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This paper explored the novel approach of targeting the cyclic guanosine

monophosphate (GMP)-adenosine monophosphate (AMP) synthase-stimulator of

interferon genes (cGAS-STING) pathway for the treatment of osteosarcoma (OS).

Osteosarcoma is a commonmalignancy in adolescents. Most patients die from lung

metastasis. It reviewed the epidemiology and pathological characteristics of OS,

highlighting its highly malignant nature and tendency for pulmonary metastasis,

underscoring the importance of identifying new therapeutic targets. The cGAS-

STING pathwaywas closely associated with themalignant biological behaviors of OS

cells, suggesting that targeting this pathway could be a promising therapeutic

strategy. Currently, research on the role of the cGAS-STING pathway in OS

treatment has been limited, and the underlying mechanisms remain unclear.

Therefore, further investigation into the mechanisms of the cGAS-STING pathway

inOS and the exploration of therapeutic strategies based on this pathway are of great

significance for developing more effective treatments for OS. This paper offered a

fresh perspective on the treatment of OS, providing hope for new therapeutic

options for OS patients by targeting the cGAS-STING pathway.
KEYWORDS

osteosarcoma, cGAS-STING, treatment target, drug, tumor immunity
1 Introduction

OS is a malignant bone tumor that primarily affects children and adolescents,

particularly those in a rapid growth phase. According to literature reports, the incidence

of OS has tripled since 2000, with the highest incidence observed in individuals aged 10 to

24 years, reaching 7.2 cases per million (95% CI: 6.9-7.5) (1). Although the overall incidence

is relatively low, its highly malignant nature and tendency for pulmonary metastasis

contribute to a high mortality rate, posing a significant threat to the health of adolescents.
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Current treatment primarily has involved a combination of surgery,

chemotherapy, and radiotherapy. Traditional treatments for

osteosarcoma include surgical resection and systemic

chemotherapy. Surgery is mainly divided into amputation and

limb-salvage surgery. Surgery means complete removal of the

tumor. Amputation requires that the osteotomy plane is at least 5

cm away from the tumor-free boundary. If the lesion cannot be

completely removed during limb-salvage surgery, the local

recurrence rate can be as high as 25% (2). At best, only 10% of all

patients with osteosarcoma can be cured by tumor resection alone,

and most develop local recurrence and/or lung metastases months

later. Adjuvant systemic chemotherapy can significantly improve a

patient’s chance of cure (3–5). Adjuvant systemic chemotherapy

includes postoperative chemotherapy used to remove lesions that

cannot be completely removed by surgery and preoperative

chemotherapy to improve the success rate of limb-sparing surgery

and reduce the risk of recurrence, which have significantly

improved the 5-year survival rate of patients with osteosarcoma.

However, it is impossible to avoid the systemic side effects caused by

chemotherapy, including liver and kidney damage, bone marrow

suppression, neurotoxicity, gastrointestinal reactions, etc. For

example, doxorubicin can cause permanent myocardial damage,

and cisplatin can cause high-frequency hearing loss. wait (6–8).

Although radiotherapy can be used for patients whose tumors

cannot be surgically removed or remain at the resection margin,

and for OS patients whose tumors do not respond well to

chemotherapy, the actual sensitivity of OS to radiotherapy is not

high (9). While these treatments improve survival rates, they also

present challenges such as chemotherapy resistance and high

recurrence rates, indicating the need for better treatment options

and improved patient quality of life (4, 10). Immunotherapy is a hot

research direction at present and is considered to be one of the

breakthroughs in the treatment of osteosarcoma (11–15). The

tumor microenvironment exists as an immune cell network with

complex functions that can promote OS growth. Tumor-derived

exosomes can drive bone cell behavior and create conditions for

tumor cell homing (16). On the other hand, exosomes also widely

promote immunosuppression, such as inhibiting the activity of T

cells and NK cells, inducing T cell apoptosis, etc., to help

osteosarcoma cells escape immune system (17–19). In addition,

many factors such as specific proteins in OS-derived exosomes,

cancer-associated fibroblasts, TGF-b, VEGF, tumor-associated

macrophages, etc. have their own roles in the osteosarcoma

microenvironment, some of which mediate the downregulation of

immune cells, some of which provide support for tumor growth,

regulate tumor progression, or affect the immune response (20, 21).

A strongly suppressive immune microenvironment is associated

with overactivation of multiple immunosuppressive pathways, so

there is an urgent need to gain a deeper understanding of the

osteosarcoma immune system and use its immune markers to

develop targeted immunotherapy (22). The abnormal regulation

of the immune system is crucial for the occurrence of OS. During

interactions between the bone microenvironment and OS cells, the

loss or dysfunction of the fatty acid synthase protein within OS cells

allows them to evade immune surveillance, particularly in

metastatic environments such as the lungs, which constitutively
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express fatty acid synthase ligands. It allows tumor cells to bypass

the host’s defense mechanisms, significantly reducing the efficacy of

immune monitoring and clearance. Additionally, the macrophage

migration inhibitory factor in OS activates the RAS/MAPK

pathway, further promoting tumor cell escape and invasion (23).

The formation of an immunosuppressive microenvironment and

chronic inflammation provides a conducive environment for tumor

growth. Metastatic cells with osteolytic potential in bone metastases

can induce OS cells to produce factors such as parathyroid

hormone-related protein, transforming growth factor-beta, or

interleukin 11, which interact with the RANKL-RANK pathway

between osteoblasts and osteoclasts, stimulating osteoclast

activation. Simultaneously, the expression of RANK enhances the

invasive ability of tumor cells. In environments with impaired

immune function, this increases the risk of pulmonary metastasis,

contributing to bone tumor progression. These abnormal immune

responses not only exacerbate OS progression but also complicate

immunotherapy, highlighting the immune system as a potential

target for treatment. Therefore, understanding these abnormal

regulatory mechanisms is crucial for developing more effective OS

treatment strategies (24). (Figure 1) The cGAS-STING pathway is

closely related to the regulation of the tumor’s immune

microenvironment. In recent years, the cGAS-STING pathway

has received increasing attention in the immunotherapy research

of osteosarcoma (25, 26). Therefore, we chose cGAS-STING

pathway for discussion in this review, although Jordan et al.

recently published a review with a similar theme (27). The main

focus of these two reviews is different. Our main focus is on the

cGAS-STING pathway and its upstream and downstream

molecular mechanisms. The paper published by Jordan et al.

mainly focuses on the application of nanotechnology in targeting

the cGAS-STING pathway.

Traditional treatment methods for osteosarcoma include

surgical resection, chemotherapy, and radiotherapy as adjuvant

therapies. However, due to limitations such as restricted surgical

anatomical locations, high tumor recurrence rates, poor aesthetic

outcomes, significant systemic side effects of chemotherapy, and

low sensitivity to radiotherapy, the advantages of immunotherapy

have come to the fore. Studies indicate that immunological agents

such as human interferon a, interferon a-2b and liposomal

muramyl tripeptide phosphatidylethanolamine can effectively

inhibit or reduce osteosarcoma cells.

The cGAS-STING pathway is a well-studied immune pathway.

It activates innate immunological responders(IRs), forming a

broadly applicable surveillance mechanism to defend against

tissue damage and pathogen invasion (28). The pathway

recognizes cytoplasmic double-stranded DNA (dsDNA) and

promotes type I interferon (IFN) inflammatory signaling

responses, while also influencing processes such as autophagy, cell

survival, and senescence. It interacts with other innate immune

pathways, regulating responses to infections, inflammatory diseases,

and cancer, contributing to the impacts of immunotherapy (29).

The cGAS-STING pathway is abnormally activated in various

tumors, including hepatocellular carcinoma, acute myeloid

leukemia, and OS, and plays a role in their occurrence and

development (30–32). In OS, the abnormal activation of this
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pathway is closely associated with the malignant biological

behaviors of tumor cells (25). This paper aimed to explore the

mechanisms of the cGAS-STING pathway in OS and identify

therapeutic strategies based on this pathway. We outlined the

structure and function of the cGAS-STING pathway and its role

in innate IRs, and analyzed the abnormal activation of this pathway

in OS and its relationship with tumor cell proliferation, invasion,

and metastasis. We also discussed therapeutic strategies (including

small molecule inhibitors alongside immunotherapy), and the

challenges and prospects of targeting this pathway for OS

treatment, providing a new perspective on OS treatment.
2 Structure and function of cGAS and
STING proteins

cGAS is composed of a double-globular domain with two

spherical structures connected by a groove. Its C-terminal portion

contains a nucleotide transferase domain, which includes a catalytic

domain and two DNA binding sites (A and B). DNA binding site A

induces conformational changes in the protein, repositioning the

catalytic pocket to allow catalysis with ATP and GTP substrates.

The unique structure of cGAS enables it to effectively recognize and

bind to DNA, cGAMP synthesis, and activate the IRs. STING

(stimulator of interferon genes) is a protein composed of four

transmembrane helices, a cytoplasmic ligand-binding domain

(LBD), and a C-terminal tail. The LBD undergoes conformational

changes upon binding to cGAMP, promoting STING

oligomerization. cGAS and STING are key proteins in the cGAS-

STING pathway, playing important roles in DNA recognition and

activation of downstream signaling. cGAS catalyzes cGAMP

synthesis, which acts as a second messenger to activate STING.

STING then recruits and activates TBK1, initiating downstream
Frontiers in Immunology 03
signaling that leads to an IR. When dsDNA, whether exogenous or

endogenous, is detected in the cytoplasm due to DNA damage or

pathogen infection, cGAS catalyzes the synthesis of cGAMP.

STING, located on the endoplasmic reticulum, recognizes and

binds cGAMP, triggering conformational changes, including a

180° rotation and inward folding of the LBD, promoting STING

oligomerization. Activated STING is transported from the

endoplasmic reticulum to the Golgi apparatus via specific

signaling pathways, where it recruits and activates numerous

TBK1 molecules. Upon activation, TBK1 phosphorylates

interferon regulatory factor 3 (IRF3) and nuclear factor kappa B

transcription factors, promoting their translocation into the nucleus

and the expression of IFN-a/b and tumor necrosis factor-alpha

genes. These genes enhance innate IRs and initiate adaptive IRs

(33–35). In addition to this classical pathway, STING can also

mediate autonomous defense functions through gene transcription,

with autophagy playing a key role. The activation of STING not

only triggers antiviral IRs but also induces cellular “senescence” and

eventually leads to cell death. Autophagy, senescence, and apoptosis

are crucial mechanisms by which the cGAS-STING pathway

combats pathological changes and maintains cellular homeostasis

(33, 35, 36).
3 Relationship of cGAS-STING
pathway with different diseases

The cGAS-STING pathway plays a crucial role in tumor

immunology. For example, tumor cells can produce DNA

damage, activate the cGAS-STING pathway, and trigger

inflammatory responses and cell senescence, thereby inhibiting

tumor growth. Additionally, tumor cells can evade immune

destruction by degrading cGAS, STING, or TBK1 proteins.
FIGURE 1

Current treatment of OS.
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Radiation therapy, a traditional cancer treatment, plays an

important role in clinical applications. It directly kills tumor cells

and also activates the cGAS-STING pathway, regulating

downstream signals to improve the effectiveness of cancer

treatment. Studies have found that expression levels of genes

related to the cGAS-STING pathway are low in non-small cell

lung cancer cells. Researchers used the cGAS-STING pathway

activator diABZI and the small molecule human polynucleotide

kinase/phosphatase inhibitor A12B4C3 (which promotes DNA

damage) to enhance the activation of this pathway. The results

showed that both diABZI and DNA damage increased the

sensitivity of NSCLC cells to radiotherapy by promoting

apoptosis, offering a new direction for combining radiotherapy

with immunotherapy (37). In liver cancer research, a

nanoplatform was used to activate the cGAS-STING pathway and

enhance the effectiveness of immunotherapy. This platform uses

manganese ions (Mn²+) and b-paclitaxel to activate the cGAS-

STING pathway, upregulate programmed death-ligand 1 (PD-L1),

enhance T cell responses, and inhibit tumor growth and metastasis

(38). Another study has demonstrated the potential of the cGAS-

STING pathway in treating gastric cancer, where metformin can

promote the release of downstream inflammatory factors by

activating this pathway, enhancing antitumor IRs. The

mechanism lies in the fact that metformin inhibits protein kinase

B (AKT) phosphorylation, downregulating the expression of the

transcription factor sex-determining region Y-box 2 (SOX2). SOX2

downregulation inhibits the AKT signaling pathway, thereby

activating the cGAS-STING pathway (39). While cell senescence

has a double-edged role in cancer, it can inhibit tumor progression

by halting the cell cycle and enhancing immune surveillance (40). In

breast cancer treatment, nanomaterials have been used to activate

the cGAS-STING pathway, producing hydrogen sulfide and carbon

monoxide gases. These gases induce mitochondrial dysfunction and

tumor cell apoptosis while stimulating inflammation and dendritic

cell maturation, ultimately promoting antitumor IRs and inhibiting

the growth and metastasis of breast cancer (41). Many studies also

suggest that various factors in multiple cancers activate the cGAS-

STING pathway to enhance antitumor IRs (42).

Immune checkpoints are molecules that interact between

immune cells, and under normal conditions, they regulate IRs

and prevent excessive damage to the body’s own tissues (43).

However, in the tumor microenvironment (TME), tumor cells

exploit immune checkpoints to suppress immune cell activity,

evading immune surveillance and promoting tumor growth and

metastasis. Immune checkpoint blockade (ICB) therapy targets

these immune checkpoints, relieving their inhibitory effects,

reactivating immune cells, and enhancing antitumor IRs (44–46).

The cGAS-STING pathway, a cytoplasmic DNA sensor, can

recognize dsDNA in the cytoplasm and activate innate IRs.

Studies have found that the cGAS-STING pathway works

synergistically with ICB therapy to enhance antitumor IRs. This is

because the ataxia telangiectasia mutated protein, a key factor in

DNA damage repair, is absent, leading to increased cytoplasmic
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DNA levels, which activate the cGAS-STING pathway, enhancing

the efficacy of ICB therapy (47).

The cGAS-STING pathway plays a key role in infectious

diseases. During infection, pathogen DNA is released into the

cytoplasm, where cGAS recognizes and binds to this DNA,

catalyzing the synthesis of cGAMP and activating STING

protein. STING then initiates downstream signaling, activating

TBK1 and IRF3, which induce the production of type I IFNs and

inflammatory factors. These factors activate immune cells and

trigger inflammatory and adaptive IRs to eliminate pathogens.

The cGAS-STING pathway plays an important role in various

infectious diseases. For example, during Kaposi’s sarcoma-

associated herpesvirus infection, the pathway is activated,

inhibiting viral replication and enhancing IRs. The viral IFN

regulatory factor 1 protein encoded by KSHV can inhibit

STING-mediated DNA sensing, affecting viral replication and

host IRs (48). Another study found that human glial cells express

high levels of cGAS and downstream STING proteins in both

resting and activated states, improving their ability to recognize

viral DNA, activate IRF3, and express IFN-b mRNA, enhancing

antiviral capacity (49). In dengue virus infections, which involve

an RNA virus, the cGAS-STING pathway is activated, triggering

antiviral IRs. Dengue virus can activate this pathway through

mechanisms such as IL-1b-induced mitochondrial DNA

(mtDNA) release and direct activation of cGAS. However,

dengue virus infection can also inhibit the cGAS-STING

pathway, such as through the degradation of cGAS or

inhibition of STING signal transduction, demonstrating the

dual nature of the pathway in viral infections (50–52). In

bacterial infections, the cGAS-STING pathway plays an

important role in host defense. It recognizes bacterial DNA

and regulates innate IRs through a cascade of reactions. In a

respiratory tract infection model, STING knockout mice

exhibited higher bacterial loads, indicating the cGAS-STING

pathway’s importance in controlling Brucella infection (53).

Similarly, following Mycobacterium bovis infection, the cGAS-

STING pathway promotes the maturation and activation of DCs

and enhances CD4+ T cell proliferation, bolstering adaptive IRs

to clear the infection (54). In fungal infections, the cGAS-STING

pathway is a key pattern recognition receptor in host defense,

particularly in corneal epithelial cells. Fungal DNA or RNA

hybrids are recognized by cGAS in the cytoplasm, triggering

the pathway, promoting IFNs and inflammatory cytokines, and

initiating IRs to clear fungal pathogens. Additionally, the

pathway induces autophagic flux by enhancing the formation

of microtubule-associated protein 1 light chain 3-, participating

in clearing intracellular DNA and viruses, which helps the host

fight fungal infections (55). Therefore, the cGAS-STING

pathway plays an essential role in various infectious diseases,

acting as the body’s first line of defense against pathogen

invasion. By activating this pathway, the body effectively

responds to diverse infectious challenges and achieves self-

protection (36, 56–58) (Table 1).
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4 Role of cGAS-STING pathway in OS

The TME is a highly dynamic and evolving system, making

accurate prediction challenging. The TME functions like nutrient-

rich soil, providing nourishment for tumor cell proliferation while

restricting anti-tumor immunity (59). The cGAS-STING pathway

supports tumor survival and proliferation by promoting the

formation of an immunosuppressive TME (60). Zhang et al. (61)

constructed a Cox proportional hazards regression model and

found that high expression of C–C motif chemokine ligand 5 was

associated with a favorable prognosis in children with OS. The

mechanism involves high expression of C–C motif chemokine

ligand 5 significantly increasing the infiltration levels of

macrophages (M0, M1), CD8+ T cells, and regulatory T cells in

tumor tissues. Henrich et al. (62) developed a model for Ewing’s

sarcoma and discovered that ubiquitin-specific protease 6

significantly enhanced the infiltration of macrophages (F4/80+),

DCs (CD11c+), and myeloid cells (CD11b+) in primary Ewing’s

sarcoma tumors through the synergistic effect of inducing

chemokines such as C–X–C motif chemokine ligand 10, resulting

in a significant improvement in overall survival rates. C–C motif

chemokine ligand 5 and 10 can promote the infiltration of DCs and

immune effector cells in OS. Radiotherapy can elevate the

expression levels of C–C motif chemokine ligand 5 and 10 (63);

however, this effect is not universally present in all cells. In U2OS

OS cells with low STING expression, this effect is not observed. The

use of STING agonists can alter this phenomenon (63). STING

signaling is essential for radiation-induced expression of C–C motif

chemokine ligand 5 and 10 in OS cells. Therefore, enhancing

STING signaling may be beneficial for OS treatment. Sodium-
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glucose cotransporter 2 is a mediator of epithelial glucose

transport and is highly expressed in many tumor types. Inhibition

of Sodium-glucose cotransporter 2 can exert anticancer effects in

various tumors, including HCC, pancreatic cancer, prostate cancer,

colorectal cancer, lung cancer, and breast cancer (64–67). Wei et al.

found that Sodium-glucose cotransporter 2 inhibitors can

upregulate the cGAS-STING pathway and induce immune cell

infiltration. Furthermore, the combination of Sodium-glucose

cotransporter 2 inhibitors and the STING agonist 2’3’-cGAMP

exhibited synergistic antitumor effects in OS (32). However,

whether STING has an antitumor effect in tumor treatment

remains controversial (68). Inducing apoptosis is a commonly

employed antitumor strategy. The IFN gamma inducible protein

16/p53 pathway is a mechanism of cell apoptosis. Studies have

shown that STING can promote the degradation of IFN gamma

inducible protein 16. Additionally, overexpression of STING

inhibits p53 serine 392 phosphorylation, p53 transcriptional

activity, p53 target gene expression, and p53-dependent

mitochondrial depolarization and apoptosis (69). Therefore,

further research is needed to identify the therapeutic targets of

the cGAS-STING pathway in OS.

The biological characteristics of OS have driven a surge of

interest in developing new antitumor drugs based on tissue

engineering. One promising approach involves targeting reactive

oxygen species (ROS), which are by-products of cellular oxygen

metabolism, such as superoxide anion, hydrogen peroxide,

hydroxyl radical, and nitric oxide. These ROS are mainly

generated by complexes I and III of the mitochondrial inner

membrane respiratory chain and by nicotinamide adenine

dinucleotide phosphate oxidase on the cell membrane. While
TABLE 1 The role of cGAS-STING signaling pathway in different types of diseases.

Disease
Type

Disease Effects of cGAS-STING signaling pathway Reference

Cance

Lung cancer
diABZI and promotion of DNA damage activate the cGAS-
STING pathway and increase the sensitivity of NSCLC cells

to radiotherapy.
(37)

Liver cancer
It enhances T cell responses and inhibits tumor growth and
metastasis by upregulating programmed death-ligand 1.

(38)

Gastric cancer
It promotes the release of downstream inflammatory factors and

enhance anti-tumor immune response
(39)

Breast cancer
It promotes anti-tumor immune response and inhibit the growth

and metastasis of breast cancer.
(41)

infection

Kaposi sarcoma-associated herpes virus It inhibits viral replication and enhance immune response (48)

Dengue virus
Activation of the cGAS-STING pathway can induce cell damage

and apoptosis
(50)

Brucella
STING knockout mouse model of respiratory infection exhibits

higher bacterial load
(53)

Mycobacterium bovis
It enhances adaptive immune responses to clear and

fight infection
(54)

Aspergillus fumigatus
It promotes the expression of IFNs and other inflammatory
cytokines, triggering host immune responses and clearing

fungal pathogens.
(55)
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ROS play a crucial role in cellular signaling and homeostasis, they

are also associated with the occurrence and progression of cancer.

Under normal conditions, cells maintain a balance in ROS levels via

the antioxidant defense system. However, when this balance is

disrupted, excessive ROS can lead to DNA damage, genomic

instability, and carcinogenic mutations, thus promoting cancer

progression (70, 71). In tumor cells, this imbalance is often

caused by mitochondrial dysfunction, which leads to an impaired

electron transport chain, reduced mitochondrial membrane

potential, increased nicotinamide adenine dinucleotide phosphate

oxidase expression, and iron metabolism disorders. These factors,

coupled with the excessive proliferation of tumor cells and reduced

antioxidant enzyme activity, contribute to elevated intracellular

ROS levels (72). Based on this mechanism, Xiang et al. developed

composite nanoparticles composed of ROS-sensitive amphiphilic

polymers designed to activate the cGAS-STING pathway. These

nanoparticles dissociate within the cell in response to ROS,

releasing Pt(IV)-C12 and NLG919. The former induces DNA

damage, which activates the cGAS-STING pathway and promotes

the infiltration of CD8+ T cells into the TME, while the latter

enhances the activity of these CD8+ T cells, boosting the IR against

cancer cells. For patients with inoperable or metastatic OS,

radiotherapy is a critical treatment method. However, in some

TMEs with strong immunosuppression, low-dose radiotherapy can

lead to radio resistance in tumor cells (73, 74), whereas high-dose

radiotherapy may cause damage to immune cells and healthy

tissues. Experimental studies have shown that a Ta-Zr co-doped

metal-organic framework has significant synergistic effects in

enhancing radiotherapy sensitization, photodynamic therapy, and

immunotherapy in OS cells. The radiotherapy-radiotherapy

dynamic therapy effect mediated by Ta-Zr co-doped metal-

organic framework induces DNA damage, which activates the

cGAS-STING pathway, stimulating antitumor IRs. Notably, PD-

L1 expression stimulated by the cGAS-STING pathway in the Ta-Zr

co-doped metal-organic framework+X-ray group was twice that of

the control and unirradiated Ta-Zr co-doped metal-organic

framework groups, promoting a stronger antitumor IR

in radiotherapy.
5 Therapeutic strategies targeting the
cGAS-STING pathway

Given the significant potential of cGAS-STING pathway in

tumor treatment, many researchers are actively investigating

therapies that target this pathway. Here, we summarized recent

findings related to drug treatments aimed at modulating cGAS-

STING activity across various cancers.

Several commonly used chemotherapeutic drugs have been

shown to activate the cGAS-STING pathway, contributing to

their antitumor effects. For instance, Hu et al. (75) demonstrated

in vitro that paclitaxel could activate cGAS signaling in certain

triple-negative breast cancer cell lines, inducing the polarization of

macrophages toward the M1 phenotype and recruiting lymphocytes

to the TME, and improving patient survival when combined with

other treatments. However, this lymphocyte infiltration does not
Frontiers in Immunology 06
occur in all triple-negative breast cancer cases, and corresponding

in vivo studies are lacking. Future research could address this gap

and explore the variability in response to paclitaxel. In another

study, Li et al. (76) found that arsenic trioxide-induced

mitochondrial damage could activate the cGAS-STING pathway

in hepatocellular carcinoma cells, enhancing the expression of IFNs.

At the same time, STING activation was also associated with

increased expression of the immune checkpoint protein PD-L1 in

tumor cells. arsenic trioxide treatment improved antitumor

immunity and immunogenicity in arsenic trioxide-sensitive

hepatocellular carcinoma cells, although arsenic trioxide-

insensitive hepatocellular carcinoma cells showed limited

response. Future research could focus on improving arsenic

trioxide sensitivity in these resistant cells. Notably, when arsenic

trioxide-pretreated tumor cells were injected into mice, the

treatment also showed both preventive and therapeutic effects,

significantly reducing tumor growth, providing a new avenue for

the development of hepatocellular carcinoma vaccines. In addition

to chemotherapeutic agents, some drugs traditionally used for non-

cancer treatments have also been found to activate the cGAS-

STING pathway in tumors. Metformin, a classic drug for type 2

diabetes, has been found in recent years to have antitumor effects in

several cancers, including lung, pancreatic, breast, prostate, and

colon cancer (77–79). Most of these antitumor mechanisms were

found to be independent of cGAS-STING pathway. However, Shen

et al. (39) found that metformin could activate the cGAS-STING

pathway via the SOX2/AKT axis in gastric cancer cells, promoting

the release of inflammatory factors and enhancing the effectiveness

of immunotherapy. This raises the question of whether metformin

may exert similar cGAS-STING-mediated effects in the treatment of

other tumors, warranting further investigation.

Lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme

A reductase, is widely used to treat hyperlipidemia but also shows

promise in cancer treatment. Huang et al. (80) demonstrated that

lovastatin activated the cGAS-STING pathway by increasing the

abundance of mtDNA in the cytoplasm through mitochondrial

damage. This activation resulted in growth inhibition and apoptosis

across various cancer cell types. In HCT116 xenograft tumor models,

lovastatin effectively inhibited tumor growth via the cGAS-STING

pathway. Knocking out cGAS or STING diminished its antitumor

effects. Nonsteroidal anti-inflammatory drugs also play a role in tumor

treatment. Kosaka et al. (81) found that celecoxib, a selective

cyclooxygenase-2 inhibitor, enhanced the antitumor effect of the

STING agonist cGAMP in a T cell-dependent manner, inducing

systemic tumor-specific IRs in mouse models. Additionally, Zhu

et al. (82) showed that aspirin, a targeted drug for inhibiting cGAS-

STING signaling, significantly improved asymptomatic orchitis

induced by airborne particulate matter. Tumor immunomodulators

have been integrated into cGAS-STING targeted therapy. Anlotinib,

effective against various tumors such as hepatocellular carcinoma, renal

cell carcinoma, and non-small cell lung cancers, glioblastoma,

refractory metastatic cervical cancer, and refractory epithelial ovarian

cancer, has been shown to enhance tumor control and improve long-

term survival (83–88). Yuan et al. (89) established a gastric cancer

mouse model and found that anlotinib treatment reduced cell

proliferation and invasion by activating the cGAS-STING/IFN-b
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pathway. Nanotechnology-based targeted therapies focusing on cGAS-

STING are gaining attention. Mn²+ can enhance antitumor IRs by

activating the cGAS-STING pathway (90, 91). Excessive zinc ions

(Zn²+), which can induce mutant p53 prevalent in many cancers, may

relieve inhibition of the cGAS-STING pathway and lead to tumor

immunosuppression (92, 93). To harness the synergistic effects of Mn²+

and Zn²+, Sun et al. (94) constructed MnO2-modified zeolitic

imidazolate framework 8 nanoparticles, which not only deliver

individual ions but also provide dsDNA for the activation of cGAS-

STING pathway, enhancing cGAS-STING-mediated antitumor

immunotherapy. Fang et al. (95) constructed a manganese-based

nanosystem that activates the cGAS-STING pathway to promote the

maturation of DCs and enhance the infiltration of cytotoxic T

lymphocytes, thereby increasing the sensitivity to ICB

immunotherapy. Additionally, Li et al. (96) created an iron-based

metal-organic framework nanoparticle reactor loaded with

dihydroartemisinin that induces DNA damage to activate the cGAS-

STING pathway, facilitating the binding of STING and IRF3 and

promoting anticancer immunotherapy. Scutellarein, a natural
Frontiers in Immunology 07
compound isolated from schisandra lignans, has also been shown to

activate the cGAS-STING pathway, inhibiting hepatitis B virus

replication and chronic hepatitis B (97). Yang et al. (98) further

found that SC reduced tumor growth by enhancing type I IFN

responses in a cGAS-STING pathway-dependent manner. Moreover,

when combined with platinum chemotherapy, Scutellarein enhanced

the antitumor effects of cisplatin while mitigating side effects. These

findings highlight the potential of cGAS-STING-targeted therapies and

nanotechnology in cancer treatment Figure 2, Table 2.

The DNA binding site of cGAS A induces conformational

changes in the protein, repositioning the catalytic pocket to allow

catalysis with ATP and GTP substrates. The LBD undergoes

conformational changes upon binding to cGAMP, promoting

STING oligomerization. cGAS catalyzes cGAMP synthesis, which

acts as a second messenger to activate STING. STING then recruits

and activates TBK1, initiating downstream signaling that leads to an

IR. Then TBK1 phosphorylates IRF3 and nuclear factor kappa B

transcription factors, promoting their translocation into the nucleus

and the expression of IFN-a/b and tumor necrosis factor-alpha
FIGURE 2

Effect of cGAS-STING signaling pathway in OS.
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genes. Activation of the cGAS-STING signaling pathway leads to

osteosarcoma. inhibitory effect. SGLT2 inhibitors, CCL5, CXCL10,

RT-RDT, ROS and other factors affect the activation of the cGAS-

STING signaling pathway.
6 Clinical research

The cGAS-STING signaling pathway is a popular molecular

mechanism in recent years. There are few clinical studies related to

the cGAS-STING signaling pathway. The cGAS-STING signaling

pathway is of great significance in the treatment of tumors. Eribulin

is a regulator of the cGAS-STING signaling pathway that can

improve the tumor microenvironment. Candace et al. found that

the combination of Eribulin and pembrolizumab in metastatic soft

tissue sarcoma can achieve better therapeutic effects in liposarcomas

and angiosarcomas, and serum IFNa and IL4 levels are associated

with clinical benefits (99). Manganese is necessary for cGAS-STING

to defend against cytoplasmic dsDNA (100). Lv et al. found in a

phase I clinical trial that manganese and anti-PD-1 antibodies were

used in combination in patients with a variety of metastatic solid

tumors. The results showed that the combined application showed

promising efficacy, exhibiting type I IFN induction, manageable

safety and revived responses to immunotherapy (90). Combining

activators of the cGAS-STING signaling pathway has advantages

for tumor treatment. In addition to research on tumors, the cGAS-

STING signaling pathway has also been clinically studied in diseases

such as anemia and infection (101, 102). There are no reports on

clinical studies of the cGAS-STING signaling pathway

in osteosarcoma.
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7 Summary and outlook

The cGAS-STING pathway is emerging as a crucial component

in tumor immunology, particularly in OS. Research has shown that

this pathway is abnormally activated in OS, correlating with the

malignant biological behaviors of tumor cells. Targeting the cGAS-

STING pathway presents a promising new approach for the

treatment of OS. Recent studies indicate that various small

molecule drugs and nanomaterials aimed at the cGAS-STING

pathway may serve as potential therapies for OS. For example,

SGLT2 inhibitors can upregulate the cGAS-STING pathway and

induce immune cell infiltration, while Mn²+ can activate the cGAS-

STING pathway in vivo, promoting antitumor IRs. These findings

suggest new ideas for developing OS treatment based on the cGAS-

STING pathway. However, research on the role of the cGAS-STING

pathway in OS treatment remains limited, and the underlying

mechanisms are not fully understood. Therefore, further

investigation into the mechanisms of cGAS-STING in OS and the

exploration of targeted treatment strategies are of great significance

for the development of more effective treatment options for OS.

While effective therapies for OS are still lacking, the significance of

the cGAS-STING pathway in tumor diseases might provide a new

perspective for its treatment. In future, targeted therapies based on

the cGAS-STING pathway may offer new hope for OS patients.
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