
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Rawad Hodeify,
American University of Ras Al Khaimah,
United Arab Emirates

REVIEWED BY

Andres Tittarelli,
Metropolitan University of Technology, Chile
Dipti Pawade,
K. J. Somaiya College of Engineering, India

*CORRESPONDENCE

Feng Jiao

jiaofeng@renji.com

Chunxin Lv

lvchunxin@punanhospital.com

Yuchen Han

ychan@cmu.edu.cn

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 05 December 2024

ACCEPTED 12 March 2025

PUBLISHED 31 March 2025

CITATION

Jiao F, Shang Z, Lu H, Chen P, Chen S,
Xiao J, Zhang F, Zhang D, Lv C and
Han Y (2025) A weakly supervised
deep learning framework for automated
PD-L1 expression analysis in lung cancer.
Front. Immunol. 16:1540087.
doi: 10.3389/fimmu.2025.1540087

COPYRIGHT

© 2025 Jiao, Shang, Lu, Chen, Chen, Xiao,
Zhang, Zhang, Lv and Han. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 31 March 2025

DOI 10.3389/fimmu.2025.1540087
A weakly supervised deep
learning framework for
automated PD-L1 expression
analysis in lung cancer
Feng Jiao1*†, Zhanxian Shang2†, Hongmin Lu1, Peilin Chen3,
Shiting Chen3, Jiayi Xiao4, Fuchuang Zhang3, Dadong Zhang3,
Chunxin Lv5* and Yuchen Han2*

1Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University,
Shanghai, China, 2Department of Pathology, Shanghai Chest Hospital, School of Medicine, Shanghai
Jiaotong University, Shanghai, China, 3Department of Clinical and Translational Medicine, 3D
Medicines Inc., Shanghai, China, 4School of Life Science and Technology, Tongji University,
Shanghai, China, 5Department of Oncology, Shanghai Punan Hospital of Pudong New District,
Shanghai, China
The growing application of immune checkpoint inhibitors (ICIs) in cancer

immunotherapy has underscored the critical need for reliable methods to

identify patient populations likely to respond to ICI treatments, particularly in

lung cancer treatment. Currently, the tumor proportion score (TPS), a crucial

biomarker for patient selection, relies on manual interpretation by pathologists,

which often shows substantial variability and inconsistency. To address these

challenges, we innovatively developed multi-instance learning for TPS (MiLT), an

innovative artificial intelligence (AI)-powered tool that predicts TPS from whole

slide images. Our approach leverages multiple instance learning (MIL), which

significantly reduces the need for labor-intensive cell-level annotations while

maintaining high accuracy. In comprehensive validation studies, MiLT

demonstrated remarkable consistency with pathologist assessments (intraclass

correlation coefficient = 0.960, 95% confidence interval = 0.950-0.971) and

robust performance across both internal and external cohorts. This tool not only

standardizes TPS evaluation but also adapts to various clinical standards and

provides time-efficient predictions, potentially transforming routine pathological

practice. By offering a reliable, AI-assisted solution, MiLT could significantly

improve patient selection for immunotherapy and reduce inter-observer

variability among pathologists. These promising results warrant further

exploration in prospective clinical trials and suggest new possibilities for

integrating advanced AI in pathological diagnostics. MiLT represents a

significant step toward more precise and efficient cancer immunotherapy

decision-making.
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1 Introduction

In recent years, the application of immune checkpoint inhibitors

(ICIs) such as programmed death ligand-1 (PD-L1) inhibitors has led to

remarkable advancements in the treatment of various malignancies (1–

3), demonstrating significant improvements in mortality rates for

patients with melanoma (4), lung cancer (5), head and neck cancers

(6), and esophageal cancer (7). However, clinical studies indicate that

immunotherapy is not universally effective (8, 9). Therefore, it is crucial

to identify the patients most likely to benefit from treatment with PD-L1

checkpoint inhibitors. PD-L1 has emerged as a common biomarker

predicting response to immunotherapy in lung cancer (10, 11). The

tumor proportion score (TPS), indicating the percentage of tumor cells

that positively express PD-L1, serves as a primary indicator to identify

patients who are likely to respond to ICI treatment (11–13). Clinical

trials have shown that higher expression levels of PD-L1 on tumor cells

correlate with improved therapeutic outcomes (14, 15), and the

expression of PD-L1 also determines whether ICIs are recommended

as a first-line treatment option (16). Consequently, accurate assessment

of PD-L1 expression plays a critical role in clinical practice. The manual

scoring of PD-L1 by different pathologists may result in inconsistent

results (10). Automated image analysis could serve as a supportive tool

for pathologists, aiming to reduce the variability associated with

subjective human assessments and enhance overall efficiency (10).

With the continuous advancements in artificial intelligence (AI)

and pathology scanning technologies, various deep learning (DL)

techniques and models have been developed for analyzing

pathological images, significantly broadening the scope of

diagnostic pathology (17). This encompasses applications such as

segmentation of tissue regions utilizing whole slide images (WSIs),

detection of metastatic cancer, and classification of cancer grades

(18). DL-based detection techniques for pathological images have

demonstrated promising results in the detection of various cancers,

including lung cancer (19), breast cancer (20), and rectal cancer

(21), approaching the diagnostic accuracy level achieved

by pathologists.

Most of the models developed for the quantitative analysis of

pathological images utilize strong supervision learning methods

(22), requiring substantial pixel-level annotated data for training,

which enables the trained models to achieve high levels of accuracy

(23). For instance, several teams have proposed systems that

automatically predict TPS using the fully supervised learning

method (24), achieving a high intra-class correlation coefficient of

approximately 90%, which indicates a significant level of agreement

with expert pathologists in the analysis of TPS (25).

However, this fully supervised learning method and multistep

process may faces significant challenges (26). These methods
Abbreviations: ICI, immune checkpoint inhibitor; TPS, tumor proportion score;

MiLT, multi-instance learning for TPS; AI, artificial intelligence; WSI, whole slide

images; MIL, multiple instance learning; PD-L1, programmed death ligand-1; DL,

deep learning; ALL, acute lymphoblastic leukemia; IHC, immunohistochemistry;

ICC, intraclass correlation coefficient; CNN, convolutional neural network;

NSCLC, non-small cell lung cancer; CI, confidence interval; LUSC, lung

squamous cell carcinoma; LUAD, lung adenocarcinoma.
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require experienced pathologists to manually annotate numerous

tumor regions and tumor cells for model training, which are costly

and time-consuming (27). For example, to build an automated

tumor proportion scoring for PD-L1 expression based on

multistage ensemble strategy, Zhiyong Liang and his team

constructed a cell dataset using 4264 patches of size 512 × 512

pixels, which are consisted of more than 1.5 million cells of tumor

cells and normal cells (28). In addition, during annotation process,

poorly trained annotators may produce low-quality annotated

samples, leading to diminished model performance.

In the past few years, to address these issues, many researchers

have transformed the WSI classification problem into a weakly

supervised task. This approach requires only a single overall label

for each WSI, eliminating the need for pixel-level annotations.

Currently, multiple instance learning (MIL) has been widely utilized

to tackle these weakly supervised tasks, demonstrating positive

results (29). MIL is a form of supervised learning in which the

learner is provided not with a set of individually labeled instances

but with a collection of labeled bags, each containing numerous

instances (30). Nahhas and his colleagues applied an attention-

based MIL technique to predict genetic biomarkers fromWSIs (31).

Similarly, Farsangib and his team developed a model using MIL to

diagnose acute lymphoblastic leukemia (ALL), achieving an

accuracy of 96.15% (32, 33). Mustafa Umit Oner proposed a

model in a pan-cancer study revealing spatial resolution of tumor

purity within histopathology slides using only sample-level labels

during training (34). MIL models have been successfully applied to

various digital pathology tasks, and in this study we try to utilize the

MIL method for predicting the TPS of PD-L1 in lung cancer.

In contrast to previous studies based on multistage ensembled

supervised models and required numerous annotations of tumor

regions and various cells. We proposed a TPS prediction tool multi-

instance learning for TPS (MiLT), aiming to achieve accurate

predictions using the MIL method, thereby reducing the time

costs of annotation. This study addresses the gap in current

research by providing a novel approach to TPS prediction that

minimizes the need for extensive manual annotations, potentially

standardizing PD-L1 evaluation and improving clinical

decision-making.
2 Materials and methods

2.1 Materials

In this study, 439 samples were collected as model building and

internal testing cohort, and another 104 samples were collected as

external testing cohort, which came from Renji Hospital and

Shanghai Chest Hospital. All the samples were processed as

follows: Firstly, Samples were prepared and stained on the Dako

Autostainer Link 48 platform using the PD-L1 IHC 22C3 pharmDx

kit (Dako, Carpenteria, CA, USA). All slides were digitized by a

KBFIO FKPro-120 slide scanner at 20 magnification (0.475 mm/

pixel). All the WSIs used for in this study were evaluated by a

specialist pathologist, with each WSI providing an accurate TPS
frontiersin.org
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value, which was then confirmed by a second pathologist to ensure

reliability and accuracy in our study. All participants provided

informed consent prior to sample collection, and data were

anonymized to protect participant privacy. The consent process

included detailed information about the purpose of the study, the

procedures involved, and the potential risks and benefits of

participation. Participants were assured that their participation

was voluntary and that they could withdraw at any time without

any consequences to their medical care. The study adhered to the

principles of the Declaration of Helsinki and its amendments.

Ethical approval for this study was obtained from the Renji

Hospital affiliated to Shanghai Jiao Tong University, with the

approval number 2023-116-C. Data handling and storage were

conducted in accordance with national and institutional

guidelines to ensure the confidentiality and security of

participant information.
2.2 Overall flow chart

The workflow for the TPS prediction module is outlined as

follows. The training dataset consists of immunohistochemistry

(IHC) stained WSIs from nearly a thousand patients, with each

image labeled at the sample level to indicate its TPS. The process

begins with the evenly cropping of WSIs into 256 x 256 pixel

patches. A tumor extraction module, based on a classification

model, processes these images to isolate patches that contain

tumor regions. The extracted patches are then randomly divided

into 100 bags, which, along with the corresponding WSI labels,

form the dataset for training the MIL module. Finally, the trained

model is tested using both internal and external data, and the

predicted TPS results are compared to the ground truth provided by

pathologists. Model performance is evaluated using parameters

such as intraclass correlation coefficient (ICC) and kappa statistics.
2.3 Tumor extraction module

Prior to data collection from the images, this project employs a

convolutional neural network (CNN)-based classification model to

differentiate tumor regions from non-tumor tissue regions. This

ensures that the subsequent MIL model does not overfit to non-

tumor regions, which can introduce noise in TPS predictions and

affect overall accuracy. The whole tumor patch extraction module

includes two steps: firstly, identifying tissue regions inside WSI by

applying OTSU thresholding on greyscale image. Then, cropping

non-overlapping 256 x 256 patches at 20 x level over tissue regions

and select tumor patches using a MobileNet-V2 classification

model. The classification model utilized is, pre-trained on the

ImageNet dataset, with the last seven layers unfrozen for further

training. Following the convolutional layers, the architecture

includes a Flatten layer and a dense layer. In this project, a fully

supervised approach was primarily employed for tumor detection of

WSIs. The extracted tumor regions were used for the subsequent
Frontiers in Immunology 03
training of a model to evaluate PD-L1 expression, aimed at reducing

the potential influence of unrelated background regions and normal

tissues on the training model. The classification model was trained

with approximately 130,000 patches, with tumor cells were

manually annotated on a patch-by-patch basis to facilitate the

training of the tumor segmentation model.
2.4 MIL module

For the MIL module training, the entire dataset is randomly

partitioned into five equal sections. The first three sections are

designated as the training set, while the fourth and fifth sections

serve as the validation and test sets, respectively. The dataset records

each WSI’s ID, the number of patches it contains, and the reference

TPS values provided by pathologists, with 12 labels ranging from 0

to 0 . 9 . P r ep roce s s ing s t ep s such a s RandomCrop ,

RandomHorizontalFlip, and RandomVerticalFlip are performed

before model training. The structure of the prediction module

(shown in Figure 1) uses ResNet18 as the base feature extraction

model, with the final layer adjusted to output a feature vector of size

num_features. The fully connected attention model applies an

attention mechanism to these features, pools them using a

distribution pooling filter, and prepares the representation for the

final classification task.

To intuitively demonstrate the model’s predictive capabilities, the

project developed a method for utilizing the trained MIL model for

predicting and mapping probabilities across an entire slide. The slide is

segmented into 256 x 256 pixel patches, with the coordinates of each

patch recorded. These patches are organized into bags, each containing

200 patches, resulting in a total of 100 bags. The prediction value for

each patch is assigned based on the overall predicted value of its

corresponding bag. Additionally, the recalculation frequency of each

patch is tracked, and the final prediction value for that patch is

determined by averaging these values.
2.5 TPS calculation

TPS is calculated using the formula: (Number of PD-L1 positive

tumor cells exhibiting weak to strong partial or complete

membranous staining/Total number of tumor cells) × 100.

TPS =  
PD − L1   positive  TCs

Total viable  TCs
� 100

To achieve a precise and accurate assessment of PD-L1

expression based on TPS, it is crucial to differentiate tumor cells

from other cell types, including immune cells. Tumor cells are

defined as PD-L1 positive whenever any partial or complete

membranous staining is detected. A minimum of 100 viable

tumor cells is required to determine the PD-L1 IHC positivity on

a slide. Based on the levels of TPS expression, three subgroups have

been established (1): No expression:<1% (2); Low expression: 1%-

49% (3); High expression: >50%.
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2.6 Statistical methods

A series of evaluation metrics were used to evaluate the

performance of the developed model, including the ICC, Bland-

Altman plots, kappa value, sensitivity, specificity, and confusion

matrices at cut-off values of 1% and 50%.

The ICC is utilized to assess the consistency between the model’s

TPS predictions and the reference TPS values provided by pathologists.

Bland-Altman plots assess systematic bias and agreement limits. The

mean difference reflects average prediction error. Upper/lower limits of

agreement define the range within which 95% of differences lie.

Similarly, the Kappa value is employed to determine the agreement

between the model’s TPS predictions and the judgments made by

medical professionals, correcting for random agreement and

addressing biases and issues of precision between different

assessment sources. The levels of agreement for Kappa can be

classified into five categories: 0-0.2 as slight, 0.2-0.4 as fair, 0.4-0.6 as

moderate, 0.6-0.8 as substantial, and 0.8-1.0 as almost perfect. The
Frontiers in Immunology 04
model’s predictive accuracy is evaluated using the Sensitivity and

Specificity values at cut-off points of 1% and 50%. All assessment

materials are generated using Python in the PyCharm IDE.
3 Results

3.1 Cohort clinical data description

As for the 439 lung cancer patients used for model building and

internal testing, the histopathological specimens were randomly

categorized at the level of individual patients into training and

testing cohorts. Table 1 summarizes the clinical and pathological

characteristics of the patients in both the training and testing

cohorts. The majority of the patients presented with primary

tumors, and a minority exhibited metastatic disease. No

statistically significant differences were observed between the

training and testing groups (all p-values >0.05).
FIGURE 1

Consistency of the pathologists and MiLT in the internal and external test cohorts. Scatter plots of TPS-AI vs. TPS-Truth with intraclass correlation
coefficient (ICC) in internal test cohort (A) and external test cohort (B). Comparison of Cohen’s kappa values between AI and manual identification
based on different cut-off values (1% and 50%) in internal test cohort (C) and external test cohort (D).
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3.2 Performance of model on tumor
patch classification

TPS evaluation considers only PD-L1 positive tumor cells

within tumor areas. To reduce the influence of regions without

tumor cells on the development of MIL model, the entire process

begins with using a classification model to differentiate tumor

patches from non-tumor patches within WSIs. Our classification

model segmented the WSIs into smaller patches of 256 x 256 pixels,

successfully identifying and highlighting the tumor regions within

WSIs (displayed by the blue box) (Figures 2A–C). These patches

were subsequently saved for further processing. Notably, among the

nearly 19,000 images constituting the test set (Supplementary

Figure S1), the model accurately classified 92.09% of the data

samples, demonstrating excellent performance in both recall rate

and F1 score (Figure 2B). Based on high recognition rates, this

model effectively distinguished tumor tissue from other tissue types.
Frontiers in Immunology 05
3.3 Comparison of consistency between
the model and pathologists

The classified tumor patches are then input into the MIL

module, which produces the predicted TPS results (TPS-AI). To

demonstrate the accuracy of MiLT, we evaluate the consistency

between TPS-AI and TPS-Truth, and the ICC was used for

continuous TPS values. Firstly, we evaluate the performance of

MiLT on the held-out internal test set (n = 209), which was not seen

by the model during training. Additionally, we introduced external

data (n = 104) for validation to further verify the model’s

generalization capability (Figure 1B, Supplementary Table S1).

The results are illustrated in Figure 1. The ICC for the internal

dataset was 0.960 (95% confidence interval [CI], 0.950-0.971),

indicating an exceptionally high agreement between the model’s

predictions and the pathologist-assigned scores (Figure 1A). The

ICC for external data was 0.910 (95% CI, 0.870–0.938), although

slightly lower than the internal dataset, the ICC for external data

still reflected a substantial level of consistency, suggesting the

robustness of the model when applied to diverse datasets beyond

the original test set (Figure 1B).

The Bland-Altman analysis was used to evaluate systematic bias

and agreement limits between AI-predicted TPS (TPS-AI) and TPS

ground truth values (TPS-Truth). For the internal cohort

(Supplementary Figure S2), the mean difference between TPS-AI

and TPS-Truth was −2.01 (95% limits of agreement: 15.73 to

−19.75), indicating a slight systematic underestimation by the AI

model. The narrow spread of differences within these limits suggests

moderate variability in prediction errors, consistent with the high

ICC (0.960) observed in the internal validation. In contrast, the

external cohort exhibited a smaller mean difference (−0.29) but

wider limits of agreement (20.26 to −20.84), reflecting greater

variability in prediction discrepancies (Supplementary Figure S2).

This aligns with the marginally reduced ICC (0.910) for external

data, likely attributable to cohort heterogeneity or divergent

data distributions.

Furthermore, 1% and 50% cut-off values are specific to the 22C3

PD-L1 clone in non-small cell lung cancer (NSCLC) and in the

current clinical are recommended as thresholds for patient

stratification for immunotherapy. At these cutoffs, the kappa

index is used to evaluate the consistency of the model in the

internal and external datasets. At 1% cut-off value, the model

demonstrated kappa values of 0.756 and 0.797 for the internal

and external datasets, respectively, reflecting a high level of

agreement in predictions (Figures 1C, D). When the cut-off value

was set at 50%, the model achieved a kappa value of up to 0.799 in

the internal testing (Figure 1C), while the external testing yielded a

slightly lower kappa value of 0.617 (Figure 1D). Nonetheless, both

values indicate a high level of consistency, further underscoring the

robustness of the model. Overall, these findings validate the

capability of MiLT to provide reliable assessments across

diverse datasets.
TABLE 1 Clinicopathological characteristics of patients.

Characteristics

Training
cohort
Case

(n = 230)

Test
cohort
Case

(n = 209)

X2 P-value

Sex

Male 138 129 0.136 0.712

Female 92 80

Age (years)

≤ 65 125 105 0.741 0.389

> 65 105 104

Tumor type

NSCLC 2 2 0.495 0.974

Lung Cancer 106 94

LUSC 17 15

LUAD 104 96

Others 1 2

Sampling methods

Surgery 132 130 1.054 0.590

Percutaneous Biopsy 68 55

Others 30 24

Tumor origin

Lung 203 194 3.202 0.202

Lymph 11 8

Others 16 7
NSCLC, non-small cell lung cancer; LUSC, lung squamous cell carcinoma; LUAD,
lung adenocarcinoma.
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3.4 Evaluation of MiLT effectiveness

To further evaluate MiLT effectiveness, confusion matrices were

used to compare the accuracy of TPS scores predicted by AI. Next,

using the results provided by experienced pathologists (TPS-Truth)

as gold standard, the accuracy of TPS prediction by MiLT was

separately evaluated use various assessment metrics (Figures 3A–D,

Supplementary Table S2). In the internal test cohort, the model

demonstrated excellent accuracy (0.813 to 0.919), recall (0.750 to

0.931), and specificity (0.860 to 0.973), indicating a strong overall

classification capability for the samples (Figure 3C). The model

performed exceptionally well in the<1% and 50%-100% ranges

(Figures 3A–D). In the 1% to 49% range, the accuracy decreased

to 0.813, though it remained at a relatively high level, with a slight

increase in precision, suggesting an improvement in the model’s

ability to identify false positives.
Frontiers in Immunology 06
In the external dataset, the model maintained good accuracy

and high specificity (Figure 3D). At the 50% cutoff, recall decreased,

indicating a reduced ability of the model to identify cases with low

PD-L1 expression, with a higher incidence of false negatives. The

internal and external datasets further corroborated the model’s

accuracy, although classification performance declined in the 1%-

49% TPS range, it still remained at a relatively high level.
3.5 Visualization of model

Model visualization provides insights into the reasons and logic

behind its predictions, and render the model more explainable to

allow for monitoring of its performance once deployed.

Additionally, visualization aids in debugging the model.

Therefore, in this study, we employed heatmap visualization to
FIGURE 2

Examples of patches and performance of the classification model. (A) Typical patches of tumor areas and other regions. Scale bar: 50 mm. All
patches are of the same size. (B) Evaluation metrics of the model’s performance on tumor patch classification, including Accuracy, Precision, Recall,
and F1 score. The y-axis represents the metric values ranging from 0.00 to 1.00. (C) Pattern diagram of whole slide images (WSIs) divided into
smaller patches of 256 x 256 pixels. Typical examples of tumor patches are magnified for better visualization. In the WSI, tumor patches are
displayed, with the tumor regions marked in blue among all tumor patches.
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predict the provided WSI using the model and generated a

distribution heatmap for the entire image (Figures 4A–D).

Specifically, we segmented the WSI into patches that were 256 x

256 pixels in size and organized these patches into bags of 10 x 10.

Predictions were then made for all patches within each bag, and the

average value was used to generate the heatmap for the entire image.

For images with varying staining intensities, such as Figure 4C,

which represents a sample with a TPS< 1%, we can also adjust the

threshold to observe regions of relatively strong expression

throughout the entire WSI.
4 Discussion

The use of ICIs in immunotherapy is increasingly prevalent,

and identifying populations that are likely to benefit from such

therapies is central to determining effective treatment strategies

(35). The TPS is a commonly used metric for screening effective

patient populations and is typically interpreted manually by clinical

pathologists (10, 36). However, there is considerable variability in

these assessments, even among expert pathologists.

To assist pathologists in evaluating TPS, this study introduced

MiLT, a DL-based framework taking advantage of MIL method to

predict TPS in WSIs (Figure 5). MiLT can accurately identify tumor
Frontiers in Immunology 07
regions and predicts the proportion of PD-L1-positive cells within

those regions, ultimately producing a TPS score. Nowadays, as MIL

method use sample-level labels for training, which are weak labels and

are easily collected from pathology reports, these methods are

successfully used in various digital pathology (37), especially in the

prediction of genetic alterations based onHE images (38, 39). However,

most of these clinical scenarios use MIL to address a classification task,

only a few researches are dedicated for the analysis of continuous

variables and quantitative data (40). In this study, we treat PD-L1 score

evaluation as multi-task problem using MIL method (33), and add a

tumor extraction module before MIL process, demonstrating our

pipeline with robust performance across both internal and external

testing cohorts. In the internal test set, the predicted scores from MiLT

show a high degree of consistency with those from pathologists,

evidenced by a very high ICC (0.96) and strong kappa value (0.799).

The model achieved an accuracy of 0.813, indicating excellent

performance. We also selected an external cohort from other

hospitals to serve as a validation set, thus reflecting an objective real-

world clinical case environment. Even in external validation, our AI

model exhibited reliable capabilities, achieving an accuracy rate of

81.7%. Our results show MiLT is a promising tool to aid clinical

decision-making for cancer patients.

The application of MIL as a weakly supervised learning model

alleviates the need for cell-level annotations, thereby requiring only
FIGURE 3

PD-L1 TPS assessments of MiLT and pathologists on different PD-L1 expression levels.The accuracy of TPS scores of AI based on confusion matrix
analysis in internal test cohort (A) and external test cohort (B). Comparison of histograms of DL model performance based on PD-L1 expression at
different cut-off values (0% - 1% vs. 1% - 49% vs. 50% - 100%) in internal test cohort (C) and external cohort (D).
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WSI labels, enhancing current TPS assessment methods.

Traditional prediction approaches predominantly rely on strong

supervised learning, that requires extensive annotated data to

maintain high accuracy, often necessitating cell-level labeling (24).

However, sparse or biased data can lead to poor performance in

strong supervised algorithms (41). Acquiring sufficient annotated

data is particularly challenging when dealing with datasets from

diverse institutions. From this perspective, our MIL approach

mitigates dependence on abundant labeled data, allowing the

model to generate reliable predictions based on weak annotations,

thus serving as an effective assistant for clinical pathologists.

Time efficiency is also crucial for the practical application of

predictive models. In classifying tumor and non-tumor patches, we

utilize the classification method to detect the presence of tumor cells

within the patches rather than pixel-level segmentation method,

significantly accelerating identification speed. Furthermore, our

MIL approach predicts the results for each bag rather than the

entire WSI. The final TPS for the WSI is obtained by averaging

predictions across all bags, greatly reducing prediction time and

simplifying the process, with an average prediction time less than

one minute per WSI, depending on image size.
Frontiers in Immunology 08
This study has several limitations. Firstly, although our model

has yielded satisfactory results, the dataset is relatively small.

Gathering additional training data from multiple institutions

would enhance the robustness of the AI model, and further

clinical trials are also needed to validate the performance of the

AI system in real-world settings. Secondly, the TPS scoring gold

standard employed in this study is based on consensus readings by 2

or 3 experienced pathologists, which introduces a degree of

subjectivity in the classification of heterogeneous cases. Thirdly,

our study utilized only a single clonal kit (22C3), which may limit

the generalizability of our findings in clinical application for other

clonal kits. Future research should consider employing multiple

clonal kits to ensure broader applicability and to better understand

the potential variability in results due to differences in kit

characteristics. Fourthly, AI models must be explainable to

engender trust, the explainability of weakly supervised learning is

inferior to strong supervised learning. Although MiLT provides

heatmap of PD-L1 scores, with certain explainability, more

explainability methods are need to explore (42). Additionally, the

architecture of the model may not be optimal. On one hand, we

speculate that improvements could be made by refining the bag
FIGURE 4

Original images and the corresponding heatmaps of model visualization. (A, C) The original images stained for PD-L1, with the brown-stained areas
representing PD-L1 positive tissues. (B, D) Distribution heatmap for the entire image, set with different TPS thresholds.
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sampling within the MIL model. On the other hand, in past few

years, many studies have developed foundation models for digital

pathology using hundreds of thousands or even millions of WIS to

generate data representations, that can generalize well to diverse

predictive tasks (43, 44). By replacing the feature extraction part of

MIL module with a foundation model, the performance and

robustness of MiLT may be further improved.
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The introduction of MiLT has the potential to significantly

impact current clinical practices in several ways. Firstly, by

providing a standardized and automated method for TPS

evaluation, MiLT can reduce the variability associated with

manua l asses sments by di ff e rent patho log i s t s . Thi s

standardization is crucial for ensuring consistent treatment

decisions across different clinical settings. Secondly, the time-
FIGURE 5

The entire workflow of the proposed deep learning framework. The entire workflow consisted of three parts, beginning by cropping the input WSI
into patches and extracting tumor patches through the classification module, with patches randomly placed into bags. The core part was the MIL
module, where the model took a bag of patches as input and predicted the sample’s TPS in its output. The feature extractor module extracted a
feature vector for each patch within the bag. The attention module calculated attention scores based on the feature vectors and assigned weights to
the patches. The MIL pooling filter summarized the extracted features into a bag-level representation by estimating the marginal feature distribution.
Finally, the bag-level representation transformation module predicted the sample-level TPS. The TPS values inferred by multiple experienced
pathologists were used as labels during training.
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efficient prediction capabilities of MiLT can streamline the

workflow in pathology departments, allowing for faster and more

efficient processing of WSIs. This efficiency can lead to quicker

turnaround times for diagnostic reports, ultimately benefiting

patient care.

Moreover, the adaptability of MiLT to various clinical standards

makes it a versatile tool that can be integrated into existing

pathology workflows with minimal disruption. The potential for

integrating advanced AI in the evaluation of TPS opens avenues for

further research and development in digital pathology. Future work

should focus on exploring the broader applicability of MiLT in

diverse clinical settings and addressing the limitations identified in

this study. This includes gathering larger and more diverse datasets,

employing multiple clonal kits, and refining the model architecture

to improve performance and reliability.

In summary, MiLT serves as an effective tool for predicting TPS

and demonstrates potential as a proof of concept for applying MIL

methods in quantitative image analysis. The high technological

performance and potential clinical benefits of MiLT warrant further

investigation in prospective randomized clinical trials. Future

research should aim to validate the model’s performance in real-

world settings and explore its broader implications for

clinical practice.
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