patient populations.

Although both ECs and PTCs achieve viral suppression without

continuous ART, the mechanisms underlying their control may

differ. ECs often rely on robust HIV-specific immune responses

(13, 14), advantageous host genetic factors (15), and attenuated viral

(16) characteristics. On the other hand, PTCs appear to achieve

control through a combination of acute ART initiation, reduced

HIV reservoir size, and immune-mediated mechanisms (11, 17, 18).

Comparing and contrasting these groups provides critical insights

into diverse pathways for achieving functional HIV cures.

This review aims to elucidate the overlapping and distinct

mechanisms of HIV suppression in ECs and PTCs, with a focus

on identifying therapeutic targets and strategies for achieving ART-

free remission. By examining these two populations, we hope to

provide guidance for future therapeutic approaches, including

immune-based therapies and genome-editing strategies.

Ultimately, the aim of this study is to contribute to the ongoing

effort to achieve a functional cure for HIV-1.
2 Host−virus interaction

In the early stages of HIV infection, immune activation plays a

crucial role in controlling HIV replication and may contribute to

limiting the establishment of viral reservoirs (Figure 1). This

activation primarily results from the immune system’s response

to the presence of the virus. However, prolonged and sustained

immune activation, especially in the chronic phase of HIV infection,

can impair immune reconstitution, accelerate immune senescence

and increase the risk of non-AIDS-related diseases (19).

Understanding these complex immune mechanisms is critical,

particularly in ECs and PTCs, whose immune responses provide

insights into strategies for improving clinical outcomes. This section

focuses on the immune characteristics of ECs and PTCs, explores

how adaptive immune mechanisms, particularly cellular immunity,

contribute to the control of HIV infection and offer potential

avenues for immunotherapy (Table 1).
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2.1 Adaptive immunity

2.1.1 Cellular immunity
2.1.1.1 CD8+ T cells

By exhibiting potent virus-specific responses, CD8+ T cells play

a crucial role in the immune surveillance of HIV, especially in ECs

(6), by interacting synergistically with HLA genes, restricting viral

mutations, and performing versatile immune functions. HIV-1-

specific CD8+ T cells are widely regarded as the key mediators of

long-term viral suppression in HIV-1 ECs (20). These T

lymphocytes recognize and eliminate cells expressing non-self-

peptides using major histocompatibility complex (MHC)

molecules, which are also referred to as HLAs. Genome-wide

association studies (GWASs) have identified specific protective

HLA class I alleles, particularly HLA-B* 57/58 and HLA-B* 27,

that are strongly associated with CD8+ T-cell responses (7, 34).

Consistent with many early cohort studies, the majority of ECs

possess these protective HLA alleles (35). Notably, the function of

HIV-specific CD8+ T cells in ECs is qualitatively distinct from that

of chronic HIV progressors. One major difference is the

upregulation of both inflammatory chemokine gene expression

and effector functions in ECs. These functional adaptations result

in enhanced HIV antigen-induced cell proliferation and robust

cytotoxic activity, which collectively contribute to effective viral

suppression in ECs (36). In addition to their cytolytic functions,

these CD8+ T cells secrete a variety of cytokines and undergo

activated degranulation upon HIV peptide presentation (37). For

example, CXCR5+ follicular CD8+ T cells release perforin and

granzyme B near HIV RNA+ cells in lymphoid follicles (38).

Crucially, the HLAs of HIV-specific CD8+ T cells in ECs facilitate

the efficient presentation of conserved and highly networked HIV-1

epitopes, thereby enhancing T-cell-mediated immune responses.

These findings highlight the central role of HLA class I-restricted

CD8+ T-cell responses in the control of HIV-1 replication in ECs.

Furthermore, one of the primary functional differences between

ECs and HIV progressors lies in the ability of CD8+ T cells in ECs to

effectively inhibit HIV-1 replication in autologous CD4+ T cells

(39, 40), even when they are infected in vitro (41).

Moreover, other studies suggest that the increased loading of

lytic granules within CD8+ T cells in ECs results in a substantial

increase in the delivery of granzyme B, which is directed at HIV-

infected cells (36, 42, 43). In addition to these cytolytic functions,

CD8+ T cells in ECs exhibit HIV-1-specific activation, which is

associated with distinct metabolic (44) and transcriptional profiles

(45). These profiles include the differential expression or regulation

of key transcription factors, further highlighting the complexity of

CD8+ T-cell responses in ECs. Additionally, viruses in EC plasma

exhibit different mutations compared with those found in resting

CD4+ T cells, indicating that CD8+ T cells exert active immune

selection pressure on the virus (46–48).

PTCs may exhibit distinct immunological characteristics in

contrast to ECs, with features such as attenuated cellular and

humoral antiviral responses and increased heterogeneity (21).

Compared with ECs, HIV-specific CD8+ T cells in PTCs presented

decreased activation levels, lower frequencies, and a reduced

ability to inhibit the infection of autologous CD4+ T cells (11).
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Moreover, research has revealed that PTCs are heterogeneous and

that effective HIV-specific CD8+ T-cell-mediated responses can be

detected in these patients (49). A previous study revealed that rhesus

macaques achieved potential PTC effects after treatment. Rhesus

macaques (Macaca mulatta) achieving PTC effects exhibited lower

viral DNA levels in deep lymph nodes (e.g., mesenteric and

parenteral lymph nodes), correlating with stable virologic

suppression. In contrast, rhesus macaques with higher viral DNA

levels in superficial lymph nodes (e.g., cervical or axillary lymph

nodes) showed stable or unstable viral rebound. Tissues from PTC

rhesus macaques demonstrated significantly reduced quantitative

viral outgrowth, fewer Programmed Death-1 (PD-1)+ central

memory CD4+ T cells, and CD8+ T cells critically contributed to

maintaining virologic control efficacy (50).

2.1.1.2 CD4+ T cells

CD4+ T cells have specific characteristics in controllers. CD4+ T

helper cells are required for long-term maintenance of antigen-

specific CD8+ T cells. CD4+ T cells play an important role in HIV

infection. They are the primary target cells of HIV but also
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recognize viral antigens and activate other immune cells, such as

CD8+ T cells and B cells. In the early stages of infection, the number

of CD4+ T cells decreases sharply, resulting in immune system

damage. However, in ECs, the number and functions of CD4+ T

cells are maintained, which is related to the unique characteristics of

CD4+ T cells. CD4+ T cells have high-affinity T-cell antigen

receptors (TCRs) that effectively recognize high-avidity T cells

and respond to low amounts of HIV viral antigens (22). In

addition, the levels of certain cytokines, such as Chemokine (C-C

motif) ligand (CCL) 14, CCL21, CCL27, Chemokine (C-X-C motif)

ligand (CXCL) 1 and CXCL12, are elevated in ECs, and these

cytokines upregulate cell activation, HIV coreceptor expression and

the effector functions of CD4+ T cells (51).

Compared with those in HIV-1 progressors and HIV-1-

negative individuals, CD4+ T cells from ECs are less sensitive to

HIV-1 infection. The intrinsic mechanisms that limit HIV-1

replication in CD4+ T target cells may also play an important role

in mediating the resistance of ECs to HIV-1 infection. In the process

of HIV infection, CD4+ T-cell number and function are important

indicators for assessing disease progression and for determining
FIGURE 1

Potential mechanisms of innate immunity and adaptive immunity possibly contributing to the spontaneous control of viremia in HIV controllers. HIV
controllers have a more robust and effective immune response, with functional DCs and NKs, highly cytotoxic and activated CD8+ T cells, and CD4+

T cells that can better maintain immune function. (1) DCs from HIV controllers are less permissive to HIV-1 infection but more efficient at capturing
HIV-1 particles, and they have distinct phenotypes and functions, such as the presence of a highly functional CD64hi PD-L1hi mDC state, enhanced
antigen presentation, and improved sensing of cytosolic HIV-1 replication products, which can trigger stronger T-cell responses. (2) CD4+ T cells,
which are the main target of HIV, are severely depleted in AIDS patients. In HIV controllers, CD4+ T cells maintain their numbers and functions, are
less sensitive to HIV-1 infection, and have high - affinity TCRs. (3) In HIV controllers, CD8+ T cells show stronger HIV antigen - induced cell
proliferation, cytotoxic activity, and can effectively inhibit HIV-1 replication in autologous CD4+ T cells. (4) In HIV controllers, NK cell activity is
enhanced. These NK cells secrete higher levels of IFN-g and TNF-a, express more NKp46/NKG2D-activated receptors, and possess a stronger
ADCC capacity.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1540932
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Deng et al. 10.3389/fimmu.2025.1540932
whether a patient is a controller. ECs (plasma viral load low to

undetectable, median percentage of CD4+ T cells> 40%) have

normal T-cell and monocyte phenotypes and therefore may have

limited benefit from ART (23).

In addition to maintaining CD4+ T-cell functions, ECs also

present an increased frequency of helper T (Th) 17 cells and

activated regulatory T (Treg) cells compared with ART-treated

and HIV-1-negative individuals (52). These subsets are more

readily activated and produce higher levels of cytokines, further

bolstering the immune response in ECs. Notably, ECs maintain a

high Th17/Treg ratio, which has been shown to be beneficial for

controlling inflammation and sustaining immune balance (52, 53).

Research indicates that HIV-1-specific CD4+ T cells in ECs robustly

express genes associated with Th1, Th17, and Th22 subsets of

helper T cells, suggesting a multifaceted immune response.

Moreover, the expression of cytokines related to mucosal

immunity is increased in the HIV-specific CD4+ T cells of ECs, in

contrast with the profiles observed in chronic progressors (54).

PTCs exhibit reduced activation of mature CD4+ T cells but more

robust Gag-specific CD4+ T-cell activity (18). Compared with

noncontrollers (NCs), PTCs subjected to early analytical treatment

exhibited significantly elevated levels of Gag-specific CD4+ T cells that

produce Interferon-g (IFN-g), along with a modest increase in CD4+ T

cells that produce Interleukin-2 (IL-2). In addition, CD4+ T cells also

have important implications for HIV vaccine research, as they are the

main targets of vaccine-induced immune responses (Figure 1).

2.1.2 Humoral immunity
An increasing number of studies support a role for humoral

immunity in controlling HIV infection and replication (55, 56). In

particular, ECs exhibit efficient humoral responses that contribute

significantly to the natural control of HIV-1, with notably high

levels of HIV-specific memory B cells (57). These responses are

crucial for long-term viral suppression.
Frontiers in Immunology 04
One of the key characteristics of ECs is their production of

neutralizing antibodies (NAbs). Although the level of NAbs in ECs

may be lower than that in chronic progressors (24, 25), their higher

affinity and polyfunctional activity may still allow them to exert strong

neutralizing activity. This finding suggests that strong suppression of

viral replication limits stimulation and that the maintenance of

effective NAb responses and high-titer NAbs are not required for

maintenance of viral suppression (58). Although NAbs might not be

the primary factor controlling viral replication, they may still play a

role in the natural control of HIV-1. For example, bNAbs in ECs are

capable of neutralizing multiple strains of HIV, including diverse

subtypes, by targeting conserved regions of the virus, such as the CD4

binding site, V3 loop, and gp120/gp41 interface (59).

In addition to bNAbs, ECs present increased levels of

nonneutralizing antibodies that engage in Fc-mediated effector

functions such as antibody-dependent cellular cytotoxicity

(ADCC). In these individuals, ADCC levels correlate positively

with CD8+ T-cell function, suggesting that effective CD4+ T-cell

support and that CD8-mediated suppression enhance ADCC

activity (60). Moreover, these antibodies are thought to contribute

to more effective control of viral replication in ECs than chronic

progressors (26). For example, negative factor (Nef) proteins in ECs

have a diminished ability to downregulate CD4, enhancing the

exposure of ADCC-mediated epitopes on the HIV-1 envelope (Env)

and increasing the susceptibility of HIV-infected cells to ADCC

clearance (61), providing a potential therapeutic strategy.

Memory B-cell responses in ECs also play a critical role in

controlling HIV. Research by Rouers et al. revealed that ECs

maintain robust memory B-cell compartments and HIV-specific

memory B-cell responses (62). The frequency of Env-specific B cells

in HLA-B*57+ ECs correlates with the breadth of neutralization

observed, suggesting that these memory responses are crucial for

maintaining broad neutralization capacities and the natural control

of HIV infection.
TABLE 1 Immunity comparison Items between ECs and PTCs.

Comparison Items ECs PTCs

Formation Mechanism Naturally control the virus without any ART (5). Viral control was achieved after ART (11, 12).

Viral Load The viral load is very low or undetectable and relatively stable (5). Treatment may remain low or even undetectable for a long time,
but there is a risk of rebound (11, 12).

CD8+ T cell With potent antiviral activity and can effectively control viral
replication (20).

Antiviral activity was relatively weak but still maintained viral
suppression after treatment (11, 21).

CD4+ T cell Counts are usually near normal levels and function relatively
normal to provide immunological support (22, 23).

PTCs exhibit reduced activation of mature CD4+ T cells but more
robust Gag-specific CD4+ T-cell activity (18).

Humoral immunity ECs may produce stronger neutralizing antibody responses.
Antibodies from ECs may also be involved in other immune
mechanisms, such as ADCC, which remove virus-infected cells by
the activation of immune cells (24–26).

The neutralizing antibody response was relatively weak, but it may
also contribute to viral suppression (27, 28).

NK cell Activity and function may be stronger (29). NK cells derived from PTCs secreted higher levels of IFN-g and
showed a strong ability to control HIV infection (30, 31).

DC DCs are relatively mature and more functional enough to
efficiently uptake, process, and present antigens and activate T
cells and other immune cells (32, 33).

The feature is relatively unclear.

Dependence on treatment There is generally no need for treatment (5). Long-term ART is required for the maintenance status (11, 12).
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Some studies have shown that in PTCs, the humoral immune

profiles are heterogeneous, mainly affected by virus exposure and

dynamics (63). Virally-exposed PTCs produce a functionally

coordinated and effective humoral response to HIV-1, which has

the potential to generate bNAbs and autologous NAbs. For

example, Molinos-Albert et al. identified a bNAb lineage,

EPTC112, in a PTC with an elite neutralizer profile, underscoring

the potential role of antibodies in long-term HIV control (27, 28).

These antibodies demonstrated the ability to neutralize the

autologous virus even in the presence of escape mutations,

indicating a complex immune response that may support

functional remission strategies after ART interruption.

In summary, although NAb levels in ECs may be lower than

those in chronic progressors, their higher affinity and greater ADCC

activity likely contribute to more effective control of HIV-1.

Although bNAbs may not be the decisive factor in regulating

viral replication, they may still play an important role in the

natural control of HIV infection, especially in individuals not

receiving ART. ECs exhibit a multifaceted humoral immune

response characterized by strong neutralizing antibody activity,

enhanced memory B-cell responses, and potentially structural

modifications to the virus that aid in controlling HIV-1 infection

without ART. These findings underscore the importance of

humoral immunity in HIV-1 control; however, more research

is needed to fully understand its role across different

patient populations.
2.2 Innate immunity

Research indicates that HIV-1 immune control is primarily

mediated by virus-specific T-cell responses, where increased T-cell

polyfunctionality is associated with improved viral control during

HIV-1 disease progression. However, innate immune cells are also

involved in the natural control of HIV-1 (Figure 1). Innate

immunity serves as the first line of defense against HIV and

triggers subsequent adaptive immune responses. Pattern

recognition receptors recognize HIV, and a series of immune cells

are subsequently recruited to induce or activate numerous innate

immune-related factors to exert antiviral effects. In HIV-infected

EC/PTC populations, dendritic cells (DCs), natural killer (NK) cells,

macrophages, and NKT cells are crucial components of innate

immunity and play important roles in controlling HIV. A

discussion of innate immunity in HIV controllers is provided in

the following sections.

2.2.1 Natural killer cells
Accumulating evidence indicates that NK cells play an

important role in HIV control. First, increased NK cell frequency

and activity were observed in HIV controllers than in NCs (29). In

ECs, NK cells exhibit several distinct characteristics distinguishing

them from NCs. Pohlmeyer et al. used mass cytometry to analyze

NK cell phenotypes in ECs and viremic non-controllers (VNCs).

They revealed that the CD11b+CD57-CD161+Siglec-7+

subpopulations of CD56dimCD16+ NK cells were more abundant
Frontiers in Immunology 05
in ECs and HIV-negative controls than in VNCs and that the

frequency of these cells correlated with HIV DNA levels (64).

Certain alleles of killer immunoglobulin receptors (KIRs), such as

KIR3DS1, on NK cells are associated with the slow disease

progression (65, 66). Marras et al. investigated the effects of NK

cell functional characteristics on controllers [ECs and long-term

nonprogressors (LTNPs)] and progressor patients. HIV DNA copy

numbers (either total or integrated) in circulating CD4+ T cells were

negatively correlated with transcriptionally unique NK cell

functions. Specifically, the production of induced IFN-g and the

expression of NKp46/NKp30-activating receptors are inversely

associated with HIV reservoir size (67). Moreover, in an African

green monkey model of nonpathogenic SIV infection, NK cells

migrate into follicles and play a major role in controlling the HIV

reservoir in lymph nodes (68). These results suggest that some

specific phenotypes and functions of NK cells contribute to the

control of HIV reservoirs in ECs.

Recent studies of the VISCONTI cohort revealed high levels of

specific NK cells in PTCs. In functional studies in vitro, NK cells

derived from PTCs also secreted relatively high levels of IFN-g and
showed a strong ability to control HIV infection (30). A proviral

landscape study of PTCs revealed higher NK cell activation levels in

PTCs, which was associated with lower levels of total and defective

proviral genomes (31). Additionally, in an analytical treatment

interruption (ATI) study of PTCs from AIDS Clinical Trials Group

(ACTG), immunologically, PTCs exhibited stronger NK cell

activation and function. PTCs had increased levels of activation

markers, including CD38+ CD56+ NK cells and CD69+ NK cells

(18). Some studies involving NK cell analysis in controllers revealed

that the CD56+/CD16- NK cell subsets of controllers were the same as

those of healthy donors and greater than those of chronic patients

and that the IFN-g, Tumor Necrosis Factor-a (TNF-a) and IL-12

levels secreted from the NK cells of controllers were increased (69,

70). Moreover, HIV controllers expressed higher Natural Killer

Group 2, Member D (NKG2D) levels than chronic patients,

enhancing the susceptibility of infected cells to ADCC (69, 71).

Recent studies have treated chronic HIV infection with NK cells

coupled with cytokines, indicating the potential of NK cells in

controlling HIV (72). These results suggest that preserving the

phenotype and function of NK cells at the time of treatment is

important for HIV control. Transcriptionally and functionally

distinctive NK cell characterization can be used to prospectively

identify HIV-infected patients who are highly likely to successfully

receive ART simplified to monotherapy or ART interruption (PTCs).

2.2.2 Dendritic cells
The majority of HIV-1 ECs restrict virus replication by eliciting

robust HIV-1-specific T-cell responses, and DCs stand out as the

most potent natural antigen-presenting cells, playing a pivotal role

in the induction and maintenance of antigen-specific T-cell

responses (32, 33). Over the past few years, the role of DCs in

HIV-1 controllers has been increasingly appreciated. The DCs

derived from HIV controllers are less permissive to HIV-1

infection than cells obtained from healthy donors or HIV-1

patients after ART treatment, but DCs from HIV controllers have
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a strong ability to capture HIV-1 particles (73). Phenotypically, a

highly functional CD64hiPD-L1hi mDC state was found in ECs

using single-cell sequencing, with the fractional abundance

associated with increased CD4+ T-cell counts and a decreased

HIV-1 viral load, and it effectively triggered polyfunctional T-cell

responses in vitro (74). Mass cytometry analysis revealed that

plasma HIV RNA levels were positively associated with a loss of

mDC and pDC subpopulations that displayed high expression of

leukocyte immunoglobulin-like receptors (LILRs). A particular

subtype of CD1c+ CD32bhi HLA-DRhi mDCs in peripheral blood

monouclear cells (PBMCs) was enriched in HIV ECs (75). mDCs

from ECs have significantly enhanced antigen presentation

characteristics and are able to sensitize allologous T cells more

efficiently than those from healthy donors or HIV-1 progressors

(76). Cytosolic immunorecognition of HIV-1 in mDCs promotes

the initiation and expansion of HIV-1-specific T cells. HIV-1

prevents intracellular immune recognition by mDCs in most

infected individuals. However, mDCs from ECs exhibit an

improved ability to sense cytosolic HIV-1 replication products. In

ECs, HIV-1 replication products in mDCs result in rapid and

sustained secretion of endogenous IFN-I from mDCs and the

induction of potent HIV-1-specific CD8+ T cells (77, 78). This

finding suggests that endogenous cellular IFN-I secretion in DCs

plays an important role in inducing potent HIV-1-specific CD8+ T

cells and may contribute to eliciting functional T-cell immunity

against HIV-1 for prophylactic or therapeutic clinical purposes. The

sterile alpha motif and HD domain-containing protein 1

(SAMHD1) restricts HIV-1 infection of mDCs and other myeloid

cells (79). SAMHD1 is a host protein that is highly expressed in

myeloid cells and limits HIV-1 replication at the reverse

transcription level (80) by depleting the intracellular pool of

deoxynucleoside triphosphates (81) and directly degrading viral

RNA (82). In addition, intracellular immune recognition of HIV-1

by mDCs in ECs involves detection of the replication products of

viral RNA and DNA. Therefore, the DNA sensor cyclic GMP-AMP

synthase (cGAS) (83), the RNA sensor Retinoic acid-inducible gene

I (RIG-I) (84) and cooperation between the two sensing pathways

can improve the innate recognition of HIV-1 by mDCs in ECs (85).

Despite lower Ag uptake than that of mDC subsets, pDCs efficiently

cross-present exogenous Ags to CD8+ T cells (86). pDCs are bone

marrow-derived cells that sense HIV via Toll-like receptor (TLR)-7

and TLR-9 and convert this signal to IFN-I (IFN-a, -b, -e, -w and

-k) production and T-cell activation (87, 88). Compared with

VNCs, pDCs from ECs have a greater capacity to reduce HIV

production and induce T-cell apoptosis, whereas pDCs from

viremic NCs minimally respond to previous TLR-9 stimuli.

Additionally, the function of pDCs from ECs is preserved, with

similar levels of IFN-a production in healthy donors and higher

levels compared to those in VNCs (89, 90). Together, these findings

suggest a specific link between innate and adaptive HIV-1

immunity in controllers and that DCs may play an important

role in immune defense mechanisms and HIV-1 therapy.

Increasing evidence suggests that immune-mediated effector

responses play a crucial role in the establishment of deep viral

latency, a state in which the virus remains dormant within cells. The

study of immune-mediated effector responses in HIV controllers
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offers promising insights into the complex interactions between the

immune system and HIV-1. HIV controllers are characterized by

robust immune responses mediated by a combination of both

innate and adaptive immunity and are able to effectively target

and eliminate HIV-1-infected cells. The innate immune system is

able to quickly recognize and respond to HIV-1, whereas the

adaptive immune system generates specific T-cell responses that

target and destroy infected cells (Figure 1). As we continue to

unravel the immune mechanism of this remarkable subgroup, we

hope to identify new approaches to harness the power of the

immune system to combat HIV-1.
3 Genetic variation

Susceptibility to HIV infection and the rate of disease

progression vary significantly among individuals. After initial

infection, the HIV RNA levels reached and the subsequent

progression to AIDS differ widely. A growing number of studies

suggest that genetic differences may contribute to this variability,

influencing not only susceptibility to HIV but also the rate of

progression to disease. Additionally, genetic factors may be

involved in the risk of developing specific HIV-related

complications, such as renal or neurological disorders, as well as

non-AIDS conditions such as cardiovascular disease. Furthermore,

certain genetic variants have been linked to the recovery of CD4+ T

lymphocyte counts following ART. Through candidate gene

approaches and GWASs, several key genetic variations associated

with both HIV susceptibility and progression have been identified

(Table 2). These findings provide valuable insights into

HIV control.
3.1 CCR5

C-C chemokine receptor type 5 (CCR5) is a critical coreceptor

used by HIV-1 to enter immune cells. Given its key role in the viral

entry process, targeting CCR5 has emerged as a promising strategy

for preventing and potentially curing HIV-1 infection. Targeting

the CCR5 receptor to decrease host cell susceptibility or confer

resistance to infection could enhance HIV-1 inhibition, especially

when used alongside other anti-HIV-1 strategies (122).

One of the most notable genetic findings in HIV research is the

CCR5 D32 mutation, which involves a 32-base pair deletion in the

CCR5 gene. This mutation leads to a truncated protein that is not

expressed on the cell surface, rendering individuals homozygous for

the D32 allele resistant to HIV-1 infection. These findings were

highlighted in the cases of the “Berlin” and “London” patients,

where stem cell transplants from CCR5 D32 homozygous donors

resulted in long-term HIV remission. This has driven interest in

exploring CCR5-targeted therapies for broader HIV-1 treatment

options (123–125). Recent studies have shown that the

downregulation of CCR5 expression in HIV-specific CD4+ T cells

leads to the natural ability of ECs to control HIV-1 replication

(112–114). This reduced expression limits the ability of the virus to

enter and infect these cells, suggesting that inactivating or
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downregulating the CCR5 gene in a nonfunctional receptor could

be key to achieving a functional HIV cure. Recent studies have

demonstrated that adoptive cellular therapy using CCR5 knockout

in autologous T cells can achieve sustained HIV control in some

patients (126, 127).
3.2 HLA

Human leukocyte antigen (HLA) class I molecules play

important roles in the immune response against HIV, particularly

in ECs and PTCs. Genetic variants in HLA-B are strongly correlated

with both favorable and adverse outcomes in HIV infection

patients. Specifically, certain HLA-B alleles, such as HLA-B*57/58

and HLA-B*27, are associated with favorable immune control,

whereas others, such as HLA-B*35, are linked to faster disease

progression and higher viral loads (7, 34, 91).

HLA-B*57 and HLA-B*27 are considered protective alleles in

HIV infection. These alleles are found more frequently in

individuals who are classified as LTNPs and ECs. In ECs, specific

HLA class I haplotypes, particularly HLA-B*57-01 and HLA-B*27-

05, are notably overrepresented. The presence of these alleles is

believed to contribute to the lower viral replication observed in

these individuals. This control may be partially attributed to the

induction of a robust cell-mediated immune response against HIV,
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including CD8+ T-cell responses that effectively target HIV

epitopes (91).

HLAs are associated with the degree of immune control in HIV-

infected patients, especially in elite controls. However, unlike those

associated with HIV ECs, the proportion of favorable HLA alleles

associated with viral control is not high in PTCs (31). In contrast, a

number of PTCs have the HLA-B*35 allele, which is associated with

faster progression to AIDS and a greater viral load in general. HLA-

B35 haplotype enrichment in PTCs might be explained by its

association with other genetic signatures. Moreover, not all HLA-

B*57+ or HLA-B*27+ patients become HIV controllers when

infected. In different cohorts, a significant proportion of HIV

controllers do not carry these protective HLA alleles. For

example, 15% to 70% of controllers in some cohorts are not

HLA-B*57+ (128). This finding indicates that other factors also

contribute to the ability to control HIV replication.

Even among HLA-B*57+ controllers, heterogeneity in the ability

of CD8+ T cells to suppress viral replication is observed. Some

HLA-B57+ individuals are strong viral suppressors, whereas others

are weak suppressors. The frequency of HIV-specific CD8+ T cells is

highly dependent on the viral burden in HLA-B*57+ patients (128).

In those with a lower viral load (weak suppressors), the frequencies

of these cells are much lower, suggesting that the level of antigen

stimulation also plays a role in the magnitude of the

immune response.
TABLE 2 Potential host genetic factors involved in viral suppression in HIV controllers.

Gene Mechanism References

HLA-B*57/58 and
HLA-B*27

Presentation of specific HIV antigens; lower viral load (13, 91)

HLA-Bw4 and KIR HLA-Bw4 provides a ligand to the activated KIR. The host KIR genotype determines the HIV-mediated changes in the NK
cell repertoire. KIR3DL1CD8+ T cells with strong early activation and proliferation may, together with KIR3DL1CD69+

NK cells, play a protective role during acute/early HIV infection in individuals homozygous for Bw4.

(92–94)

HLA-DRB1*15:02 Reduced response of CD4+ T cells to HIV Gag and Nef proteins; lower viral load. (95)

HLA-C Individuals carrying the HLA-C rs9264942 CC genotype (SNP 35 kb upstream of HLA-C) showed a significantly decreased
HIV-1 viral load. Decreased viral load set point.

(96–98)

MICA Affects the presentation of the HLA I peptides; linkage to the protective HLA-B allele; a noncoding SNP (rs4418214) near
MICA is enriched in HIV-1 controllers.

(99–101)

PSORS1C3 The rs3131018 SNP in PSORS1C3 is a Genetic determinant of HIV-1 control that affects the presentation of HLA
I peptides.

(7, 102)

HCP5 Linkage disequilibrium with HLA-B*57:01; lower HIV viral load. (103–106)

ZNRD1 Interference in the processing of HIV transcripts; influences ZNRD1 expression; linkage disequilibrium with HLA-A10. (106–108)

ZNF Viral integration sites are more frequently present near ZNF genes on chromosome 19, which are often marked by tightly
packed repressive chromatin, associated with suppressed viral replication in ECs.

(109–111)

CCR5 D32 allele deletion/lower CCR5 expression; reduction in virus entry into the cells. (112–114)

CXCR6 CXCR6 is downregulated in ECs; low prevalence of rs2234358-T in LTNPs; trafficking of effector T cells and activation of
NK T cells.

(115–118)

TRIM5 The rs10838525 SNP in TRIM5a may contribute to viral suppression among HIV-1 ECs; control of the chronic viral
infection in HIV-1 controllers is mediated by the autophagy mechanism; it defends against invading HIV-1.

(119, 120)

APOBEC3G/3F Destructive cytosine to uracil changes catalyzed by APOBEC3G/3F during reverse transcription of HIV-1 RNA into DNA;
reduced innate immune restriction of HIV-1 replication.

(110, 121)
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4 Unusual HIV reservoir

One of the most notable features of both ECs and PTCs is the size

and composition of their HIV reservoirs. Understanding these

reservoirs is crucial for advancing HIV cure strategies given that

the size and integrity of the viral reservoirs directly influence the

potential for achieving sustained remission without ART (129). ECs

are characterized by a very small HIV reservoir, particularly among

CD4+ T cells. This is a common feature observed across natural ECs

and PTCs, which underscores the importance of reducing the HIV

reservoir size in patients undergoing ART as part of HIV cure efforts.

The activation and clearance of HIV-1 viral reservoirs is an

important strategy for the functional cure of AIDS (130, 131). In

ECs, HIV integrates into the host genome, but the quantity and genetic

integrity of the proviruses in their CD4+ T cells are significantly lower

than those in chronic progressors and ART-treated patients (132, 133).

Studies have shown that proviral reservoirs of ECs usually consist of

oligoclonal to near monoclonal clusters of intact proviral sequences

(109). These findings suggest that under immune pressure, ECs may

favor the persistence of smaller, less inducible viral reservoirs, avoiding

the transcription of intact proviruses. This selective process may help

limit viral replication and prevent the activation of viral reservoirs,

contributing to the spontaneous control of HIV without ART (134).

In ECs, intact proviruses tend to integrate at distinct sites within

the human genome. These sites are located primarily in regions that

are distant from actively transcribed chromatin and are densely

populated with heterochromatin marks. Notably, proviruses in ECs

are often integrated into centromeric satellite DNA or specific genes

on chromosome 19, which contain zinc finger nucleases (ZNFs) (109,

135). This pattern of integration aligns with the “block and lock”

strategy, wherein the proviral genes are silenced by their chromosomal

environment, preventing viral expression and replication (136).

PTCs also demonstrate an unusual HIV reservoir profile (137).

The size and distribution of the viral reservoir in PTCs are much

smaller than those in ART-treated individuals, with some studies

showing that the total and intact proviral reservoirs in PTCs are

approximately seven times smaller than those in noncontrollers (31).
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This characteristic is a contributing factor to their ability to maintain

HIV control after ART cessation (17, 138). The VISCONTI study

reported that PTCs had low levels of HIV DNA that continued to

decrease even after the initiation of ART (11). Despite the

interruption of ART, PTCs demonstrate a remarkable ability to

restrict HIV transcription. And the control mechanisms may occur

before treatment interruption (139). These findings suggest that, like

ECs, PTCs also achieve viral control through mechanisms of deep

latency and transcriptional silencing (49, 140). Research on

nonhuman primates also supports the idea that a smaller HIV

reservoir is key to achieving post-treatment control of the virus

(141). Research on nonhuman primates also supports the idea that a

smaller HIV reservoir is key to achieving post-treatment viral control.

Understanding the unique characteristics of HIV reservoirs in ECs

and PTCs is critical for the development of new HIV cure strategies.

By accurately characterizing the size, distribution, and integrity of

these reservoirs, researchers can explore innovative approaches to

target and manipulate the reservoirs, potentially leading to a

functional cure for HIV. The concept of targeting latent reservoirs

through strategies such as “shock and kill” (activating the latent virus

and then eliminating it) has been a central focus of HIV cure research.

However, the deep latency observed in ECs and PTCs may provide a

new avenue for exploring the “block and lock” approach, wherein

proviruses are silenced and prevented from being reactivated, thus

contributing to long-term viral control. Future studies should focus on

improving methods for accurately measuring HIV reservoirs and

understanding the mechanisms that contribute to their small size

and high integrity in ECs and PTCs. This will allow researchers to

identify novel therapeutic targets and refine strategies for achieving

sustained remission or even an eventual cure for HIV.
5 Defective integrative viruses

Numerous studies indicate that both the host and virus

influence disease progression following HIV-1 infection, with

attenuated viruses playing an important role (Table 3). The
TABLE 3 Potential defective integrated virus during viral suppression in HIV controllers.

Sites Mechanism References

nef Gene deletion/rare Nef polymorphisms downregulate CCR5 and CXCR 4 and increase viral vulnerability to host immunity. (142)

vpr HIV-1 Vpr upregulates the expression of ligands required to activate the NKG2D receptor and promotes NK cell-mediated
killing. The R77Q mutation in the vpr gene delays the progression of HIV-1 disease.

(143, 144)

vif HIV-1 vif sequences isolated from ECs display relative impairments in their ability to counteract the APOBEC3G host restriction
factor compared to vif sequences from normal progressors and acutely infected individuals.

(145)

vpu Attenuation of HIV-1 vpu alleles; high affinity interactions of KIR; Vpu sequence variations impact the downmodulation of
HLA-C.

(146–148)

rev Attenuated rev alleles may contribute to viral attenuation and long-term survival of HIV-1 infection. (149)

gag Gene mutation; CD8+ T-cell-mediated escape mutations in gag can reduce the HIV-1 replication capacity and alter disease
progression. PTCs exhibit more robust Gag-specific CD4+ T-cell responses; epitopes of Gag protein-restricted by HLA-B*57
generated a considerable immune response in ECs.

(18, 91, 150, 151)

pol Immune-mediated mutations in pol can reduce HIV replicative fitness. (152)

env V1 domain Long V1 regions play a role in shielding HIV-1 from recognition by V3-directed bNAbs. (153)
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number of genome-intact and replication-competent proviruses is

significantly reduced in the EC (109, 154). Studies have shown that

some LTNPs and ECs have large deletions in the nef gene.

HIV-1 Nef is a small (27–35 kDa) accessory protein that is a

crucial auxiliary protein for HIV replication and AIDS

development (155). Infection with nef-deficient or nef-defective

HIV or SIV strains can lead to a slow or nonprogressive disease

phenotype (16, 156). This protein is crucial for interacting with

the cellular vesicular trafficking system and interfering with cell

signaling. Nef engages with proteins related to intracellular

trafficking and alters the expression of various cell surface

molecules (157). It has diverse in vitro functions that influence

pathogenesis (158), such as downregulating CD4 (159, 160) and

HLA-I (161), upregulating the HLA class II invariant chain

(CD74) (162–164), and enhancing viral infectivity and

replication (165, 166). The impairment of these Nef activities

has been documented in ECs. Compared with those obtained from

individuals with chronic progressive infections, Nef clones from

ECs presented a markedly reduced capacity to downregulate CD4

(142, 166, 167). Nef facilitates CD4 downregulation by promoting

its internalization into the endosome–lysosome compartment, a

conserved function that persists during disease progression,

thereby increasing viral infectivity and replication.

In general, EC Nef clones are functional; however, Nef clones

of HLA-B* 57-expressing ECs may be influenced by host immune

selection pressure, resulting in diminished Nef function and a

hallmark of the EC phenotype (167). Research has compared

chromosomal integration sites and escape mutations between ECs

and AIDS patients who need to receive antiretroviral therapy. The

team observed differences in HIV integration sites. Intact and

defective HIV proviruses from ECs showed a reduced frequency of

escape mutations in cytotoxic T-cell epitopes and antibody

contact regions. Approximately 15% of intact HIV proviruses in

ECs exhibit a nef deletion, indicating heightened viral

suscept ibi l i ty to host immune responses due to Nef

dysfunction (110).
6 Discussion

HIV ECs and PTCs represent important models of sustained

HIV remission without ART. ECs represent individuals who are

able to naturally suppress HIV replication to undetectable levels

without ART. PTCs could represent a more concrete objective for

research focused on attaining HIV remission even after ART is

stopped. Research on these two groups can provide insights into the

immune and genetic factors that enable natural HIV control, which

is key for developing therapies that replicate this process in

other individuals.

This review outlines the immunological characteristics,

genetic variations, and HIV reservoirs associated with HIV ECs

and PTCs. Recognizing traits linked to virological control can

help identify candidates before ART cessation, whereas targeted

mechanistic studies may guide the development of HIV remission
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therapies. Future studies on immune responses in HIV

controllers, for example, could offer valuable insights for

discovering new targets for the natural control of HIV-1

infection. ART-free remission is a key goal in HIV research,

where patients can maintain undetectable viral loads without the

need for ART. ECs and PTCs offer a blueprint for what this could

look like. Therapies designed to mimic the immune and genetic

traits of ECs and PTCs could offer a path to achieve ART-free

remission for a broader population, including harnessing the

immune system and genome editing methods for effective

virus control.

Although the field of HIV remission without ART has great

promise, significant challenges remain, particularly in

understanding the complex interplay between genetic, immune,

and virological factors. Significant variability in how individuals

within these groups respond to HIV is noted, making it difficult to

pinpoint universal biomarkers or treatment approaches. Another

major limitation in this field is the lack of large, well-characterized

cohorts of ECs and PTCs, which hampers the identification of

common immunological and genetic traits.

Future research should focus on immune mechanisms,

genetic variations, and targeted therapies to eradicate HIV

reservoirs, which is crucial in advancing treatment strategies

and potentially paves the way for a functional cure. The next

steps will involve translating the lessons learned from ECs and

PTCs into tangible therapies that could benefit the broader HIV-

positive population.
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163. Ghiglione Y, Rodrıǵuez AM, De Candia C, Carobene M, Benaroch P, Schindler
M, et al. Hiv-mediated up-regulation of invariant chain (Cd74) correlates with
generalized immune activation in hiv+ Subjects. Virus Res. (2012) 163:380–4.
doi: 10.1016/j.virusres.2011.09.011

164. Schindler M, Würfl S, Benaroch P, Greenough TC, Daniels R, Easterbrook P,
et al. Down-modulation of mature major histocompatibility complex class ii and up-
regulation of invariant chain cell surface expression are well-conserved functions of
human and simian immunodeficiency virus nef alleles. J Virol. (2003) 77:10548–56.
doi: 10.1128/jvi.77.19.10548-10556.2003

165. Münch J, Rajan D, Schindler M, Specht A, Rücker E, Novembre FJ, et al. Nef-
mediated enhancement of virion infectivity and stimulation of viral replication are
fundamental properties of primate lentiviruses. J Virol. (2007) 81:13852–64.
doi: 10.1128/jvi.00904-07

166. Miller MD, Warmerdam MT, Gaston I, Greene WC, Feinberg MB. The human
immunodeficiency virus-1 nef gene product: A positive factor for viral infection and
replication in primary lymphocytes and macrophages. J Exp Med. (1994) 179:101–13.
doi: 10.1084/jem.179.1.101

167. Mwimanzi P, Markle TJ, Martin E, Ogata Y, Kuang XT, Tokunaga M, et al.
Attenuation of multiple nef functions in hiv-1 elite controllers. Retrovirology. (2013)
10:1. doi: 10.1186/1742-4690-10-1
frontiersin.org

https://doi.org/10.1038/nature10693
https://doi.org/10.1038/s41591-024-03277-z
https://doi.org/10.1056/NEJMoa0802905
https://doi.org/10.1016/s2352-3018(20)30069-2
https://doi.org/10.1371/journal.ppat.1003347
https://doi.org/10.1371/journal.ppat.1003347
https://doi.org/10.1056/NEJMoa1300662
https://doi.org/10.1172/jci144486
https://doi.org/10.1128/jvi.02098-13
https://doi.org/10.1038/s41579-024-01010-8
https://doi.org/10.1097/cm9.0000000000002479
https://doi.org/10.1097/cm9.0000000000002904
https://doi.org/10.1128/jvi.02165-06
https://doi.org/10.1172/jci.insight.122795
https://doi.org/10.7554/eLife.34655
https://doi.org/10.7554/eLife.34655
https://doi.org/10.1172/jci174215
https://doi.org/10.3390/v11010012
https://doi.org/10.1172/jci149414
https://doi.org/10.1172/jci149414
https://doi.org/10.1073/pnas.1419162112
https://doi.org/10.1097/coh.0000000000000891
https://doi.org/10.1097/coh.0000000000000891
https://doi.org/10.1128/jvi.01254-22
https://doi.org/10.1128/jvi.00338-20
https://doi.org/10.1128/jvi.00338-20
https://doi.org/10.1128/jvi.01548-15
https://doi.org/10.1182/blood-2009-08-237370
https://doi.org/10.1097/01.aids.0000210611.60459.0e
https://doi.org/10.1128/jvi.03464-14
https://doi.org/10.1371/journal.pone.0120434
https://doi.org/10.1016/j.chom.2016.04.005
https://doi.org/10.1016/j.chom.2016.04.023
https://doi.org/10.1186/1742-4690-4-43
https://doi.org/10.1128/jvi.07034-11
https://doi.org/10.1128/jvi.06682-11
https://doi.org/10.1128/jvi.00811-18
https://doi.org/10.1128/jvi.00094-19
https://doi.org/10.1038/s41598-020-58696-y
https://doi.org/10.1038/s41598-020-58696-y
https://doi.org/10.1016/0092-8674(91)90097-i
https://doi.org/10.1056/nejm199501263320405
https://doi.org/10.1073/pnas.92.2.349
https://doi.org/10.1016/s1074-7613(00)80626-3
https://doi.org/10.1016/s1074-7613(00)80626-3
https://doi.org/10.1038/350508a0
https://doi.org/10.1128/jvi.69.1.528-533.1995
https://doi.org/10.1038/nm0396-338
https://doi.org/10.1189/jlb.0805461
https://doi.org/10.1016/j.virusres.2011.09.011
https://doi.org/10.1128/jvi.77.19.10548-10556.2003
https://doi.org/10.1128/jvi.00904-07
https://doi.org/10.1084/jem.179.1.101
https://doi.org/10.1186/1742-4690-10-1
https://doi.org/10.3389/fimmu.2025.1540932
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	HIV controllers: hope for a functional cure
	1 Introduction
	2 Host&minus;virus interaction
	2.1 Adaptive immunity
	2.1.1 Cellular immunity
	2.1.1.1 CD8+ T cells
	2.1.1.2 CD4+ T cells

	2.1.2 Humoral immunity

	2.2 Innate immunity
	2.2.1 Natural killer cells
	2.2.2 Dendritic cells


	3 Genetic variation
	3.1 CCR5
	3.2 HLA

	4 Unusual HIV reservoir
	5 Defective integrative viruses
	6 Discussion
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


