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Multimodal deep learning for
predicting PD-L1 biomarker
and clinical immunotherapy
outcomes of esophageal cancer
Hui Liu1, Yinpu Bai1, Zhidong Wang2, Shi Yin1*, Cheng Gong2*

and Bin Wang2*

1College of Computer and Information Engineering, Nanjing Tech University, Nanjing, Jiangsu, China,
2Department of Cardiothoracic Surgery, the Third Affiliated Hospital of Soochow University,
Changzhou, Jiangsu, China
Although the immune checkpoint inhibitors (ICIs) have demonstrated remarkable

anti-tumor efficacy in solid tumors, the proportion of ESCC patients who benefit

from ICIs remains limited. Current biomarkers have assisted in identifying

potential responders to immunotherapy, yet they all have inherent limitations.

In this study, two ESCC cohorts were established from the Third Affiliated

Hospital of Soochow University in China. One cohort included 220 patients

with PD-L1 expression levels determined by immunohistochemistry, and the

other cohort included 75 patients who underwent immunotherapy. For each

patient in both cohorts, we curated multimodal data encompassing Hematoxylin

and Eosin-stained pathology images, longitudinal computed tomography (CT)

scans, and pertinent clinical variables. Next, we introduced a novel multimodal

deep learningmodel that integrated pathological features, radiomic features, and

clinical information to predict PD-L1 levels, immunotherapy response, and

overall survival. Our model achieved an AUC value of 0.836 for PD-L1

biomarker prediction, and 0.809 for immunotherapy response prediction.

Furthermore, our model also achieved an AUC value of 0.8 in predicting

overall survival beyond one or three years. Our findings confirmed that the

multimodal integration of pathological, radiomic, and clinical features offers a

powerful means to predict PD-L1 biomarker levels and immunotherapy response

in esophageal cancer.
KEYWORDS

esophageal squamous cell carcinoma, PD-L1 biomarker, multi-modal deep learning,
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1540013/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1540013/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1540013/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1540013/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1540013&domain=pdf&date_stamp=2025-03-11
mailto:yinshi2021@njtech.edu.cn
mailto:xxwkgongcheng@163.com
mailto:wangbin1987@suda.edu.cn
https://doi.org/10.3389/fimmu.2025.1540013
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1540013
https://www.frontiersin.org/journals/immunology


Liu et al. 10.3389/fimmu.2025.1540013
1 Introduction

Esophageal cancer is one of the most prevalent cancers and a

leading cause of cancer-related mortality worldwide (1), accounting

for more than 500,000 deaths each year (2). Esophageal squamous

cell carcinoma (ESCC) is the main histological subtype that has

distinct epidemiological and clinical characteristics. It is prone to

lymphatic spread and associated with poor prognosis (3). Immune

checkpoint inhibitors (ICIs) have demonstrated remarkable anti-

tumor efficacy in ESCC patients. However, the proportion of ESCC

patients who benefit from ICIs remains limited.

In current clinical practice, the choice of immunotherapy is mainly

guided by the levels of PD-L1 biomarker within tumor tissue (4).

Elevated levels of PD-L1 are often indicative of favorable response to

immunotherapy (5). Nonetheless, the assessment of PD-L1 biomarker

via immunohistochemistry (IHC), commonly quantified as the

combined positive score (CPS) or tumor proportion score (TPS) (6),

is both resource-intensive and time-consuming (7). The variability in

PD-L1 quantification is also substantial, influenced by the staining

method and antibody employed (8). Some studies have reported a low

rate of reproducibility for PD-L1 assessment by certified pathologists

(9, 10). Besides, its nontrivial interpretation, coupled with the absence

of a universal expert consensus, exacerbates the challenges in clinical

decision-making (11).

Hematoxylin and eosin (H&E) staining is a routine examination

of clinical specimens, facilitating the visual inspection of malignant

cells (12). Pathologists rely on H&E staining for tumor diagnosis,

including the determination of tumor subtype and grade. Recent

advancements in computational pathology have achieved

performance on par with that of pathologists in tasks such as

tumor diagnosis and grade classification (13). Deep learning

methodologies can capture information from H&E images

beyond human visual capability, thereby offering new potential

for pathology slides. For instance, Shamai et al. demonstrated that

the expression levels of molecular biomarkers could be predicted

from H&E whole slide images of breast cancer (7). Jin et al.

introduced a multiple instance learning method for pan-cancer

PD-L1 level prediction from histopathology slides, highlighting its

potential to identify diverse histological patterns indicative of

molecular levels (14). Despite these advancements, there is

currently no evidence supporting the use of H&E slide analysis

for predicting PD-L1 levels in esophageal cancer.

Moreover, radiomic features derived from regions of interest

(ROIs) of radiographic imaging, such as lesion shape, size, voxel

intensity, and texture, have demonstrated strong correlations with

transcriptional and protein expression of clinical biomarkers in

solid tumors (4, 15–18). For instance, Tian et al. proposed a deep

learning framework based on CT images to non-invasively assess

PD-L1 expression and immunotherapy response in NSCLC patients

(15). Mu et al. developed a residual deep network utilizing pre-

treatment PET/CT images to predict PD-L1 expression, as well as

the durable clinical benefit, progression-free survival (PFS), and

overall survival (OS) in advanced-stage NSCLC patients (4).

However, radiomic features have not yet been explored for

predicting the immunotherapy response of ESCC patients.
Frontiers in Immunology 02
Currently, ESCC cohorts containing both H&E-stained slides

and CT images with corresponding PD-L1 levels remain limited. In

this paper, we invested our effort to construct two multimodal

datasets in this retrospective study: a PD-L1 cohort and an

immunotherapy cohort. For each patient, we manually collected

the H&E whole-slide images, pre-treatment and early on-treatment

CT images, as well as clinical variables. With the joint efforts of

expert pathologists and computerized tools designed for rapid

annotation, we successfully annotated the H&E slides and regions

of interest (ROIs) in CT images. We think the esophageal cancer

cohorts with manually curated immunotherapy response and

multimodal data are valuable to the biomedical community. Next,

we introduced a multimodal deep learning model to predict PD-L1

biomarker level and immunotherapy response. For H&E-stained

slides, we employed deep convolutional networks to extract

pathological tissue features. For CT images, we extracted radiomic

features from the ROIs. When combined with clinical variables,

these features demonstrated high predictive power for both PD-L1

levels and immunotherapy outcomes.
2 Materials and methods

2.1 Ethical review approval

This study was approved by the Institutional Review Boards of

the Third Affiliated Hospital of Soochow University (Approval

number: 2024-KD139) and was performed in accordance with the

Declaration of Helsinki.
2.2 Patient cohorts

For the task of PD-L1 level prediction, we retrospectively

curated a PD-L1 cohort of ESCC patients who underwent

esophagectomy. The inclusion criteria were: (a) histologically

confirmed ESCC; (b) treatment by surgery; (c) availability of

complete clinical records. The exclusion criteria were: (a) receipt

of neoadjuvant therapy before surgery; (b) baseline contrast-

enhanced chest CT images of poor quality or with unmeasurable

lesions; (c) poor-quality H&E images. The clinical variables include:

age, sex, BMI, smoking history, drinking history, hypertension,

tumor node metastasis (TNM) stage, grade, neurovascular invasion,

tumor size, adjuvant radiotherapy and chemotherapy. The clinical

endpoint of interest was overall survival, defined as the time from

the treatment of esophagectomy to death from any cause or the

latest follow-up. The latest follow-up period ended on 1 January

2024. As a result, the PD-L1 cohort included 220 patients, and the

detailed summary is presented in Table 1. The PD-L1 levels were

examined by immunohistochemistry assay on formalin-fixed,

paraffin-embedded samples, using PD-L1 22C3 antibody on the

Dako Link 48 platform (RRID: AB 2889976). The PD-L1 levels were

reported in the form of combined positive scores (CPS) that fall in

[0–100]. Two pathologists independently evaluated the ESCC slides

to determine the PD-L1 expression in both tumor cells and immune

cells, including lymphocytes and macrophages.
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For immunotherapy response prediction, we built an

immunotherapy cohort of patients who received immune

checkpoint inhibitors (Tislelizumab, Camrelizumab, and

Sintilimab) alone or in combination with chemotherapy. The

inclusion criteria were: (a) histologically confirmed ESCC via

endoscope; (b) stage III/IV; (c) receipt of immunotherapy alone

or in combination with chemotherapy; (d) availability of contrast-

enhanced chest CT within 2 months before the start of

immunotherapy; and (e) completion of 2-4 cycles of treatment

with follow-up CT images available for response evaluation. The

exclusion criteria were: (a) receipt of surgery or radiotherapy during

immunotherapy; (b) incomplete clinical records; and (c) poor-

quality CT and H&E images. Immunotherapy response was

independently evaluated by two experienced radiologists and one

oncologist according to RECIST version 1.1 (19, 20). The

immunotherapy cohort included 75 patients, and the clinical

variables are presented in Table 2. We also provided the clinical

and radiomics features collected before treatment for both the PD-

L1 and immunotherapy cohorts (Supplementary Table S6), and the

radiomics features after treatment for the immunotherapy cohort

(Supplementary Table S7).
2.3 Multimodal learning framework

Our learning framework leveraged self-supervised contrastive

learning and multimodal fusion techniques. Unlike previous studies

that utilized only WSIs or CT images, our method integrated

multimodal features across multiple prediction tasks, thereby

achieving better performance. Overall, the framework consisted of

three stages (Figure 1). First, the WSIs were segmented and

tessellated into patches, which were labeled as tumor or non-

tumor based on pathologist annotations. All CT images were

delineated to identify regions of interest (ROI), from which

radiomic features were extracted. Second, we trained a contrastive

learning model on a large number of unlabeled patches, thereby

extracting expressive patch-level features for downstream tasks.

Finally, we used LASSO to select important features from the

radiomic features and clinical variables. These selected features

were then aggregated with the pathological features of tumor

patches through an attention mechanism. The multimodal

features were used for downstream tasks, including PD-L1

level assessment, immunotherapy response prediction, and

prognosis evaluation.
2.4 Data preprocessing and annotation

The preprocessing of WSIs involved tissue segmentation and

tiling. For each slide, we used OpenSlide to read it into memory and

then converted it from RGB to HSV color space (21). To identify

tissue regions (foreground), a binary mask was generated by

thresholding the saturation channel in HSV space. The edges

were smoothed, and morphological closure was applied to fill

small gaps and holes, effectively segmenting the slide into tissue
TABLE 1 Demographic and clinical variables of ESCC PD-L1 cohort.

ESCC PD-L1 cohort

All PD-L1<50% PD-L1≥ 50%

(N=188) (N=32)

Age (years)

Mean ± SD 66.5 ± 8.1 66.7 ± 8.1 65.4 ± 7.0

Gender, n (%)

Female 45 (20.5) 37 (19.7) 8 (25.0)

Male BMI 175 (79.5) 151 (80.3) 24 (75.0)

Mean ± SD 22.56 ± 3.31 22.53 ± 3.28 22.76 ± 3.51

Smoking history, n (%)

No 127 (57.7) 109 (58.0) 18 (56.2)

Yes 93 (42.3) 79 (42.0) 14 (43.8)

Drinking history, n (%)

No 136 (61.8) 115 (61.2) 21 (65.6)

Yes 84 (38.2) 73 (38.8) 11 (34.4)

Hypertension, n (%)

No 124 (56.4) 106 (56.4) 18 (56.2)

Yes 96 (43.6) 82 (43.6) 14 (43.8)

TNM Stage, n (%)

I 19 (8.6) 16 (8.5) 3 (9.4)

II 95 (43.2) 83 (44.1) 12 (37.5)

III 94 (42.7) 78 (41.5) 16 (50.0)

IV 12 (5.5) 11 (5.9) 1 (3.1)

Grade, n (%)

G1 20 (9.1) 15 (8.0) 5 (15.6)

G2 139 (63.2) 124 (66.0) 15 (46.9)

G3 61 (27.7) 49 (26.1) 12 (37.5)

Neurovascular invasion, n (%)

No 123 (55.9) 104 (55.3) 19 (59.4)

Yes 97 (44.1) 84 (44.7) 13 (40.6)

Tumor size

Mean ± SD 12.31 ± 9.48 12.21 ± 9.76 12.89 ± 7.74

Adjuvant radiotherapy, n (%)

No 135 (61.4) 117 (62.2) 18 (56.2)

Yes 85 (38.6) 71 (37.8) 14 (43.8)

Adjuvant chemotherapy, n (%)

No 121 (55.0) 107 (56.9) 14 (43.8)

Yes 99 (45.0) 81 (43.1) 18 (56.2)

Overall survival (months)

Median 24.65 24.43 26.03
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and non-tissue regions. Following segmentation, eachWSI was split

into 256×256 pixel patches within the foreground region at 20x

magnification. As a result, we obtained 742,978 patches, with an

average of 3,377 patches per WSI.

Patches were filtered to exclude those with insufficient tissue

content, using a threshold where pixel values greater than 210 were

considered white. Two pathologists with more than 10 years of

clinical experience independently annotated the tumor regions on

each slide. Patches overlapping the annotated tumor regions were

labeled as tumor, and non-tumor otherwise.
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All preoperative contrast-enhanced chest CT images from both

cohorts were independently reviewed by 2 cardiothoracic surgeons

who had 10 years of clinical experience. They manually delineated

the region of interest (ROI) using the open-source software 3D

Slicer (https://www.slicer.org/) to perform image segmentation.
2.5 Contrastive learning for pathological
feature extraction

Given a large number of unlabeled patches, we leveraged

contrastive learning to train an encoder to extract the intrinsic

features of each patch (22, 23). The main idea of contrastive

learning is to bring positive samples close to each other in the

latent space and push negative samples to be far apart, by setting a

pretext task. In our practice, we generated two views of a patch via

image augmentation as positive pairs, while the augmentations of

other patches in a mini-batch were regarded as negative samples.

We employed a diverse range of image augmentations, including

random proportion cropping and scaling, random color jittering,

random Gaussian blurring, and random flipping. The ResNet50

CNN network pre-trained on ImageNet (24) was used as the

encoder backbone f, which yields a 1024-dimensional latent

representation hi for an input patch xi, namely, hi = f (xi). Next, a

projection head g transforms the latent representation into

embedding zi. Formally, we have zi = g(hi), and the contrastive

loss of the input patch xi is defined as:

L = −log
exp(sim(zi, z

0
i)=t)

exp(sim(zi, z
0
i)=t) +oN

j=1exp(sim(zi, zj)=t)

where zi and z
0
i represent the embeddings of a pair of positive

samples regarding the input patch xi, sim() is the cosine similarity

obtained by dot product of two embeddings after L2 normalization.

N is the size of the negative sample queue, zj refers to the embedding

of a negative sample and t is the temperature parameter. The size

and the quality of negative samples greatly affect the performance of

contrastive learning. Inspired by our previous work (22), we

adopted the adversarial contrastive learning method AdCo (25) to

pre-train the encoder. It treats negative samples as learnable weights

and alternately updates adversarial samples to generate the most

challenging negative samples.

After the contrastive learning finished, the encoder was used to

extract the patchlevel features. To extend the applicability of our

model, we used the features of the labeled patches (tumor vs. non-

tumor) to train a classifier with only one fullyconnected layer to

identify tumor patches. The classifier achieved an AUC value

of 0.903.
2.6 Multimodal feature fusion

Following the extraction of pathological features, we used the

Python package PyRa-diomics (26) to extract radiomics features

from the ROIs that were manually annotated by physicians. For

each CT image, 118 features were extracted, including first-order
TABLE 2 Demographic and clinical variables of ESCC immunotherapy
response cohort.

ESCC immunotherapy cohort

All Non-responder Responder

(N=39) (N=36)

Age (years)

Mean ± SD 67.04 ± 8.56 68.23 ± 8.73 65.75 ± 8.31

Gender, n (%)

Female 10 (13.33) 4 (10.26) 6 (16.67)

Male BMI 65 (86.67) 35 (89.74) 30 (83.33)

Mean ± SD 21.98 ± 2.88 21.93 ± 2.95 22.02 ± 2.86

Smoking history, n (%)

No 49 (65.33) 28 (71.79) 21 (58.33)

Yes 26 (34.67) 11 (28.21) 15 (41.67)

Drinking history, n (%)

No 55 (73.33) 30 (76.92) 25 (69.44)

Yes 20 (26.67) 9 (23.08) 11 (30.56)

Hypertension, n (%)

No 49 (65.33) 27 (69.23) 22 (61.11)

Yes 26 (34.67) 12 (30.77) 14 (38.89)

TNM Stage, n (%)

III 49 (65.33) 25 (64.10) 24 (66.67)

IV 26 (34.67) 14 (35.90) 12 (33.33)

Treatment strategy, n (%)

Immunotherapy 4 (5.33) 4 (10.26) 0 (0.00)

Immunotherapy
+Chemotherapy

71 (94.67) 35 (89.74) 36 (100.00)

PD-L1/PD-1 inhibitor, n (%)

Sintilimab 59 (78.67) 30 (76.92) 29 (80.56)

Camrelizumab 10 (13.33) 4 (10.26) 6 (16.67)

Tislelizumab 6 (8.00) 5 (12.82) 1 (2.78)

Progression-free survival (months)

Median 14.27 13.33 14.42

(95%CI) (11.97-16.56) (9.64-17.03) (11.76-17.08)
frontiersin.org

https://www.slicer.org/
https://doi.org/10.3389/fimmu.2025.1540013
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1540013
statistical features, as well as shape and texture features. The clinical

variables listed in Tables 1 and 2 were also taken into account.

Next, we employed the Least Absolute Shrinkage and Selection

Operator (LASSO) algorithm (27) to select important radiomic and

clinical features for prediction tasks. The selected features were then

concatenated with the pathological features of tumor patches, resulting

in a comprehensive set of fused features. These fused features were

input into a self-attention module to adjust their weights according to

the prediction tasks. Finally, average pooling was applied to yield

patient-level features for downstream prediction tasks.
2.7 Prediction task for PD-L1 level

Given the fused multimodal features, a network with two fully-

connected layers was used to predict PD-L1 levels. Based on the PD-

L1 levels measured by immunohisto-chemistry, we divided the 220
Frontiers in Immunology 05
patients into two groups: a high-level group (PD-L1≥50, n=32) and

a low-level group (PD-L1<50, n=188). The patients in the high-level

group were labeled as 1, and 0 otherwise. As a result, we formulated

the prediction task as a binary classification problem. The cross-

entropy loss function was used:

L = − o
i
yi log pi + (1 − yi) log (1  − pi)

where yi is the ground-truth label of PD-L1, pi is the predicted

probability. In this task, we excluded the clinical variables during

the feature fusion stage, as clinical information contributed less to

predicting PD-L1 levels.

We trained our model using the Adam optimizer for a total of

50 epochs. The initial learning rate was set to 1e-5, with the learning

rate multiplied by 0.1 every 15 epochs. The weight decay was set to

1e-2. We employed five-fold cross-validation to verify the

performance of our model and reported the average AUC value.
FIGURE 1

Overview of the proposed multimodal deep learning framework. The framework involved three steps: preprocessing and annotation of whole slide
images (WSIs) and CT images, pretraining of a contrastive learning model to extract patch-level features, and integration of multimodal features by
attention mechanism. The multimodal features were applied for PD-L1 level and immunotherapy response prediction, as well as prognosis.
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2.8 Prediction task for overall survival

For overall survival (OS) prediction, the patients in the PD-L1

cohort were divided into two groups based on their OS using a

threshold of 12 months or 36 months. With the 12-month

threshold, patients were categorized into a high-risk group

(OS<12 months, n=24) and a low-risk group (OS≥12 months,

n=196). Using the 36-month threshold, patients were also

categorized into a high-risk group (OS<36 months, n=67) and a

low-risk group (OS≥36 months, n=153). The patients in the high-

risk group were labeled as 1, and 0 otherwise. Similarly, the binary

cross-entropy loss function was used for the OS prediction task.
2.9 Prediction task for
immunotherapy response

For the 75 patients in the immunotherapy cohort, we

categorized patients with partial response (PR) and complete

response (CR) as responders (n=36, labeled as 1), and those with

stable disease (SD) as non-responders (n=39, labeled as 0). We were

also interested in the prediction of progression-free survival (PFS).

For this task, the patients with PFS less than 12 months were

classified into a low-PFS group (n=27, PFS<12 months), and others

were classified into a high-PFS group (n=48, PFS≥12 months). The

prediction task was formulated as a binary classification task,

utilizing the cross-entropy loss function.

Since the expression level of PD-L1 is closely related to

immunotherapy response (28, 29), with high PD-L1 levels

generally indicating a favorable response to immunotherapy, we

incorporated the features derived from the PD-L1 level prediction

model into the immunotherapy response prediction task.

Specifically, the 512-dimensional features, transferred from the

final layer of the trained PD-L1 prediction model, were

concatenated with 8-dimensional radiomic features and 8-

dimensional clinical variables selected by the Lasso algorithm.

The combined features were fed into a single fully-connected

layer to predict immunotherapy response.
2.10 Integration of longitudinal CT images

To further enhance the predictive performance for

immunotherapy response, we introduced a recurrent neural

network (RNN) module (30) into the multimodal framework to

effectively exploit the longitudinal CT images. First, we used the

Pyradiomics package to extract radiomic features from the baseline

and the early on-treatment CT images. These radiomic features were

then converted into 64-dimensional embeddings through a fully-

connected network. The embeddings were stacked over time to form

a sequence of input features for the RNN module. Finally, we

concatenated the pathological features, longitudinal CT features,

and clinical variables into a 128-dimensional fused feature, which

was subsequently used to predict the immunotherapy response.
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2.11 Feature importance assessment

We used the Shapley Additive Explanations (SHAP) method to

evaluate the importance of features (31–33). The SHAP value

measures the impact of each feature on the predictions of a

machine learning model for a single input. The average SHAP

value across a dataset quantifies the overall importance of an input

feature. The Kernel Explainer function of SHAP was used to assess

the importance of clinical variables and deep learning-derived

features. Bar plots were utilized to depict the average SHAP value

magnitudes of top variables for each class. For each variable group,

total importance is defined as the sum of the importance across all

variables in that group (e.g., all clinical variables or deep learning

features). To enhance interpretability for deep learning features, the

class activation map (CAM) (34) was employed to visualize the

most important features.
3 Results

3.1 Multimodal fusion enhanced PD-L1
level prediction

For PD-L1 level prediction, our multimodal model achieves

superior performance in distinguishing high-level and low-level

cases at the threshold 50 CPS (AUC=0.836 ± 0.0003, Figure 2a). To

further demonstrate the effectiveness of the multimodal model, we

built a few variant models that used only H&E images or CT images.

The results showed that the multimodal model surpassed the H&E-

only model (AUC=0.81 ± 0.0051) and the CT-only model

(AUC=0.678 ± 0.0105). Also, we compared our H&E-only model

to previously published methods that are also built solely on H&E

slides (Figure 2b), including ResNet50 (35), CLAM (36), and

TransMIL (37). We found that our H&E-only model remarkably

outperformed ResNet50 (AUC=0.66 ± 0.0086), CLAM (AUC=0.61

± 0.0009), and TransMIL (AUC=0.74 ± 0.0150).

Furthermore, we used the multimodal model to perform

regression analysis on PD-L1 levels. For this regression task, the

PD-L1 levels were normalized into the [0, 1] range, and the Pearson

correlation coefficient (r) (38) was reported as a performance

metric. As a result, our multimodal model showed notable

performance (Figure 2c), and we observed a significant positive

correlation between the actual and predicted values across five-fold

cross-validation (r=0.52, p-value=1.55e-12).

To explore the impact of patch-level features on the PD-L1

prediction, we evaluated the importance of each patch by

calculating the ratio of the predicted probabilities with and

without the inclusion of each patch’s feature. This ratio reflected

the importance of each patch and enabled us to generate a heatmap

for each slide. We presented two representative H&E slides

randomly selected from the PD-L1 cohort, along with the

corresponding heatmaps and several patches with high and low

importance scores (Figure 2d–g). Visual inspection of these patches

revealed significant differences, suggesting close association
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between the PD-L1 levels and histological morphology.

Furthermore, we highlighted the important radiomic features

evaluated by SHapley Additive exPlanation (SHAP) (31–33)

values (Figure 2h) that contribute significantly to PD-L1 prediction.
3.2 Multimodal prediction of
overall survival

We further evaluated the multimodal model in predicting

overall survival. For the high-and low-risk groups defined by a 1-

year threshold, we compared the multimodal model with variant

models built on different subsets of features (Figure 3a). Although

the model using only clinical variables (AUC=0.785 ± 0.0103)

performed better than the H&E-only model (AUC=0.761 ± 0.014)

or the CT-only model (AUC=0.705 ± 0.015), the multimodal fusion

achieved the highest performance (AUC=0.802 ± 0.014), which also

outperformed the clinical+CT model (AUC=0.756 ± 0.015), the

clinical+H&E model (AUC=0.751 ± 0.023), and the H&E+CT

model (AUC=0.766 ± 0.005). Furthermore, based on the

multimodal model predicted scores, we categorized the patients

into low-risk and high-risk groups and conducted survival analysis

(Figure 3b, Supplementary Figure S1). The Kaplan–Meier curves

showed that the high-risk group had a poorer prognosis compared

to the low-risk group (HR=2.10, p-value=0.055), where HR
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represents the hazard ratio between the high-risk and low-risk

groups, indicating the relative risk of an event occurring in the high-

risk group. However, the stratification by H&E-only model and

other ablated models did not show statistical significance (Figure 3c,

Supplementary Figure S1).

Using the 3-year threshold, the H&E-only model (AUC=0.741 ±

0.004) outperformed the model using only clinical variables

(AUC=0.735 ± 0.008) or the model using radiomics features

(AUC=0.670 ± 0.008) (Figure 3d). The multimodal model

demonstrated superior performance (AUC=0.802 ± 0.004),

compared to the clinical+CT model (AUC=0.758 ± 0.007), H&E

+clinical model (AUC=0.774 ± 0.097), and H&E+CT model

(AUC=0.782 ± 0.098). Similarly, the survival analysis based on the

predicted scores by the multimodal model showed that the high-risk

group had a poorer prognosis than the low-risk group (HR=2.460, p-

value=0.045), while all other ablated models did not yield statistical

significance (Figures 3e, f, Supplementary Figure S2).

Furthermore, the multimodal model also demonstrated

superior performance in the PFS prediction task (Figures 3g–i).

The patients were classified into high- and low-PFS groups using a

threshold of 12 months. As a result, the clinical-only model

achieved better performance (AUC=0.820 ± 0.004) than the

H&E-only model (AUC=0.713 ± 0.021) and the CT-only model

(AUC=0.698 ± 0.028). The multimodal model showed the best

performance (AUC=0.875 ± 0.010), which is better than the clinical
FIGURE 2

Multimodal prediction of PD-L1 levels in ESCC cohort. (a, b) ROC curves for the prediction of PD-L1 level (high: CPS≥50 vs low: CPS<50) using the
multimodal and ablated models. (b) ROC curves for performance comparison between our image-only model and comparative methods. (c) Scatter
plots of the predicted and actual expression levels of PD-L1. (d-g) Representative H&E slides associated to the specimens with low and high PD-L1
levels assessed by immunohistochemistry (upper: low PD-L1 and bottom: high PD-L1), as well as the heatmaps generated by predicted scores and
exemplar patches. (h) SHAP values of top predictive features for PD-L1 levels. The features are ranked by the sum of SHAP value magnitudes over
all samples.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1540013
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1540013
+CT model (AUC=0.857 ± 0.009), H&E+clinical model

(AUC=0.856 ± 0.006), and H&E+CT model (AUC=0.757 ± 0.027).

To reveal key features with prognostic values, we computed

SHAP values of multi-modal features in prediction of OS

(Supplementary Figure S3). Some radiomic features associated with

tumor shape and first-order statistics contributed significantly to OS.

Quite a few clinical variables, such as hypertension, hemoglobin, and

stage, played a key role in OS prediction. Moreover, we presented four

representative H&E slides, which were randomly selected from the

low-risk and high-risk patients for 1-year OS and 3-year OS. For

visual inspection, we generated their corresponding heatmaps and

presented a few representative patches for each slide (Figures 4a–d).

After careful examination, pathologists concluded that the high-risk

slides were characterized by lack of keratin pearls, numerous mitotic
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figures, increased tumor cellularity and intensity. In contrast, the

slides from the low-risk group exhibited formation of keratin pearls

and intercellular bridges.
3.3 Multimodal prediction of
immunotherapy response

To highlight the significance of multimodal data in predicting

immune therapy response, we initially developed predictive models

using basic features and assessed their performance. We then

progressively fused features from diverse modalities to improve

model performance. Specifically, we initially predicted

immunotherapy response using only H&E and CT feature, achieving
FIGURE 3

Multimodal features for prediction of overall survival (OS) and progression-free survival (PFS). (a) AUC values in prediction of high-risk (OS<12
months) and low-risk (OS≥12 months) patients of the PD-L1 cohort. Note that statistical significance has been conduced by two-sided t-test and the
results are presented in the Supplementary Table S1. (b, c) Kaplan-Meier curves for hig-hand low-risk (cutoff=12m) patients predicted by the
multimodal and H&E-only models, respectively. (d) AUC values in prediction of high-risk (OS<36 months) and low-risk (OS≥36 months) patients of
the PD-L1 cohort. Statistical significance (two-sided t-test) has been presented in the Supplementary Table S2. (e, f) Kaplan-Meier curves for high-
and low-risk (cutoff=36m) patients predicted by the multimodal and H&E-only models, respectively. (g) AUC values in prediction of high- and low-
PFS (cutoff=12m) patients of immunotherapy cohort. Statistical significance (two-sided t-test) has been presented in the Supplementary Table S3.
(h, i) Kaplan-Meier curves for high- and low-PFS (cutoff=12m) patients of immunotherapy cohort, predicted by the multimodal model and pre-
trained model on PD-L1 cohort, respectively.
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a suboptimal performance with an AUC of 0.65. After integrating the

pathological features extracted from H&E for predicting PD-L1 level,

the AUC improved to 0.70. When these fused features were further

combined with clinical variables, the AUC increased to 0.75. Finally,

the incorporation of radiomics features resulted in a further

improvement, achieving an AUC of 0.80 (Figure 5a).

To investigate the interpretability of our model, we computed

SHAP values to assess the contribution of the clinical variables,

H&E features, and radiomic features to the final prediction

(Figure 5b). Several clinical variables, such as smoking history,

age, and hemoglobin (Hb) levels, significantly contributed to the

prediction of immunotherapy response. Importantly, some

radiomic features, originally transferred from the PD-L1

prediction task, also played a significant role in influencing the

immunotherapy response. For example, the GLSZM LAHGLE

feature, which quantifies the proportion of the joint distribution
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of larger zones with higher grey-level values within the tumor, often

reflects the tumor intratumoural heterogeneity associated with the

response to treatment. Moreover, the NGTDM strength feature was

notably related to the treatment response. The responders exhibited

significantly lower NGTDM strength values compared to non-

responders (Figure 5c, p-value=0.01). Further analysis of two

representative cases (Figures 5d, e) revealed that the case with

high NGTDM strength (right, non-responder) showed well-defined

boundaries and a uniform internal structure, in contrast to the case

with low NGTDM strength (left, responder). Examination of

corresponding H&E slides (Figures 5f, g) indicated that the non-

responder slide was characterized by a lack of keratin pearl

formation, high mitotic figures, increased tumor cellularity, and

intensity. In addition, the clinical variables such as smoking history,

triglyceride, hemoglobin, and age also contributed significantly to

the immunotherapy response prediction.
FIGURE 4

Representative H&E slides from PD-L1 cohort, and corresponding heatmaps generated using patch-level attention scores, as well as exemplar
patches. (a, b) H&E slides, heatmaps and exemplar patches randomly selected from patients with high- and low-risk prognosis by threshold 12
months, respectively. (c, d) H&E slides, heatmaps and exemplar patches randomly selected from patients with high- and low-risk prognosis by
threshold 36 months, respectively.
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3.4 Early on-treatment CT enhanced
prediction performance

Although the multimodal model achieved an AUC of 0.8 in the

prediction of immunotherapy response, there remains a significant

gap for clinical practice. We further tested whether the first follow-up

CT after treatment could enhance predictive performance. Our

findings indicate that by integrating longitudinal CT features with

H&E and clinical features, the multimodal model achieved an AUC

of 0.937 ± 0.002 (Supplementary Figure S4A). Treatment with

immune checkpoint inhibitors typically lasted between 2 and 6

months, with an average duration of 4 months. The first follow-up

CT is usually conducted around 1-2 months after the start of

treatment. Our study verified that the incorporation of the early

on-treatment CT scans remarkably improved the predictive

performance, suggesting that longitudinal CT effectively captured

the changes in characteristics of lesions induced by immunotherapy.
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To explore the important features, we employed the SHAP

method to assess the contribution of each clinical and deep learning

feature to the model prediction (Supplementary Figure S4B). It was

found that the radiomic features extracted from longitudinal CT

scans accounted for the top 20 most important features. In contrast,

clinical variables such as smoking history, triglyceride, hemoglobin,

and age contributed less significantly to the immunotherapy

response prediction.
4 Discussion

The PD-L1 level has gained attention as a predictive biomarker

for immunotherapy response. Previous deep learning-based studies

focus on predicting PD-L1 biomarker fromH&E-stained slides across

several cancer types. For instance, one study achieved a weighted

average AUC of 0.74 on formalin-fixed specimens across nine types of
FIGURE 5

Multimodal prediction of immunotherapy response. (a) AUC values in prediction of responsive and non-responsive to immunotherapy by multimodal
and ablated models. The models marked with an asterisk use the pathological features learned in PD-L1 prediction task. Statistically significant
differences are detailed in theSupplementary Table S4. (b) Top 20 multimodal features ranked by SHAP values for predicting immunotherapy
response. (c) Violin plot of the radiomic feature original ngtdm Strength in responders and non-responders. (d, e) CT images with annotated tumor
regions came from two patients having low and high original ngtdm Strength feature values. (f, g) Representative H&E slides came from responders
and non-responders to immunotherapy (left column: responsive, right column: non-responsive), as well as the corresponding heatmaps and
exemplar patches.
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tumors where PD-L1 is an established biomarker (14). However, the

use of CT images for PDL1 level prediction has been less explored. A

pioneering study proposed a deep learning model to predict PD-L1

expression using CT images in non-small cell lung cancer (NSCLC)

patients, achieving AUCs of 0.71 (95% CI: 0.59-0.81) and 0.76 (95%

CI: 0.66-0.85) in the validation and test cohorts (4). Despite these

efforts, the performance of such studies has not been satisfactory. In

contrast, our multimodal deep learning model achieved 0.836 AUC

value in predicting PD-L1 levels of ESCC patients. Our study

demonstrated that H&E staining and CT imaging are highly

indicative of PD-L1 expression, and these predictive signatures can

be effectively learned by an adequately trained deep learning model

based on unannotated samples. From a clinical practice perspective,

our multimodal model offers a cost-effective and efficient alternative

to traditional immunohistochemistry (IHC) techniques.

Our model successfully stratified patients who underwent surgery

into low- and high-risk groups in terms of overall survival. For the

prediction of 1-year and 3-year survival times, our model achieved

AUC values exceeding 0.80, underscoring the robustness of the

proposed model. Compared to previous studies that relied

primarily on single-modal data, such as the H&E slides (39, 40) or

CT images (41), our multimodal model demonstrated superior

performance. Previous studies have utilized tumor characteristics

(e.g., location, size, differentiation, TNM stage) and pathology

features (e.g., lymphovascular invasion), as well as hematology test

results (e.g., leukocyte and platelet counts) to predict clinical

outcomes of ESCC patients (41). However, CT images or clinical

variables alone are insufficient to fully reflect the complexity of

clinical outcomes. In contrast, our multimodal model, which

integrated diverse data sources, provided complementary

information that enhanced predictive capability in a clinical setting.

We also evaluated our multimodal model for predicting

immunotherapy response on a separate ESCC immunotherapy

cohort, entirely independent from the PD-L1 cohort. Notably, we

found that the multimodal features extracted by the encoder, trained

on the PD-L1 cohort for PD-L1 level prediction, significantly

enhanced the predictive performance for immunotherapy response.

This finding aligned with previous reports indicating that higher PD-

L1 levels are often associated with a more favorable response to

immunotherapy (5). The cross-cohort experiments confirmed that

our model captures features pertinent to the prediction tasks, rather

than merely memorizing the samples. Consequently, our multimodal

model achieved an AUC value exceeding 0.8 in predicting

immunotherapy response, demonstrating its efficacy in stratifying

patients likely to benefit from immunotherapy.

One limitation of this study is that the current model is restricted

to binary classification, whereas immunotherapy response is typically

categorized into four distinct types: complete response, partial

response, stable disease, and progressive disease. Furthermore, the

sample size of ESCC patients in the cohorts is relatively small, which

may affect the robustness and generalizability of the model. In

addition, incorporating multi-omics data, such as genetic
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alterations and epigenetic modifications, could potentially enhance

the model’s performance in predicting clinical outcomes.
5 Conclusion

We propose a multimodal deep learning model designed to

predict PD-L1 biomarker level and immunotherapy response in

patients with esophageal squamous cell carcinoma. Our approach

integrates multimodal features derived from Hematoxylin and Eosin

(H&E) stained slides and CT images, alongside clinical variables. The

integrated features are highly indicative of PD-L1 expression levels,

immunotherapy response, and overall survival. Furthermore, our

findings reveal that extracted features predictive of PD-L1 expression

are also significantly associated with immunotherapy response.

Notably, the inclusion of longitudinal CT images enhances the

predictive accuracy of immunotherapy response.
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