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survival in Wilms tumor
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Shuyang Dai1, Shan Zheng1,2*, Kuiran Dong1,2* and Rui Dong1,2*

1Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of
Birth Defect, Shanghai, China, 2Children’s Hospital of Fudan University (Xiamen Branch), Xiamen
Children’s Hospital, Xiamen Key Laboratory of Pediatric General Surgery Diseases, Xiamen, China,
3Shanghai Medical College, Fudan University, Shanghai, China
Background: Wilms tumor (WT) is the most common childhood renal

malignancy, with recurrence linked to poor prognosis. Identifying the

molecular features of tumor phenotypes that drive recurrence and discovering

novel targets are crucial for improving treatment strategies and enhancing

patient outcomes.

Methods: Single-nuclei RNA sequencing (snRNA-seq), spatial transcriptomics

(ST), bulk RNA-seq, and mutation/copy number data were curated from public

databases. The Seurat package was used to process snRNA-seq and ST data.

Scissor analysis was applied to identify tumor subpopulations associated with

poor relapse-free survival (RFS). Univariate Cox and LASSO analyses were utilized

to reduce features. A prognostic ensemble machine learning model was

developed. Immunohistochemistry was used to validate the expression of key

features in tumor tissues. The CellChat and Commot package was utilized to

infer cellular interactions. The PERCEPTION computational pipeline was used to

predict the response of tumor cells to chemotherapy and targeted therapies.

Results: By integrating snRNA-seq and bulk RNA-seq data, we identified a

subtype of Scissor+ tumor cells associated with poor RFS, predominantly

derived from cap mesenchyme-like blastemal and fibroblast-like tumor

subgroups. These cells displayed nephron progenitor signatures and cancer

stem cell markers. A prognostic ensemble machine learning model was

constructed based on the Scissor+ tumor signature to accurately predict

patient RFS. TGFA was identified as the most significant feature in this model

and validated by immunohistochemistry. Cellular communication analysis

revealed strong associations between Scissor+ tumor cells and cancer-

associated fibroblasts (CAFs) through IGF, SLIT, FGF, and PDGF pathways. ST

data revealed that Scissor+ tumor cells were primarily located in immune-desert

niche surrounded by CAFs. Despite reduced responsiveness to conventional

chemotherapy, Scissor+ tumor cells were sensitive to EGFR inhibitors, providing

insights into clinical intervention strategies for WT patients at high risk

of recurrence.
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Conclusion: This study identified a relapse-associated tumor subtype resembling

nephron progenitor cells, residing in immune-desert niches through interactions

with CAFs. The proposed prognostic model could accurately identify patients at

high risk of relapse, offering a promising method for clinical risk stratification.

Targeting these cells with EGFR inhibitors, in combination with conventional

chemotherapy, may provide a potential therapeutic strategy for WT patients.
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1 Introduction

Wilms tumor (WT) is the most prevalent renal malignancy in

infants and children, accounting for about 90% of pediatric renal

tumors (1). The mean age at diagnosis is 44 months in patients with

unilateral WT and 31 months in patients with bilateral WT (2, 3).

As an embryonal tumor, WT is closely linked to early

nephrogenesis and resembles fetal developing nephron cells (4).

Two major international collaborative groups, The Children’s

Oncology Group Renal Tumor Committee(COG-RTC) (5) and the

International Society of Pediatric Oncology Renal Tumor Study

Group (SIOP-RTSG) (6) have refined the diagnostic and

therapeutic guidelines which are used for the management of WT

worldwide. Due to efficacious multidisciplinary therapy, the overall

survival (OS) of patients with WT is high, reaching around 90% (7).

However, disease recurrence or relapse still occurs in 20% patients

within 2 years of diagnosis (7, 8), and the mortality rate is over 35%

in patients with relapse (9, 10). Therefore, more comprehensive

stratification criteria are required to accurately identify patients at

high risk of recurrence and to refine personalized treatment

strategies aimed at enhancing relapse-free survival (RFS).

Currently, both COG-RTC and SIOP-RTSG have utilized

tumor stage, histological features, and tumor volume as critical

prognostic indicators to stratify patients into distinct risk categories

and to guide therapeutic interventions. Additionally, previous

studies have underscored the significance of genetic aberrations in

predicting increased risk of relapse and mortality, including

mutations in genes such as WT1, MYCN, TP53, IGF2, CTNNB1,

SIX1/SIX2, AMER1, and microRNA processing genes (11, 12), as

well as copy number alterations such as gain of chromosome 1q and

loss of heterozygosity (LOH) of chromosome 1p/16q/11p15 (11).

Recent researchers have identified several gene signatures (13–15)

closely related to the recurrence of WT, which may serve as

predictors for RFS. Furthermore, the presence of cancer stem cells

(CSCs) in WT has been established (16–18). However, the

phenotype of tumor cells contributing to WT relapse has not

been fully elucidated at single cell level. The tumor survival and

growth are supported and furnished by tumor microenvironmental

cells. The spatial relationships of relapse-associated tumor cells and

the functional changes that occur within these spatial contexts to
02
support WT recurrence are still not fully understood. Furthermore,

the exploration of potential therapeutics targeting relapse-

associated phenotypes has yet to be investigated.

Single-nucleus RNA sequencing (snRNA-seq) is a powerful

technique for profiling cell types and investigating cellular

heterogeneity by focusing on the capture and analysis of RNA

from the nucleus. Compared to single-cell RNA sequencing

(scRNA-seq), snRNA-seq offers significant advantages,

particularly in efficiently measuring gene expression in individual

cells derived from frozen or fixed tissues (19), as well as complex

tissues (e.g., kidney (20), brain (21), heart (22)) that are challenging

to dissociate. Spatial transcriptomics (ST), on the other hand,

provides gene expression data while maintaining the spatial

context of the cells (23). Integration of snRNA-seq with ST data

enabled us gain a more comprehensive understanding of the

underlying genetic and molecular mechanisms driving tumor

biology (24).

In this study, we curated and integrated published snRNA-seq,

bulk RNA sequencing, and ST data. Notably, we identified a subset

of Scissor+ relapse-associated tumor cells which highly expressed

nephron progenitor and CSC markers. A machine learning model

based on this tumor signature predicts RFS and reflects genomic

alterations tied to risk groups. Spatially, this tumor subset was

encased by fibroblast stroma, restricting immune cell infiltration

and potentially diminishing chemotherapy efficacy (Figure 1A).

Additionally, sensitivity to EGFR inhibitors was observed in the

subset, offering valuable insights into potential clinical

treatment strategies.
2 Materials and methods

2.1 Data acquisition and processing

snRNA-seq data was curated from GSE200256, also deposited

in project SCPCP000006 (https://scpca.alexslemonade.org/projects/

SCPCP000006) in the Single-cell Pediatric Cancer Atlas Portal

(ScPCA) portal (25), encompassing 22 favorable and 18

anaplastic primary samples, 10 of which underwent relapse after

treatment. ST data was also curated from project SCPCP000006 in
frontiersin.org
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the ScPCA portal, including 100 slices from 41 patients, among

which 12 patients underwent further recurrence.

Additionally, bulk RNA sequencing data, mutation data and

clinical profiles were obtained from Therapeutically Applicable

Research to Generate Effective Treatments (TARGET)-WT

dataset via R package TCGAbiolinks. Copy number data were

retrieved from the TARGET-WT GDC data portal. Only samples

collected at initial diagnosis in TARGET-WT dataset were kept.

Furthermore, GSE31403 (26) and GSE10320 (27) cohorts were

retrieved from GEO database, comprising 224 samples and 144

samples prior chemotherapy respectively.
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2.2 Single-nuclei sequencing data
processing and cell annotation

snRNA-seq data were analyzed using Seurat package version

5.0.1. Cells with less than 200 genes and genes expressed in less than

3 cells were removed. Following quality control, data normalization

was performed using “NormalizeData” function utilizing

default parameters. Variable genes were identified using the

“FindVariableFeatures” function with the “vst” selection method

and nfeatures=5000. Data were scaled using the “ScaleData”

function, followed by principal component analysis (PCA)
FIGURE 1

Overview of the study design and cell atlas from the published WT snRNA-seq dataset. (A) Overview of the study. Created by Biorender. (B) The UMAP
visualization of all major cell types. (C) The UMAP visualization of immune cell types. (D) The heatmap illustrating the canonical cell markers across various
cell types. (E) The bar plot showing the proportions of major cell types in unfavorable versus favorable samples. (F) The bar plot displaying the proportions of
main cell types in samples with and without relapse after initial treatment. RFS, relapse-free survival; TME, tumor microenvironment; DEG, differentially-
expressed gene; UMAP, uniform manifold approximation and projection; CAF, cancer-associated fibroblast; cDC, canonical dendritic cells; pDC,
plasmacytoid dendritic cells.
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through “RunPCA”. Non-linear dimensionality reduction (uniform

manifold approximation and projection, UMAP) was performed

using the “RunUMAP” function. Batch effects were addressed with

Harmony. Cell type annotations were carried out using canonical

cell markers curated from previous research.
2.3 Identification of relapse-associated
tumor subpopulations using
Scissor algorithm

snRNA-seq data were integrated with bulk RNA-seq datasets

and (TARGET-WT, GSE31403 and GSE10320) and phenotypic

profiles using the “Scissor” package (28). Given the large number of

cells, the pseudobulk method was initially employed to reduce the

cell count. Briefly, we run the “FindClusters” with the resolution of

10. Cells from the same cluster and sample were subsequently

merged into meta cells. This process reduced the number of cells

from 161,635 to 4,274. The resulting meta cell matrix was

constructed as a Seurat object and used as input for Scissor

analysis. The alpha parameter was set to 0.05. Using TARGET-

WT data with survival information, the Cox regression model was

applied to identify Scissor+ cells associated with worse RFS. For the

GSE31403 and GSE10320 bulk profiles, logistic regression models

were applied to infer Scissor+ cells associated with relapse. The final

Scissor+ cells, associated with the relapse phenotype and worse RFS,

were defined as the intersection of Scissor+ cells identified across all

three bulk datasets.
2.4 Functional enrichment analysis and
developmental signatures of Scissor+
tumor cells

Scissor+ tumor signature genes were identified using Seurat’s

“FindAllMarkers” and further filtered with the threshold |

avg_log2FC|>=1 and p-value <0.05. Gene Ontology (GO) analysis

and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis

were conducted using R package “clusterProfiler”. Fetal ureteric bud

(UB), cap mesenchyme (CM), and primitive vesicle (PV) gene sets

were curated from previous published research (4). Subsequently,

Seurat’s “AddModuleScore” function was employed to identify gene

sets associated with fetal UB, CM, and PV in both Scissor+ and

Scissor- tumor cells.
2.5 Spatial transcriptomics data processing

ST data were also curated from project SCPCP000006 in the

ScPCA portal. 98 slides from 40 WT primary samples were kept.

Raw matrices were processed using Seurat package version 5.0.1 for

quality control, normalization, dimension reduction and Louvain

clustering. Sample level normalization was performed using the

SCTransform function in Seurat package. SpatialFeaturePlot

function was used to visualize features.
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2.6 Single sample gene set
enrichment analysis

Single-sample gene set enrichment analysis (ssGSEA) was

performed to identify distinct cell types within the spatial

transcriptomics data. Specifically, tumor signatures for Scissor+

and Scissor- cells, along with cell type signatures derived from

previous studies, were utilized. The ssGSEA algorithm from the

GSVA package (version 1.38.2) was employed to calculate the

expression levels of these curated signatures at each spatial

location. The resulting data were further processed to assess

correlations between different cell types and were visualized using

spatial feature plots.
2.7 Analysis of cell–cell interactions

To analyze potential cell–cell interactions among distinct cell

types in snRNA-seq dataset, the CellChat package (version 2.1.2)

was employed to quantitatively infer and analyze intercellular

communication networks (29). This algorithm utilized network

analysis and pattern recognition approaches to predict the major

incoming and outgoing signals for cells. Cell types with less than

100 cells were removed. Significant signaling pathways and ligand-

receptor pairs were extracted based on permutation tests with

a p<0.05.
2.8 Prediction of response and resistance
to treatment

The PERCEPTION computational pipeline (https://

github.com/ruppinlab/PERCEPTION) was employed to predict

the response of tumor cells to chemotherapy and targeted

therapies (30). PERCEPTION utilizes publicly available matched

bulk and single-cell expression profiles derived from large-scale cell

line drug screens, enabling the construction of treatment response

models based on pseudobulk data in this study. A total of 44 drugs

incorporated within the PERCEPTION models were analyzed.

During the execution of the run_parallel_feature_ranking_bulk

function, the parameter infunc_exclude_cancer was set to ‘PanCan’.
2.9 Ensemble model construction

An ensemble machine learning framework was applied to

predict RFS using TARGET-WT data. First, the data were

preprocessed by normalizing features, and relevant genes were

selected through feature importance filtering. The ensemble was

composed of four survival models, including Cox proportional

hazards, random survival forests, support vector machines and

XGBoost, using the R mlr3 and mlr3proba packages. For model

training, 5-fold cross-validation was employed, and hyperparameter

tuning was conducted using random search with 100 evaluations.

Model performance was assessed via concordance index (C-index),
frontiersin.org
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Brier score, and survival calibration. Additionally, bootstrap

sampling was used for robust validation and risk score prediction

to ensure reliable feature selection and accurate stratification.
2.10 Immunohistochemistry

Consecutive 5-mm thick tissue sections were prepared from

formalin-fixed, paraffin-embedded WT primary tumor tissues and

processed for immunohistochemistry. Following deparaffinization,

rehydration, and antigen retrieval, endogenous peroxidases and

nonspecific binding were blocked. Sections were incubated

overnight at 4°C with primary antibodies against TGFA (HUABIO,

ET7107-40, diluted 1:400), followed by incubation with secondary

antibodies. Nuclei were lightly counterstained with hematoxylin.
2.11 Statistical analyses

All statistical analyses were conducted using R software version

4.2.3. Kaplan-Meier survival curves were generated, and the log-

rank test was employed. A p-value of <0.05 was deemed statistically

significant. The chi-squared test was applied to compare categorical

variables, and continuous variables were compared through the

Wilcoxon test or t-test. Further statistical methods are detailed in

the figure legends.
3 Results

3.1 Integration and exploration of WT
single-cell atlas

To investigate transcriptional heterogeneity in WT at single-cell

level, we utilized a published snRNA-seq dataset (SCPCP000006,

ScPCA portal) which included 40 WT tumor samples, 39 of which

were collected from the kidney at initial diagnosis, and one was

collected from liver metastases at autopsy (Figure 1A). The data were

processed using the Seurat pipeline. To minimize batch effects, the

Harmony algorithm was employed for sample integration. A total of

199,441 cells were retained after quality control and visualized using

UMAP plots, with color coding based on sample type, cell

classification, histological subtype, sample collection time, or

relapse status (Figure 1B, Supplementary Figures S1A–D) (4, 18,

31). Four primary cell populations were first identified using

canonical cell markers: WT tumor cells (WT1, NCAM1, SIX1,

SIX2, PAX2), cancer-associated fibroblasts (CAFs) (ACTA2,

TAGLN, COL1A1, PDGFRB), endothelial cells (PECAM1, CLDN5,

ENG, VWF) and immune cells. Subsequently, immune cells were

further subdivided and reanalyzed to enable a more comprehensive

annotation. Eight immune subsets were identified, including T cells

(CD3E, CD3D, CD8A), NK cells (GZMK, NKG7, GZMA, KLRD1), B

cells (CD79A, CD79B, MS4A1, IGHM), monocyte-macrophages

(CD68, CD14, LYZ, C1QC, CD163), neutrophils (S100A8, S100A9,

CSF3R), canonical dendritic cells (cDC) (CD1C, FCER1A, CLEC9A,

HLA-DQA1), plasmacytoid dendritic cells (pDC) (LILRA4, IL3RA,
Frontiers in Immunology 05
GZMB), and mast cells (KIT, TPSAB1, CPA3) (Figures 1B–D). Copy

number variation (CNV) inferred from the snRNA-seq data revealed

that some tumor cells exhibited deletions on chromosomes 11,14

and 16, while non-tumor cells showed no apparent CNVs

(Supplementary Figure S2). Due to the low recovery of immune

cells in snRNA-seq platform (32), tumor cells and stromal cells were

more prevalent than immune cells. Tumor cells were found to be

more abundant in samples with anaplastic histology and in patients

who experienced recurrence following initial treatment, whereas

stromal and immune cells demonstrated the opposite trend

(Figures 1E, F).
3.2 Unraveling the heterogeneity of Wilms
tumor cells

To characterize the transcriptional heterogeneity within WT

tumor cells, we conducted clustering analysis, identifying

twelve distinct cell clusters (c1–c12) (Figure 2A). The normal

nephrogenesis is initiated by ureteric bud (UB), around which

nephron progenitor cells (NPCs) condense to form a cap

mesenchyme (CM) around the UB. Subsequently, these NPCs

give rise to primitive renal vesicles (PV) (33). Previous studies

have demonstrated that WT tumor cells mimic fetal kidney cell

types, such as UB, CM, and PV cells, with some tumor cells also

exhibiting characteristics resembling stromal fibroblast-like cells

(4). Thus, we measured published fetal UB, CM, PV and fibroblasts-

like WT signatures in all tumor cells (Supplementary Table S1).

Interestingly, the expression of these four signatures was largely

mutually exclusive, allowing us to group the twelve clusters into

four major categories: Fibroblast-like, CM-like, UB-like, and PV-

like cells (Figures 2B, C). Additionally, cluster c12, which expressed

neural-related genes (e.g., DST, MAP2, ELAVL2), was classified as

neural-like cells (Figures 2C, D).

WT histology typically exhibits a triphasic pattern, comprising

epithelial, stromal, and blastemal components (1). To further analyze

these components, we examined the expression of canonical markers

used in histological classification of WT, including EPCAM, KRT18,

KRT8, CDH6, MME, TJP1 for epithelial components, NCAM1, SIX1,

SIX2, PAX2, EYA1, SALL1 for blastemal components, and COL1A1,

COL1A2, COL3A1 for stromal components (Supplementary Figures

S3A, B). While stromal components were clearly characterized by

fibroblast-like tumor cells, canonical epithelial and blastemal markers

were predominantly mixed within CM-like cells. Epithelial markers

such as CDH6 and MME were mainly expressed in PV-like cells

(Supplementary Figures S3A, B). Tumor clusters c1–c4 exhibited

relatively high expression of EPCAM and KRT18, with c4 showing

elevated IGF2 expression (Figure 2B). Tumor clusters c5-c8 expressed

higher levels of blastemal markers, such as EYA1 and PAX2

(Figure 2D). Consequently, we refined subgroup definitions: c1-c3 as

CM-like-epithelial (CM_like_epi), c4 as CM-like-epithelial with IGF2

high expression (CM_like_epi_IGF2), and c5-c8 as CM-like-blastemal

(CM_like_blastemal) (Figure 2C). In total, seven subgroups were

identified. UB_like and fibroblast-like cells were WT weak positive

(Supplementary Figure S3C). CM_like_epi cells exhibited relatively

higher necrosis signature (Supplementary Figure S3D).
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We conducted differential expressed gene (DEG) analysis for

each tumor subgroup and performed Gene Ontology (GO)

enrichment analysis (Supplementary Table S2, Figure 2E). The

results largely validated the identity and functional characteristics
Frontiers in Immunology 06
of each subgroup. For instance, fibroblast_like cells were enriched

for genes associated with the extracellular matrix, while neural_like

cells exhibited neuronal-related features. CM_like_blastemal cells

enriched for mesonephric and metanephric developmental
FIGURE 2

Identification of distinct tumor subgroups in WT. (A) The UMAP visualization of twelve tumor clusters derived from unsupervised clustering analysis. (B) The
UMAP visualization of fetal kidney signatures (UB, ureteric bud; CM, cap mesenchyme; PV, primitive renal vesicles), Wilms tumor fibroblast signature, and
selected gene expression. (C) The UMAP visualization of seven tumor subgroups. (D) The dot plot of selected DEGs across all tumor subgroups. (E) The bar
plot displaying the GO gene enrichment results for top 100 DEGs in each tumor subgroup. (F) Kaplan-Meier survival curves showing relapse-free survival in
the TARGET-WT cohort, stratified by high and low expression of selected tumor subgroup signatures (log-rank test). (G) Hematoxylin and eosin (H&E)
staining of sample SCPCL000390 (favorable histology) (Left). Spatial distribution of tumor subgroup signatures quantified by ssGSEA(Right). (H) H&E staining
of sample SCPCL000429 (unfavorable histology) (Left). Spatial distribution of tumor subgroup signatures quantified by ssGSEA(Right).
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markers, indicating their role as progenitor cells in early kidney

development. CM_like_epi cells showed signatures related to ATP

metabolism, oxidative phosphorylation, and cell proliferation. In

contrast, PV_like cells were enriched for genes related to nephron

development and podocyte differentiation. Although UB_like cells

exhibited higher UB signatures, they also up-regulated genes

involved in nephric duct morphogenesis and epithelial tube

branching process. These suggested PV_like and UB_like cells

represent more mature epithelial cells (Figure 2E).

We further examined the distribution of tumor subgroups

across different samples and clinical categories (Supplementary

Figures S3E, F). Notably, CM_like_epi_IGF2 was primarily

derived from sample SCP000182, whereas other subgroups were

present across multiple samples. CM_like_blastemal and fibroblast-

like cells were enriched in samples that later experienced

recurrence, while UB-like and PV-like cells were more abundant

in samples that did not recur (Supplementary Figure S3E).

Consistent with these distributions, Kaplan-Meier survival

analysis demonstrated that patients with higher levels of

CM_like_blastemal, CM_like_epi, or fibroblast-like features at

diagnosis had significantly worse RFS, whereas patients with

higher PV_like features exhibited significantly better RFS

(Figure 2F, Supplementary Figure S3G).

Finally, we sought out to visualize these tumor subgroups in ST

data. To achieve this, we analyzed published spatial transcriptomes

from 98 slides of 40 WT primary samples using 10X Visium

platform (Project SCPCP000006 in the ScPCA portal).

CM_like_blastemal cells were localized in the blastemal region of

the tissue, while fibroblast-like cells overlapped with mesenchymal

stroma (Figures 2G, H). PV-like and UB-like cells were co-localized

with epithelial tubular and glomerular structures in the stroma.

CM_like_epi cells were observed in both the blastemal and

epithelial regions, suggesting a mixed phenotype. Neural-like cells,

being relatively sparse, were dispersed throughout the tissue

sections (Figures 2G, H, Supplementary Figures S3H, I).
3.3 Identification of Scissor+ tumor cells
linked to WT recurrence

Given the critical role of tumor cell phenotypes in WT

recurrence, and the recognition that recurrence is not restricted to

specific histological subtypes, we performed Scissor analysis (28), a

method designed to objectively and systematically identify the

tumor cells most strongly associated with WT relapse from

snRNA-sea data. This analysis integrated snRNA-seq datasets

with the TARGET-WT dataset, which contains RFS information

(n=118), along with two additional bulk RNA sequencing cohorts,

GSE31403 (n=224) (26) and GSE10320 (n=144) (27), which

provide clinical information on relapse status.

Initially, we conducted pseudobulk aggregation analysis on all

tumor cells to generate meta cells, thereby reducing the total

cell count and enhancing compatibility between snRNA-seq and

bulk RNA datasets. A total of 161,635 tumor cells were merged into

4,247 meta cells for subsequent Scissor analysis (Supplementary

Figures S4A, B). Scissor+ cells were classified as positive, while
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Scissor- cells were defined as negative across all three bulk RNA

datasets (Figure 3A). This analysis identified 231 Scissor+ meta cells

associated with relapse and poor RFS, whereas 123 Scissor- cells were

linked to favorable RFS (Figure 3B). Consistently, the Scissor+ group

contained a significantly higher number of cells from samples that

later experienced relapse (p<2.2e-16, Chi-squared test) (Figure 3C).

DEG analysis indicated that compared to Scissor- tumor cells, Scissor

+ tumor cells exhibited significantly higher expression of genes

involved in metanephros (GDNF, KIF26B, EYA1, FGF2, HOXD11)

and mesenchyme development (SIX2, HMGA2, PDGFC, WNT3A,

GATA4), as well as semaphorin-plexin pathways (SEMA3D,

SEMA3A, SEMA3E, PLXNA1), which are essential for regulating

early fetal kidney morphogenesis (Figures 3D, E). Notably, Scissor+

also significantly upregulated CSCs markers previously revealed in

WT, such as SIX2, NCAM1, PROM1 (16–18), as well as ATP-binding

cassette (ABC) transporters genes (ABCG2, ABCB4, ABCC11) and

DNA repair pathways genes (XRCC1, PCNA), which associated with

increased drug efflux activity and drug resistance (34, 35) (Figures 3D,

E, Supplementary Table S3). Scissor+ tumor cells contained

significantly fewer G2M/S phase cells and more G1 phase cells

(p=0.0097, Chi-squared test), consistent with the relatively

quiescent nature of CSCs (Figure 3F). Conversely, downregulated

genes were linked to glomerulus development (PAX8, PTPRO,

KIRREL3, LHX1, NPHS1, NOTCH2, JAG1), muscle system process

(NPNT, ACTA1), and proximal tubule bicarbonate reclamation

pathways (GLS, CA2, CA4) (Figures 3D, E, Supplementary Table S3).

We further compared the distribution of fetal kidney signatures

and tumor subgroups between Scissor+ and Scissor- cells (Figures 3G,

H). The analysis revealed that the cells identified by Scissor, through an

unbiased and automated approach, were closely linked to the tumor

subgroups manually defined. Consistent with their gene expression

patterns, Scissor+ tumor cells, exhibiting enhanced CM signatures,

were predominantly derived from CM_like_blastemal and

fibroblast_like subgroups. In contrast, Scissor- tumor cells, showing

increased PV features, contained more cells from PV_like and UB_like

subgroups (p<2.2e-16, Chi-squared test) (Figure 3H). Collectively,

Scissor+ cells may represent a group of CSCs with NPC-like

characteristics, while Scissor- cells may correspond to more

differentiated nephron epithelial cells.

We next curated the Scissor+ signature from up-regulated genes of

Scissor+ tumor cells. Consistently, Kaplan-Meier analysis showed that

patients with a higher Scissor+ signature had significantly worse RFS

(Figure 3I). Moreover, in multivariate Cox regression analysis, the

Scissor+ signature was identified as a statistically significant prognostic

feature independent of age, sex, stage, and histology (Figure 3J).

In summary, Scissor+ tumor cells, which exhibited features of

CSCs and retained transcriptional features of NPCs, were identified

as being associated with WT relapse and poor RFS.
3.4 Establishment of predictive machine-
learning model for WT relapse-free survival

To further translate features of Scissor+ tumor cells into

diagnostic clinical applications, we developed a predictive machine-
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learning model to estimate patient RFS. The model was constructed

using a multi-step feature selection and ensemble pipeline

(Figure 4A). Univariate Cox regression analysis was first conducted

to identify prognosis-related genes from the DEGs in Scissor+ cells,

with a p-value threshold set at < 0.05. Mitochondrial and ribosomal

genes were excluded, resulting in the selection of 2,537 genes.

Following the removal of highly correlated genes, the Least

Absolute Shrinkage and Selection Operator (LASSO) analysis was

further applied to reduce the number of genes (Figures 4B, C).
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Ultimately, 27 genes were selected and constituted as a relapse-

associated signature (RT-sig) for establishing the predictive

ensemble machine-learning model using the mlr3 framework. Of

these, 16 genes were classified as risk factors (HR>1.0), and 11 as

protective factors (HR<1.0) (Supplementary Table S4). The ensemble

model consisted of four algorithms acting in operating including

random survival forest, support vector machine, Cox proportional

hazards model and XGBoost (Figure 4D). The TARGET-WT

(n=118) cohort was divided into a training set (n = 83) and a
FIGURE 3

Identification of Scissor+ tumor cells associated with poor relapse-free survival. (A) Venn diagram showing 354 common cells identified through
Scissor analysis, shared among the TARGET-WT, GSE31403, and GSE10320 datasets. (B) UMAP visualization of tumor meta cells from Scissor
analysis, with Scissor+ cells in red and Scissor- cells in blue. (C) The volcano plot showing the differentially expressed genes between Scissor+ and
Scissor- tumor cells. Genes with |avg_logFC|>=1 and P <0.05 were highlighted. (D) The bar plot depicting the proportions of tumor cells from
samples with or without further recurrence in Scissor+ or Scissor- tumor cells. (E) The lollipop plot showing enriched GO and KEGG pathways in
Scissor+ and Scissor- tumor cells. (F) The bar plot comparing the distributi on of cell cycle phases between the Scissor+ and Scissor- tumor cells.
(G) The ridge plot illustrating fetal kidney cell signatures, including ureteric bud (UB), cap mesenchyme (CM), and primitive vesicles (PV). (H) The bar
plot comparing the distribution of tumor subgroups between the Scissor+ and Scissor- tumor cells. (I) Kaplan-Meier survival curves showing
relapse-free survival in the TARGET-WT cohort, stratified by high and low expression of Scissor+ tumor up-regulated genes (log-rank test).
(J) Multivariable Cox regression analysis of RFS in the TARGET-WT cohort, presented as hazard ratios with 95% confidence intervals.
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validation set (n = 35) at a ratio of 7:3. Additionally, 5-fold cross-

validation was conducted to optimize hyperparameters for each

algorithm. Time-dependent receiver operating characteristic curve

(ROC) analysis revealed the 1-, 3-, and 5-year areas under the curves

(AUC) were 0.904, 0.947, and 0.964 in the training set (Figure 4E)

and 0.900, 0.938 and 0.987 in the validation set (Figure 4F). Patients

were classified into high- and low-risk groups based on median crank

value derived from the ensemble model. Kaplan-Meier analysis

demonstrated that high-risk patients had significantly worse RFS

than low-risk patients (Figures 4G, H).

We further compared the predictive performance of RT-sig

with clinical characteristics including gender, stage, histology, and
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age. A bootstrap test was employed. The results showed that the C-

index of RT-sig was significantly higher than that of the combined

clinical characteristics, indicating it exhibited superior accuracy in

predicting WT RFS (Figure 4I). A comprehensive assessment of the

importance of RT-sig genes within the random forest survival

algorithms was conducted during the ensemble model training

process. This revealed that TGFA emerged as the most significant

gene associated with patient outcomes and high expression of

TGFA indicated worse RFS (Figures 4J, K). Given its prominence,

TGFA was selected for subsequent immunohistochemistry

experiments. Notably, the expression levels of TGFA were

markedly elevated in primary tumors of WT patients who
FIGURE 4

Construction of an ensemble machine-learning model for predicting WT RFS. (A) Schematic of the machine-learning framework. (B) Lasso coefficients
for prognostic genes in the TARGET-WT cohort, with lines of different colors representing individual genes. (C) Determination of the optimal l, selected
when the partial likelihood deviance reached its minimum value in ten-fold cross-validation (data presented as mean with 95% confidence intervals).
(D) Framework of the ensemble machine-learning model. (E) Time-dependent receiver operating characteristic (ROC) curves for predicting RFS at 1, 3,
and 5 years in the training dataset. (F) Time-dependent ROC curves for predicting RFS at 1, 3, and 5 years in the validation dataset. (G) Kaplan-Meier
survival curves illustrating relapse-free survival in the training dataset, stratified by high- and low-risk groups defined by the ensemble model (log-rank
test). (H) Kaplan-Meier survival curves illustrating relapse-free survival in the validation dataset, stratified by high- and low-risk groups defined by the
ensemble model (log-rank test). (I) Bar plot comparing the performance of the RT-sig model to combined clinical variables (sex, age, stage, histology)
for predicting prognosis in the TARGET-WT cohort (two-sided Wilcoxon test, **** indicates p<0.0001). (J) Histogram displaying the feature importance
from random forest survival model used in ensemble model construction. (K) Kaplan-Meier survival curves illustrating relapse-free survival in the
TARGET-WT cohort, stratified by high- and low-expression of TGFA (log-rank test). (L) Immunohistochemistry images and bar plot illustrating TGFA
expression in WT samples with or without relapse after initial treatment under the SIOP protocol. WT samples were collected from Children’s Hospital of
Fudan University (two-sided Wilcoxon test, ** indicates p < 0.01).
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subsequently experienced disease recurrence (Figure 4L). This

result suggested the potential of TGFA as a biomarker for

predicting poor RFS in clinical settings.
3.5 Genomic alterations underlying RT-sig-
based risk stratification

We further explored genomic alterations potentially associated

with RT-sig-based risk stratification. Given that previous studies

have shown distinct genomic alterations in favorable and anaplastic

tumors (31, 36), we employed the ensemble machine learning

model to stratify the risk groups within anaplastic and favorable

histology tumors separately (Figure 5A). TARGET-WT patients

with paired, publicly available transcriptomic, mutation, or copy

number data were analyzed.

TP53 mutations are known to be associated with anaplasia in

WT, which confers a high relapse risk and poor prognosis (31). In

our analysis of unfavorable WT cases, we observed that both high-

and low-risk subgroups carried TP53 mutations, highlighting its

pivotal role in the development of unfavorable WTs (Figure 4B).

Notably, within the high-risk subgroup of unfavorable WTs,
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recurrent mutations in BCOR were identified, further

emphasizing the complex genetic landscape of these tumors

(Figure 5B). In addition, this subgroup exhibited a significantly

higher proportion of samples with segmental gains of chromosome

1q (p=0.020, two-sided Fisher’s exact test) (Figure 5C). The gain of

1q is a well-established adverse prognostic marker in WT,

contributing to its aggressive clinical course (37).

In favorable WTs, although no TP53 mutations were observed

in either subgroup, high-risk tumors harbored more mutations in

previously identified WT-related genes, such as WT1, AMER1,

BCOR, CDC73, ARID1A, CTNNB1 and DROSHA (36), all of

which have been implicated in the development and progression

of WT (Figures 5D, E). Furthermore, segmental gains of

chromosome 7q were predominantly found in the high-risk

group (p=0.038, two-sided Fisher’s exact test), whereas whole

chromosome 12 gain was more frequently observed in the low-

risk group (p=0.027, two-sided Fisher’s exact test) (Figure 5F).

These findings are consistent with recent studies suggesting that

chromosome 12 gain serves as a marker of favorable prognosis in

WT patients (38).

In summary, our results underscore the utility of the ensemble

machine learning model for RFS based on RT-sig, which not only
FIGURE 5

Genomic alterations underlying RT-sig-based risk stratification in unfavorable and favorable WT. (A) Kaplan-Meier survival curves illustrating RFS in
unfavorable WTs (n=39), stratified into high- and low-risk groups as defined by the ensemble machine learning model (log-rank test). (B) Oncoplot
showing the mutations in a selection of frequently mutated genes in unfavorable WTs with publicly available paired RNA-seq and mutation data
(n=16). (C) Barplot depicting the proportion of unfavorable WT samples with publicly available paired RNA-seq and copy number data showing
chromosome 1q gain in high-risk (8/11) and low-risk (1/8) groups. (D) Kaplan-Meier survival curves illustrating RFS in favorable WTs(n=79), stratified
into high- and low-risk groups as defined by the ensemble machine learning model (log-rank test). (E) Oncoplot showing the mutations in a
selection of frequently mutated genes in favorable WTs with publicly available paired RNA-seq and mutation data (n=19). (F) Barplot depicting the
proportion of favorable WT samples with publicly available paired RNA-seq and copy number data showing chromosome 7q gain and whole
chromosome 12 gain in high-risk (7q gain:7/22; chr12 gain:3/22) and low-risk groups (7q gain:2/26; chr12 gain:12/26).
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predicts clinical outcomes but also reflects underlying genomic

alterations, providing insights into both adverse and favorable

genetic profiles in WT patients.
3.6 Analysis of distinct intercellular
communication between Scissor+ and
Scissor- tumor cells

After analyzing the signatures of Scissor+ tumor cells, we next

investigated whether the interaction between tumor cells and tumor

microenvironment (TME) cells plays a critical role in WT

chemotherapy resistance. To address this, we performed Cellchat

analysis (29) to infer and analyze intercellular communication

networks underlying distinct tumor phenotypes. Compared to

Scissor- cells, Scissor+ tumor cells exhibited more interactions with

CAFs, while demonstrating less communication with endothelial cells

and immune cells, including cDCs, NK cells, and T cells (Figure 6A).

We further examined the relative signaling strength of various

pathways across all cell types (Figure 6B). For outgoing signals,

pathways that induce CAFs, including IGF2 and PDGF pathways,

were primarily received by fibroblasts from Scissor+ cells (39, 40). The

ligand-receptor pairs IGF2-IGF1R, PDGFD-PDGFRB and PDGFC-

PDGFRA were enriched between these two cell types, implicating

Scissor+ tumor cells may play an important role in promoting

expansion of CAFs (Figure 6C). Conversely, Scissor- tumor cells

displayed a pro-angiogenic and immune-activating phenotype by

eliciting NOTCH/VEGF signaling and NECTIN/MIF/IL1 signaling,

respectively. Ligand-receptor pairs JAG1-NOTCH2/4, VEGFA-

VEGFR1, NECTIN2-CD226, MIF-CD74+CXCR4/CD44, IL18-

(IL18R1+IL18RAP) were enriched correspondingly (Figure 6C).

Regarding incoming signaling, Scissor+ cells mainly received signals

from CAFs, including SLIT, FGF, and ADGRL pathways (Figure 6B,

D). The SLIT2-ROBO1/2 interaction has been shown to driver tumor

immunosuppression and progression (41). The activation of FGF/

FGFR signaling is crucial not only for nephron progenitor cell

development (39, 42), but also for WT tumorigenesis (43). More

importantly, IGF2 secreted by Scissor+ tumor cells could act on

themselves through IGF2-IGF1R/IGF2R interactions (Figure 6D).

Loss of imprinting of the IGF2 gene is the most common epigenetic

alteration in WT and activation of IGF2 pathway has been associated

with drug resistance in several tumors (44). Meanwhile, Scissor- tumor

cells mainly received signals through Neuregulin-ERBB4 interactions

with endothelial cells, and GRN-SORT1 interactions between cDCs/

mono-macrophages (Figure 6D).

Since Scissor+ and Scissor- cells exhibited different interactions

with TME cells, we then asked whether they would be spatially

organized within WT. By leveraging single sample gene set

enrichment analysis (ssGSEA), we scored Scissor+ and Scissor- cell

signatures alongside the curated immune and stromal gene sets in ST

data to identify spatial distribution of each cell type (Supplementary

Table S5, Supplementary Figure S5) (31, 45–47). Notably, the Scissor+

and Scissor- signatures exhibited strong negative correlations,

irrespective of relapse status, suggesting that these distinct cancer

phenotypes occur in mutually exclusive regions of WT. (Figures 6E, F).
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We further calculated spatial correlation between Scissor

+/Scissor- tumor cells and non-malignant cell types across all spots.

Scissor+ tumor cells exhibited negative correlation with nearly all

immune cell types, whereas Scissor- tumor cells showed the opposite

trend (Figures 6G, H). Compared to samples without relapse, in slides

from samples which further underwent recurrence, Scissor+ tumor

cells were more closely clustered and resided in immune-desert

niches surrounded by fibroblast septa, potentially hindering

immune cell infiltration (Supplementary Figure S6). In contrast,

Scissor- cells were more diversely distributed, resided in immune-

enriched areas with abundant T cells, myeloid and endothelial cells

(Figure 6I, Supplementary Figures S5, S6). We also dissected cellular

interactions in ST and determine the spatial distribution of signaling

pathways. Consistent with snRNA results, ST analysis inferred

higher receiver signals for the SLIT, IGF and FGF pathways in

Scissor+ enriched areas, while NRG pathway receiver signal was

abundant in Scissor- enriched regions (Figures 6I, J, Supplementary

Figure S5). Notably, CAF-inducing pathways (e.g., PDGF, TGFb)

were enriched at the interface between Scissor+ tumor cells and

CAFs, highlighting these signals may serve as key mediators in the

dynamic crosstalk between Scissor+ tumor cells and surrounding

stromal components (Figures 6I, J).
3.7 Inference of response and resistance
to treatment

Finally, to investigate potential drug sensitivities in Scissor+

tumor cells, we conducted the PERCEPTION analysis based on

publicly available expression data from large-scale cell-line drug

screens (30). For each sample, we predicted the treatment response

for Scissor+ and Scissor- tumor cells separately. This analysis

revealed that, compared to Scissor- tumor cells, Scissor+ tumor

cells are predicted to be less responsive to all chemotherapy agents,

including vincristine, doxorubicin, and etoposide, which are part of

the COG and SIOP regimens (Figure 7A). This finding further

supports the results that Scissor+ tumor cells are resistant to

chemotherapy and may contribute to WT recurrence. Notably,

Scissor+ tumor cells demonstrated responsiveness to targeted

therapies (Figure 7A). We also calculated PERCEPTION

predictions for each drug and the correlations of drug sensitivity

predictions between WT associated drugs (vincristine, doxorubicin,

and etoposide) and other therapeutic agents (Figure 7B). These

results suggest that resistance to WT-associated drugs may confer

cross-sensitivity to targeted therapies.

We further examined the expression of potential targets for

each targeted drug. The average expression levels of target genes for

afatinib, icotinib, and osimertinib were significantly higher in

Scissor+ tumor cells (Figure 7C, Supplementary Table S6).

Notably, the target EGFR was common among the three drugs,

with significantly higher expression observed in the Scissor+ group

(Figure 7D). These findings suggest that patients at higher risk of

relapse may benefit from a combined therapeutic approach,

incorporating both conventional chemotherapy and EGFR-

targeted therapies.
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FIGURE 6

Identification of specific intercellular communications between Scissor+ tumor cells and CAFs in WT. (A) Heatmap showing the overall number and
strength of intercellular communications in Scissor+ and Scissor tumor cells. (B) Heatmap showing the major outgoing and incoming signaling
pathways. (C) Dot plot illustrating significant ligand-receptor pairs from outgoing signaling pathways revealed in (B). (D) Dot plot illustrating
significant ligand-receptor pairs from incoming signaling pathways revealed in (B). (E) Scatter plot showing the negative correlation between Scissor
+ and Scissor- tumor signature in spatial transcriptomics. (F) Box plot showing the spearman correlation coefficients between Scissor+ and Scissor-
tumor signature in spatial transcriptomics from samples with or without further recurrence. (Two-sided Wilcoxon test). (G) Bar plot displaying the
spearman correlation between Scissor+ tumor signature and features of other cell types (|Correlation coefficient|>0.2 and p value <0.05 was
highlighted in red). (H) Bar plot displaying the spearman correlation between Scissor- tumor signature and features of other cell types (|Correlation
coefficient|>0.2 and p value <0.05 was highlighted in red). (I) Hematoxylin and eosin (H&E) staining of sample SCPCL000374 (favorable histology
with further relapse) (Left). Spatial distribution of cell type signatures (Scissor+ tumor, Scissor- tumor and CAF signatures) and inferred signaling
pathways in ST from commot analysis colored by receiver weight (Right). Arrows indicate the spatial direction of the pathways. (J) Spearman
correlation coefficients for cell type signatures and spatial receiver weights of signaling pathways.
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4 Discussion

WT is the most common renal tumor in childhood, with tumor

recurrence associated with increased mortality and remained as a

significant concern. However, the tumor phenotypes contributing to

recurrence and the predictors of relapse at diagnosis have not been

fully elucidated. In this study, we first characterized the

transcriptional heterogeneity of WT tumor cells, classifying them

into CM-like-blastemal, CM-like-epi, fibroblast-like, PV-like, UB-

like, and neural-like cell populations. Utilizing the unbiased

automatic Scissor algorithm, we discovered a subset of Scissor+

tumor cells associated with poor RFS, primarily originating from

CM-like-blastemal and fibroblast-like cells. Specific cellular

interactions and spatial distributions of recurrence-associated

tumor cells were characterized. The dynamic crosstalk between

these tumor cells and CAFs may play a critical role in

immunosuppression and facilitate tumor persistence. Furthermore,

an ensemble machine learning model was constructed to predict WT

RFS at diagnosis, which could be used in diagnostic clinical

applications. Conventional chemotherapy and EGFR-targeted
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therapies aimed at Scissor+ tumor cells could potentially overcome

resistance mechanisms and prolong RFS in WT patients.

WT has been revealed to be originate from aberrant fetal

kidney cells (4). Currently, the COG defines WT pathology

using two histological classifications: favorable histology and

unfavorable histology, the latter indicating the presence of anaplasia.

Classical histological features of WT include a triphasic pattern

comprising epithelial, stromal, and blastemal components (48).

Immunohistochemistry, employing specific markers for each

component, is commonly used for histological classification and risk

stratification. However, the expression of epithelial and blastemal

markers in snRNA-seq data is intermixed within cell populations. In

our study, we found that, rather than relying on traditional

immunohistology markers, signatures derived from fetal kidney cell

types were more effective in categorizing tumor cells, and the resulting

cell subgroups correlated with patient prognosis. Diagnostic markers

derived from fetal kidney data and tumor subgroups may potentially

enhance both the diagnosis and precise classification of WT.

CSCs have been revealed to be responsible for therapy

resistance and tumor recurrence, which are capable of persisting
FIGURE 7

Prediction of drug response in WT patients. (A) Predicted cell viability after treatment in Scissor+ and non-Scissor+ tumor cells. The upper row shows drugs
that are more effective in non-Scissor+ tumor cells, while the lower row displays drugs that are more effective in Scissor+ tumor cells. (B) Correlation matrix
showing associations among drugs used in WT regimens (vincristine, doxorubicin, etoposide) and other drugs in the PERCEPTION database (* indicates
p < 0.05). (C) Heatmap of drug target expression levels in Scissor+ and non-Scissor+ tumor cells (**** indicates p < 0.0001, two-sided Wilcoxon test).
(D) Violin plot comparing EGFR expression in Scissor+ and non-Scissor+ tumor cells (**** indicates p < 0.0001, two-sided Wilcoxon test).
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after chemotherapies, and maintaining self-renewal and

differentiating into the heterogeneous nontumorigenic cancer cells

that comprise most of the tumor bulk (49, 50). Previous studies

have identified SIX2+CITED1+, PROM1+ or NCAM1+ALDH1+

tumor cells as potential CSC-like populations in WT (16–18). In

this study, relapse-associated Scissor+ tumor cells were consistent

with previous studies, showing significant upregulation of CSC

markers SIX2, PROM1, and NCAM1. Notably, Scissor+ tumor

cells, primarily derived from CM-like-blastemal and Fibroblast-

like tumor subgroups, exhibited characteristics of CM nephron

progenitor cells. In contrast, Scissor- tumor cells showed a relatively

higher expression of PV cell features. CM cells are progenitors of

nephrons and can differentiate into PV cells (33). Emerging

evidences have shown that cancer cells can acquire the ability to

progress or develop drug resistance through onco-fetal

reprogramming (51, 52). Therefore, this dedifferentiation of WT

tumor cells to a more primitive phenotype may also suggest the

existence of an onco-fetal transition in WT recurrence.

To facilitate the clinical application of the Scissor+ tumor

phenotype features, we initially employed univariate Cox

regression and LASSO analysis to reduce the number of features

derived from DEGs of Scissor+ tumor cells, resulting in the

generation of the RT-sig comprising 27 genes. Subsequently, an

ensemble machine learning model was developed based on this RT-

sig to predict RFS in WT patients. This model demonstrated

superior performance compared to a combination of clinical

characteristics (e.g., sex, age, stage, and histology). Although

based on transcriptional features, the risk stratification generated

by this ensemble model also reflects adverse or favorable genomic

aberrations including mutations in WT-related genes and

segmental chromosome CNVs.TGFA was identified as the most

important gene in the construction of random forest model,

consistent with previous studies showing increased expression of

TGFA in WT is correlated with tumor classification and clinical

progression (53). We also validated the elevated expression of

TGFA in tumors which further underwent recurrence through

immunohistology. However, due to limited sample sizes, a

multicenter study with a larger study population is needed to

confirm this finding. The establishment of this RFS prognostic

model utilizing tumor cell subtypes provides a tailored method for

predicting patient outcomes and informing treatment decisions. By

accurately identifying high-risk patients, the model demonstrates its

potential in patient stratification, enabling more precise treatment

approaches such as high-dose therapies or targeted treatments. This

personalized strategy could contribute to optimizing therapeutic

interventions, ensuring that patients receive the most effective

treatment based on the distinct characteristics of their tumors.

The microenvironment of the CSC niche plays an essential role in

the formation and maintenance of CSCs. The niche can comprise

TME components such as CAFs, immune cells, extracellular matrix,

and cytokines, which provide a suitable microenvironment for CSCs,

all of which create an optimal microenvironment for CSCs (50, 54).

We investigated cellular interactions between Scissor+ tumor cells

and other TME cell types. Scissor+ tumor cells have abundant

interactions with CAFs. On the one hand, Scissor+ tumor cells

secreted ligands that activated IGF2 and PDGF signaling pathways
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which could regulate the transformation of fibroblasts into CAFs (55,

56). On the other hand, CAFs promote Scissor+ tumor cell survival

and invasion through FGF (39, 42, 43) and SLIT2-ROBO (57)

signaling pathways. The spatial location of Scissor+ tumor cells was

also visualized, where they reside in an immune-desert region,

encapsulated by CAFs. This microenvironment may facilitate the

evasion of immune cell attack and contribute to immune suppression,

thereby supporting tumor survival and progression. Although many

studies have already illustrated the interplay between CAF and cancer

cells expedites malignant progression (58, 59), more rigorous

experiments are needed to validate this finding in WT. Moreover,

interrupting connections between CAFs and CSCs through inhibiting

key molecules in IGF2, PDGF, SLIT2 signaling pathways could

provide potential biomarkers and therapeutic targets for WT.

The rapid advancement of in-silico drug sensitivity prediction,

based on bulk or single-cell transcriptomics, has facilitated the

identification of potential drugs targeting various tumor

phenotypes (30, 60). In this study, by using PERCEPTION pipeline

(30), we observed that Scissor+ tumor cells manifested multi-drug

resistance to conventional chemotherapy agents including vincristine,

doxorubicin, etoposide (1, 61), reinforcing its role as potential CSCs

in WT. Notably, though resistant to chemotherapeutics, Scissor+

tumor cells were responsive to targeted therapies, especially EGFR

inhibitors (afatinib, icotinib, and osimertinib). EGFR inhibitors have

been clinically used to treat malignancies including breast (62), colon

(62) and lung cancer (63). Phase I and pharmacokinetic studies of the

EGFR inhibitor erlotinib, both as a single agent and in combination

with temozolomide, have been conducted in children with refractory

solid tumors (64). Our findings suggest EGFR inhibitors could serve

as a promising therapeutic option for managing recurrent WT

patients; however, further investigation is required to fully elucidate

the mechanisms driving the upregulation of EGFR in Scissor+ tumor

cells. Specifically, the role of key nephron progenitor transcription

factors, such as SIX2, in modulating EGFR expression, and whether

intervening in this regulatory pathway could inhibit tumor

progression and recurrence, warrants deeper exploration.

Collectively, these findings indicate that WT patients identified as

high-risk for relapse by the ensemble prediction model could benefit

from a combined approach that integrates conventional

chemotherapy with EGFR-targeted therapies. This strategy has the

potential to overcome current treatment limitations and improve

outcomes for WT patients.
5 Conclusion

In conclusion, seven distinct tumor subgroups with varying

expression patterns in WT were characterized based on fetal kidney

signatures. By integrating snRNA-seq, spatial transcriptome, and

bulk RNA-seq data, we identified a subset of Scissor+ tumor cells

associated with poor RFS and tumor recurrence. Scissor+ tumor

cells were primarily derived from CM-like-blastemal and fibroblast-

like tumor subgroups. These cells exhibit characteristics of cancer

stem cells and nephron progenitors, residing in immune-desert

niches surrounded by CAFs, and interact through signaling

pathways such as IGF, PDGF, and SLIT2. To facilitate clinical
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applications, we developed an ensemble machine learning model

based on Scissor+ signatures, which not only accurately predicts

RFS but also outperforms clinical features and reveals adverse

genomic alterations. Elevated expression of TGFA was linked to

relapse, highlighting its potential as a biomarker. Additionally,

Scissor+ cells displayed resistance to conventional chemotherapy

agents but sensitivity to EGFR inhibitors. These findings offer

valuable insights for personalized treatment strategies aimed at

improving outcomes for WT patients at high risk of relapse.
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SUPPLEMENTARY FIGURE 1

Single-nuclear atlas of Wilm tumors from the SCPCP000006 project in the
ScPCA portal. (A) The UMAP visualization of all cells colored by sample. (B)
The UMAP visualization of all cells colored by density of tissue collection

timepoint. (C)The UMAP visualization of all cells colored by density of
histology. (D) The UMAP visualization of all cells colored by density of

relapse status.

SUPPLEMENTARY FIGURE 2

Heatmap illustrating inferred copy number variations for each cell type.

SUPPLEMENTARY FIGURE 3

Tumor subgroups recovered from WT snRNA-seq data. (A, B) The UMAP

visualization of all tumor cells colored by expression of canonical WT epithelial,
blastemal and stromal markers. (C) The UMAP visualization of all tumor cells

colored by WT1 expression. (D) The UMAP visualization of all tumor cells colored
by normalized expression of REACTOME_REGULATED_NECROSIS. (E) The bar

plot showing the proportions of tumor subgroups in samples with and without

relapse after initial treatment(left). The bar plot showing the proportions of tumor
subgroups in unfavorable versus favorable samples(right). (F) The bar plot showing

the proportions of tumor subgroups across different samples. (H) Hematoxylin
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and eosin (H&E) staining of slide SCPCL000390 (favorable histology) (Left). Spatial
distribution of tumor subgroup-specificmarkers (Right). (I)Hematoxylin and eosin

(H&E) staining of slide SCPCL000429 (unfavorable histology) (Left). Spatial

distribution of tumor subgroup-specific markers (Right).

SUPPLEMENTARY FIGURE 4

Tumor meta cells generated by pseudobulk analysis. (A) The UMAP

visualization of meta cells colored by sample. (B) The UMAP visualization of
meta cells colored by relapse status.
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SUPPLEMENTARY FIGURE 5

Spatial transcriptomic analysis of sample SCPCL000374. (A) Spatial
distribution of cell type signatures. (B) Spatial visualization of inferred

signaling pathways in spatial transcriptomics, colored by receiver weight.

Arrows indicate the spatial directions of the pathways.

SUPPLEMENTARY FIGURE 6

Spatial distribution of cell type signatures in representative samples with
favorable or anaplastic histology, with and without recurrence.
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