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Exploring the role of
mitochondrial antiviral signaling
protein in cardiac diseases
Yuying Qi1†, Jie Yin1†, Weiwei Xia2* and Shiwei Yang1*

1Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China,
2Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
Mitochondrial antiviral signaling (MAVS) was first discovered as an activator of

NF-kB and IRF3 in response to viral infection in 2005. As a key innate immune

adapter that acts as an ‘on/off’ switch in immune signaling against most RNA

viruses. Upon interaction with RIG-I, MAVS aggregates to activate downstream

signaling pathway. The MAVS gene, located on chromosome 20p13, encodes a

540-amino acid protein that located in the outer membrane of mitochondria.

MAVS protein was ubiquitously expressed with higher levels in heart, skeletal

muscle, liver, placenta and peripheral blood leukocytes. Recent studies have

reported MAVS to be associated with various conditions including cancers,

systemic lupus erythematosus, kidney disease, and cardiovascular disease. This

article provides a comprehensive summary and description of MAVS research in

cardiac disease, encompassing structure, expression, protein-protein

interactions, modifications, as well as the role of MAVS in heart disease. It is

aimed to establish a scientific foundation for the identification of potential

therapeutic target.
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1 Introduction

The mitochondrial antiviral signaling protein (MAVS) was initially discovered as a

crucial molecule of antiviral innate immunity and is also referred to as IPS-1, VISA and

Cardif (1–4) in 2005. It contains an N-terminal caspase activation and recruitment domain

(CARD), a central proline-rich region (PRR) and a C-terminal transmembrane domain

(TM). It plays a central role in regulating the complex processes that result in antiviral or

inflammatory responses (5). Located ubiquitously on the outer mitochondrial membrane,

peroxisomes and endoplasmic reticulum (6). MAVS acts as an articulatory protein. Retinoic

acid-inducible gene I (RIG-I, also known as DExD/H-box helicase 58, DDX58, belonging to

the RLRs family, detects exogenous RNAs, including viral RNAs. During viral infection, RIG-

I identifies viral RNA, triggering the association between the CARD domains of MAVS and

RIG, ultimately leading to the formation of MAVS aggregates. Subsequently, MAVS interacts

with TNF receptor-associated factor 3 (TRAF 3) to recruit downstream IRF 3 and NF-kB
activated kinases, triggering the innate immune response (5). MAVS has been recognized as a
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pivotal regulatory target for viruses and hosts, due to its dual function

in immune homeostasis and antiviral signaling. Beyond its well-

established role in antiviral defense, MAVS has emerged as a key

effector in various physiological and metabolic processes. Recent

studies demonstrate that MAVS is implicated in responses to

bacterial and parasitic infections, autoimmune diseases, cancer

advancement, kidney diseases and cardiovascular diseases (7–10).

While MAVS is well-known for its role in antiviral immunity and

various other immune responses, some studies have documented its

involvement in viral myocarditis, cardiac insufficiency and CVD

(11–13). The pathophysiological mechanisms of cardiovascular

disease are complex and involve many pathological processes,

including endothelial dysfunction, imbalance of calcium regulatory

homeostasis, abnormal cardiac autophagy, autonomic dysfunction,

metabolic reprogramming, iron imbalance, oxidative stress,

inflammation, impaired mitochondrial dynamics, impaired

mitochondrial autophagy, imbalance of NO synthesis. In the study

of the molecular mechanisms of CVD shows a growing focus on the

role of MAVS, crucial for the spontaneous high basal expression of

IFN-b in the heart (14). Research has revealed that both partial or

complete MAVS deficiency in mice leads to decreased cardiac

function and enlarged hearts in mice due to disruptions in

mitochondrial function, energy production, and lipid metabolism

(11). Therefore, this article offers a brief summary of the molecular
Frontiers in Immunology 02
biology, protein interactions, modifications and research progress of

MAVS and elucidating role of MAVS in cardiac disease to establish a

scientific basis for therapeutic intervention.
2 Structure and expression of MAVS

The human mavs gene locates on chromosome 20 and shares

approximately half amino acid identity with its mouse counterpart

(15). The full−length ofmavsmRNA consists of 2912 bp. According

to the Human Protein Atlas (http://www.protein-atlas.org/), the

highest mRNA levels of MAVS are found in the skeletal muscle,

tongue and heart muscle, whereas the lowest levels are found in

choroid plexus, gallbladder and testis. The mRNA level of MAVS in

different human tissues, is illustrated in Figure 1A. We furtherly

analyzed the expression of MAVS mRNA levels in different single

cell type of heart muscle in the website (http://www.protein-

atlas.org/), and found that the highest MAVS mRNA levels were

in cardiomyocytes and lowest levels in endothelial cells (Figure 1B).

MAVS is composed of three primary structural domains: the N-

terminal cysteine caspase recruitment and activation domain

(CARD), the internal proline-rich region and the C-terminal

transmembrane domain (TM) (16). The N-terminal CARD of
FIGURE 1

(A) Relative MAVS expression at the mRNA level in different human tissues. The data shown were derived from The Human Protein Atlas (http://
www.proteinatlas.org/). (B) The expression of MAVS is enriched in cardiomyocytes. The data shown were derived from The Human Protein Atlas (http://
www.proteinatlas.org/).
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MAVS plays a crucial role in facilitating protein-protein

interactions, establishing a significant foundation for the assembly

of signaling complexes crucial for antiviral response mechanisms.

The CARD domain interacts with RIG-I and MDA5 during viral

infection or upon exposure to exogenous nucleic acids.

Subsequently, the activated MAVS complex recruits IKK and

TBK1/IKKi complexes to induce transcriptional expression of

type I interferon by facilitating the nuclear translocation of NF-

kB and IRF3/IRF7 transcription factors. This process triggers innate

antiviral responses (17). The deletion of the CARD-like structural

domain in MAVS abolishes its signaling function, converting it into

a dominant-negative mutant that inhibits interferon-induced

responses (3). The C-terminal transmembrane domain of MAVS

functions to anchor MAVS to the mitochondrial membrane, aiding

in MAVS signaling and suggesting that mitochondria serve as a

functional platform for innate antiviral signaling (3, 18, 19). PRR

(Proline-rich domain) structural domains are proline-rich protein

motifs that bind to members of the tumor necrosis factor receptor-

associated factor (TRAF) family, including: TRAF2, TRAF3, TRAF5

and TRAF6, thereby mediating downstream signal transduction

(20). We also presented the 3D structures of MAVS from PDB

(representative) and AlphaFold (predicted) (Figure 2).
3 The protein-protein interactions and
modification of MAVS

Protein−protein interactions play vital roles in cellular

biological processes. MAVS is known to interact with multiple

proteins to activate downstream signaling pathways, including

proteins in RIG-I/MAVS signaling and proteins that regulate

RIG-I/MAVS signaling. The potential interacted proteins are

shown in Figure 3. Modifications of MAVS include protein

ubiquitination and phosphorylation. They are discussed below.
Frontiers in Immunology 03
3.1 Ubiquitination

Ubiquitination plays a crucial role as a post-translational

modification of host proteins, which is essential for establishing

an effective antiviral response (21). Regulated post-translational

modifications of host proteins by regulatory ubiquitin ligases and

deubiquitinating enzymes play a role in the regulation of RLR/

MAVS-mediated signaling (22). There are three ubiquitylation

patterns of MAVS, including K27-linked ubiquitylation, K48-

linked ubiquitylation, and K63-linked ubiquitylation. Some

researchers report about K27-linked ubiquitylation of MAVS,

which primarily functions in the autophagic degradation of

MAVS. E3 ubiquitin ligase MARCH8, RNF34 and RNF5 are

recruited to catalyze K27-linked ubiquitin chains on MAVS,

resulting in the autophagic degradation of MAVS and inhibit the

innate immune response (23–27). However, another E3 ubiquitin

ligase TRIM21 interacts with MAVS and catalyzes K27-linked

polyubiquitination, promotes the recruitment of TBK1 to MAVS

and positively regulates innate immune response (28, 29). K48-

linked ubiquitylation has been reported to mediate the degradation

of MAVS and regulation of innate antiviral immunity. Most

ubiquitination enzymes mediate the K48-linked ubiquitylation of

MAVS, including TRIM25, TRIM28, MARCH5, RNF5, RNF90,

RNF115, RNF146, AIP4 and SUMRF1/2. Most of them target

MAVS through K48-linked polyubiquitination and negatively

regulated the RLR signaling pathway by degrading MAVS

(30–38). While TRIM25 activates the type-I interferon signaling

pathway by degrading MAVS via K48-linked polyubiquitination

(39). MAVS K63-linked ubiquitylation promotes the activation of

the RIG-I/MAVS signaling by enhancing MAVS aggregation.

MAVS K63-linked ubiquitylation promotes the interaction of

RIG-I and MAVS though their CARD domains. TRIM31 is

reported to interact with MAVS and catalyze the K63-linked

polyubiquitination of Lys10, Lys311 and Lys461 on MAVS,

leading to enhanced cellular antiviral response (40). N4BP3
FIGURE 2

Three dimensional structures from PDB (A: representative) and AlphaFold (B: predicted) for MAVS.
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facilitates the K63-linked ubiquitination modification of MAVS and

mediates the innate immune response by accelerating the

interaction of MAVS and TRAF2 (41).
3.2 De-ubiquitylation of MAVS

Deubiquitination is the reverse reaction of the ubiquitination

process. In addition to maintaining appropriate levels of MAVS

protein, de-ubiquitylation also plays an important role in the innate

immunological signaling. De-ubiquitinases involved in the

regulation of MAVS are listed in Table 1, including TRIM44,

USP19, USP25, OTUD3, OTUD4 and YOD1. Studies have

reported that TRIM44 and OTUD4 can suppress the K48-linked

polyubiquitylation of MAVS in response to virus infection (42, 43).

USP19, USP25, OTUD3 and YOD1 are reported to interact with

MAVS and deubiquitinates K63-linked ubiquitinated MAVS for

negative regulation of type I IFN signaling (44–47).
3.3 Phosphorylation and
dephosphorylation of MAVS

Phosphorylation and dephosphorylation are equally critical in

antiviral innate immunity.

Recent research has demonstrated that TBK1 directly targets

MAVS, playing a crucial role in activating IRF3 (48). The non-

receptor tyrosine kinase c-Abl positively regulates the RLR signaling

pathway by phosphorylation of Y9, Y30 and Y71 in the CARD

domain of MAVS (49). Studies have shown that Nemo-like kinase

(NLK) interacts with MAVS during the latter stages of viral infection,

resulting in MAVS phosphorylation, degradation, and subsequent

inactivation of IRF3 (50). Conversely, dephosphorylation of MAVS

can also act as a switch to deregulate the body’s antiviral signaling

(51). Purified PPM1A completely eliminated phosphorylation on

MAVS, indicating that PPM1A directly dephosphorylated phospho-

MAVS Protein phosphatase 1A (Phospha-tase magnesium-

dependent 1A, PPM1A) and protein phosphatase 1G (Phosphatase
Frontiers in Immunology 04
magnesium-dependent 1G, PPM1G) function as de-phosphatases,

both of which can dephosphorylate MAVS and subsequently silence

the RLR antiviral signaling pathway (52, 53). All the related

modifications of MAVS are listed in Table 1.
4 MAVS in cardiac disease

Emerging evidence indicates that MAVS is intricately involved

in the pathogenesis of heart diseases. This review highlights recent

progress in understanding the contributions of MAVS in viral
FIGURE 3

(A) Potential interplay between MAVS, DDX58(RIG-I) and NLRP3. The data shown were from the STRING database (www.string-db.org). (B) Prediction
of protein interactions related to MAVS based on Human Protein Atlas (http://www.proteinatlas.org/).
TABLE 1 Protein modifications regulate the MAVS signaling pathway.

Post-translational
modification
of proteins

Regulatory
factor

References

K27-linked ubiquitylation

MARCH8
RNF34
RNF5

(23–27)

TRIM21 (28, 29)

K48-linked ubiquitylation

TRIM25、TRIM28
MARCH5、RNF5
RNF90、RNF115
RNF146、AIP4
SUMRF1/2

(30–38)

TRIM44、OTUD4 (42, 43)

K63-linked ubiquitylation
TRIM 31 (40)

N4BP3 (41)

Deubiquitination

USP19、USP25
OTUD3 、YOD1

(44–47)

TRIM44、OTUD4 (42, 43)

Phosphorylation
c-Abl (49)

NLK (50)

Dephosphorylation
PPM1A (52)

PPM1G (53)
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myocarditis, ischemic myocardial damage, hypertrophic

cardiomyopathy and other cardiomyopathy. The roles of MAVS

in heart diseases are summarized in Figure 4.
4.1 MAVS in viral myocarditis

Myocarditis is defined as inflammation of cardiac tissue

resulting from an inflammatory infiltrate with or without myocyte

necrosis. There are experimental studies showing that activation of

cardiac inflammation causes left ventricular remodeling and left

ventricular dysfunction. Viral myocarditis presents a substantial

risk of sudden death in young individuals due to the heart’s limited

ability to regenerate damaged cardiomyocytes. The disease involves

three stages: viral infection, autoimmune, and remodeling of dilated

cardiopathy and then leads to cardiac failure (54, 55). Some studies

show that type I interferon treatment plays an effective therapeutic

for viral myocarditis, with cardiac myocytes expressing higher levels

of type I interferon compared to cardiac fibroblasts (56–59). MAVS,

as a critical adapter for type I interferon expression, has been

reported to be essential for high levels of type I interferon

expression in cardiac myocytes (14). Maria G. et al. furtherly

finds that MAVS signaling is essential for cardiac clearance of the

virus. In the absence of MAVS signaling, persistent infection leads

to focal myocarditis and vasculitis. MAVS knockout mice were

infected with Chikungunya virus (CHIKV) and found that the

MAVS was essential for the clearance of CHIKV infection (12).

Coxsackie B viruses (CVB) are enteroviruses commonly linked to

myocarditis. Jennifer P et al. found that MAVS was critical for type I

interferon responses to CVB, as the lack of MAVS results in the

absence of type I interferon production and mortality in mice

infected with CVB (60). Coxsackievirus B3 (CVB3) is a common
Frontiers in Immunology 05
enterovirus and CVB3 infection induces mitophagy and then

suppresses IFN pathways, and MAVS is involved in this process

(61). Moreover, TRIM18 and TRIM21 serve as regulator of IFN-b
signaling by targeting MAVS during CVB3 infection. Loss of

TRIM18 enhances production of type I IFN and shields mice

from viral myocarditis. Mechanistically, TRIM18 recruits protein

phosphatase 1A (PPM1A) to dephosphorylate TBK1, inhibiting the

interaction of TBK1 with MAVS, thereby dampening antiviral

signaling (13). However, TRIM21 catalyzes the K27-linked

polyubiquitination of MAVS, and enhances type I interferon

signaling and consequently reducing CVB3 viral replication (62).

Encephalomyocarditis virus (EMCV) is a zoonotic pathogen known

to causes myocarditis. A study found EMCV VP2 acted as a

negative regulator of the IFN-b pathway, and the structural

protein VP2 interacted with MAVS to block the type I interferon

signaling (63). Another research found metalloproteinase domain 9

(ADAM9) bind to MDA5 and promoted (MAVS), and thereby

induced type I interferon production during encephalomyocarditis

virus infection, which provides a therapeutic target for viral

myocarditis (64).
4.2 MAVS in Ischemic myocardial injury

Ischemic myocardial injury is a common cardiovascular

emergency and leads to higher morbidity and mortality. Despite

therapeutic advancements, Ischemic cardiomyopathy remains a

significant public health challenge, with 1-year mortality at 16%

and 5-year mortality approaching 40% in the USA and Europe (65,

66). Increasing evidence showed that inflammasome activation and

apoptosis were participated in the pathogenesis of ischemic

myocardial injury. NLRP3 is a key component of the
FIGURE 4

Overview of MAVS roles in heart diseases.
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inflammasome. MAVS is essential for NLRP3 inflammasome

activity (67). Following myocardial infarction, NLRP3

inflammatory vesicles are upregulated, potentially contributing to

the progression of infarct size during ischemia-reperfusion (68).

Study finds that inhibiting the NLRP3 inflammasome reduces

infarct size and preserves cardiac function in an animal model of

MI (69). Recent study found TAX1BP1 exerted cardioprotective

effects in acute myocardial infarction by inhibiting inflammasome

activation in an RNF34/MAVS-dependent mechanism (70).

Another study showed that NLRX1 played a protectional role in

myocardial ischemic injury by suppressing MAVS-dependent

inflammation and apoptosis (71). Inflammasome activation and

pyroptosis are reported to contribute to the pathogenesis of

myocardial ischemia-reperfusion (I/R) injury. In the context of

ischemia-reperfusion (I/R) injury, research demonstrated an

increase in levels of the E3 ubiquitin ligase membrane-associated

RING finger protein 2 (MARCH2) in ischemic hearts (72).

Interestingly, the absence of MARCH2 worsened myocardial

infarction and cardiac dysfunction. Moreover, MARCH2 played a

protective role against cardiomyocyte pyroptosis and myocardial

injury during ischemia-reperfusion by negatively regulating the

PGAM5/MAVS/NLRP3 pathway (72). These findings align with

Stefano et al.’s study, which showed that inhibiting NLRP3

pharmacologically in the hippocampus limited secondary

inflammatory damage and reduced infarct size one hour after

myocardial ischemia-reperfusion in mice (73).
4.3 MAVS in hypertrophic cardiomyopathy

Belonging to the nucleotide-binding oligomerization domain

(NOD)-like receptor family, NLRP3 is associated with cardiac

inflammation (74). MAVS, on the other hand, is essential for

maximizing the function of NLRP3 inflammatory bodies and

contributes significantly to regulating inflammation (48). In their

study, Li et al. observed that the absence of NLRP3 hastened cardiac

hypertrophy, fibrosis, inflammatory reactions, and worsened

cardiac function in a mouse model of pressure overload-induced

cardiac remodeling (75). These results suggest that targeting NLRP3

could hold therapeutic promise for managing cardiac remodeling

and heart failure (76). Jing Zong et al. observed upregulated NOD2

expression in cardiomyocytes of aortic fasciculation-type

hypertrophic mice (77). They also demonstrate that NOD2

inhibits myocardial hypertrophy and fibrosis in mice,

counteracting hypertrophic stimuli by inhibiting TLR4 and TGF-

b/Smad signaling pathways, while regulating pro-fibrotic cytokines

and collagen content (77). However, recent studies have revealed

that MAVS acts nucleotide-binding oligomeric structural domain-

containing protein 1/receptor-interacting protein 2 (NOD1/RIP2)

downstream to promote cardiac hypertrophy in response to

transecting pressure overload induced by aortic constriction

(TAC). Nod1-/- and RIP2-/- mice demonstrated better survival,

enhanced cardiac function, and reduced cardiac hypertrophy

during subjecting to TAC. This process critically involves MAVS

regulation in the inflammatory response, and mitochondrial energy

metabolism. The NOD1/RIP2/MAVS signaling complex effectively
Frontiers in Immunology 06
coordinates remodeling, inflammatory response and mitochondrial

energy metabolism in stressed cardiomyocytes (78).
4.4 MAVS in other cardiomyopathy

Mitochondria plays a crucial role in energy production. MAVS,

located on the mitochondrial outer membrane, regulates

mitochondrial dynamics, energetics and facilitates the interaction

of RLR signaling and glucose metabolism (79). Recent research

revealed that silencing MAVS mitigated the radiation-induced

mitochondrial dysfunction (including mitochondrial membrane

potential disruption and ATP production) (80). MAVS

suppression affects both mitochondrial function and morphology

in cardiomyocytes (78). Qian Wang et al. found that MAVS

deficiency exacerbated the deterioration of cardiac insufficiency

and cardiac dilation. Metabonomic suggested MAVS deletion

disturbed energy metabolism, especially lipid metabolism.

Knockout of MAVS induced the mitochondrial structure and

function impairments, leading to elevated mitochondrial ROS

levels (11).

Although the role of MAVS in cardiac diseases requires further

explored, its significance and relevance to cardiac diseases are

widely acknowledged. Consequently, it is imperative to explore

and clarify its mechanism of action in cardiac diseases.
5 MAVS/NLRP3 in
cardiovascular diseases

NLRP3 is a crucial component of the inflammasome, involved

in regulating inflammatory responses within the immune system.

Emerging evidence has indicated that the NLRP3 inflammasome

plays an important role in cardiovascular diseases, such as

atherosclerosis, ischemic heart disease, dilated cardiomyopathy,

hypertensive heart disease, metabolic disorders and diabetic

cardiomyopathy, cancer therapy-associated cardiac injury,

myocarditis, and pericarditis (74). MAVS mediates recruitment of

NLRP3 to mitochondria, and activates of the NLRP3 inflammasome

in vivo (67). Peter Duewell et al. first demonstrated the role of the

NLRP3 inflammasome in promoting atherosclerosis in western

diet-fed LDL receptor-deficient mice (81). Negatively regulating

the MAVS/NLRP3 pathway played a protective role against

cardiomyocyte pyroptosis and myocardial injury during ischemia-

reperfusion (70, 72). Studies reported that inhibiting NLRP3 and

other inflammasome components in animal model of ischemic

cardiac injury showed beneficial effects in terms of reduced infarct

size and improved cardiac function (82, 83). Several NLRP3

inflammasome inhibitors are developing for CVD in preclinical

and clinical stage (Table 2). Some of these inhibitors block the

NLRP3 inflammasome, others block NLRP3 signaling. Overall, the

investigation of the close association between MAVS and the

NLRP3 inflammasome in cardiovascular diseases provides us with

deeper insights into the immune mechanisms underlying these

conditions, while also offering potential drugs targeted NLRP3 for

future therapeutic strategies.
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6 Conclusion and perspectives

Cardiovascular disease (CVD) poses a substantial public health

burden, and is currently a leading cause of disability and mortality

among the elderly. The epidemiology of CVD has shifted from

predominantly affecting developed countries to becoming a global

disease, with the highest prevalence rate in our country. CVD and its

associated complications are the primary cause of mortality in

patients. MAVS, a crucial connector protein in the RLR signaling

pathway, significantly contributes to the pathology of both innate

immunity and cardiac diseases. Nevertheless, the regulatory
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mechanisms of MAVS-mediated antiviral signaling pathways in

various animal organisms remain unclear to date. Studying the

regulatory mechanisms of MAVS in cardiovascular diseases is

anticipated to provide some insights for identifying relevant target

drugs against this pathway and treating related diseases. Furthermore,

MAVS plays a critical role in enhancing optimal NLRP3

inflammasome activation. Specifically, MAVS promotes NLRP3

oligomerization by recruiting it in proximity to mitochondrial ROS,

a crucial element for NLRP 3 activation. Several studies suggest that

MAVS and its downstream factor NLRP 3 may provide promising

strategies for treating heart disease. Additionally, TRIM29 targets

MAVS to negatively regulate the production of antiviral type I

interferons and the activation of inflammasomes, thereby

modulating the host immune response to viral infections (84, 85).

Junying Wang et al. found that the deficiency of TRIM29 alleviated

viral myocarditis (86). Similarly, some studies reported that TRIM18

regulates the TBK1 and MAVS signaling pathways by recruiting

protein phosphatase 1A (PPM1A). Deletion of TRIM18 protects mice

from viral myocarditis (13, 52). Therefore, targeting TRIM29 and

TRIM18 may provide new therapeutic approaches for reducing

myocardial inflammation and improving cardiac function by

regulating the MAVS signaling pathway.

Cardiovascular diseases are closely associated with the immune

system. Immune responses and microenvironment play a pivotal

role in the initiation, progression, and prognosis of cardiovascular

diseases. A recent study showed that M1-like pro-inflammatory

macrophages also contributed to myocardial injury by secreting

pro-inflammatory exosomes and pro-inflammatory miRNAs which

inhibited angiogenesis and cardiac healing (87). Li Liu et al. found

that neutrophils can release annexin A1 and lactoferrin, as well as

engage in chemokine scavenging, thereby halting the migration of

granulocytes into the infarcted myocardial tissue (88). Depletion of

neutrophils was linked to an exacerbation of fibrosis and a

deterioration in heart function in the chronic MI model (89).

Moreover, proinflammatory cytokines play a critical role in the

pathogenesis of heart failure. Douglas L. Mann proposed that

inflammatory mediators such as TNF-a, IL-1b, and IL-6 are

remarkable (90).

Recent studies have revealed the role of MAVS in immune cell

infiltration and activation, particularly in macrophages, neutrophils,

and T cells, which play key roles in the immune response in

cardiovascular diseases. Macrophages, as important immune cells in

cardiovascular diseases, directly influence disease progression through

their polarization. Specifically, activation of MAVS can promote M1

macrophage polarization by enhancing the secretion of type I

interferons, such as IFN-b. M1 macrophages not only amplify local

inflammation by releasing pro-inflammatory cytokines such as TNF-

a and IL-1b but also promote immune cell infiltration and tissue

damage in cardiovascular pathologies such as atherosclerosis,

myocardial infarction and cardiac remodeling (91, 92). Neutrophil

infiltration and activation are also crucial in driving cardiac

inflammation and damage. Freja et al. demonstrated that in RSV-

infected mice, the MAVS signaling pathway is essential for neutrophil

recruitment and activation through type I interferon production (93).

Moreover, the involvement of T cells in chronic cardiovascular

diseases has become increasingly significant. For instance, Huanle
TABLE 2 NLRP3 inhibitors under clinical development in cardiovascular
diseases: name and chemical structure.

Name Chemical structure

BAY
11-70820

INF4E

OLT1177

Tranilast

CY-09

MCC950

16673-34-0
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Luo et al. investigated the role of MAVS in regulating host immunity

against the live attenuated West Nile virus (WNV) vaccine strain.

They found that MAVS is critical for enhancing the primary CD4 T

cell response during NS4B-P38G vaccination (94). In summary, the

excessive activation and dysregulation of these immune cells drive the

progression of inflammatory responses and exacerbate tissue damage

in cardiovascular diseases. Future studies should further explore the

specific mechanisms of MAVS as an immune modulator in

cardiovascular diseases, providing new insights for immune-based

therapies in cardiovascular disorders.

However, the existing body of literature primarily focuses on

animal or cellular models of heart disease, neglecting the

exploration of MAVS expression levels in clinical patients.

Therefore, attaining a comprehensive understanding of the

regulatory mechanisms involved in this pathway is of utmost

importance as it could serve as a guiding principle for the

development of innovative therapeutic strategies to address

cardiac diseases in the future.
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