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Background: Breast Cancer (BC) ranks among the top three most prevalent

cancers globally and stands as the principal contributor to cancer-related

fatalities among women. In spite of the substantial occurrence rate of BC, the

early stage of this disease is generally regarded as curable. However, intra-tumor

heterogeneity presents a formidable obstacle to the success of effective treatment.

Method: In this research, single cell RNA sequencing was utilized to dissect the

tumor microenvironment within BC. Slingshot, CytoTRACE and Monocle 2 were

applied to illustrate the differentiation process of each subpopulation in the

pseudotime sequence. To comprehensively comprehend the tumor cells (TCs) in

BC, an analysis of upstream transcription factors was carried out via pySCENIC,

while downstream pathway enrichment was conducted through KEGG, GO and

GSEA. The prognosis model was established based on the bulk data obtained

from TCGA and GEO databases. Knock-down experiments were also

implemented to explore the function of the transcription factor CEBPD in

the TCs.

Results: Our in-depth analysis identified eight principal cell types. Notably, TCs

were predominantly found within epithelial cells. The classification of TCs further

uncovered five unique subpopulations, with one subpopulation characterized by

high UGDH expression. This subpopulation was shown to possess distinct

metabolic features in metabolism-related investigations. The intricate

communication modalities among different cell types were effectively

demonstrated by means of CellChat. Additionally, a crucial transcription factor,

CEBPD, was identified, which demonstrated a pronounced propensity towards

tumors and harbored potential tumor-advancing characteristics. Its role in

promoting cancer was subsequently verified through in vitro knock-down

experiments. Moreover, a prognostic model was also developed, and a risk

score was established based on the genes incorporated in the model. Through

comparing the prognoses of different UTRS levels, it was determined that the

group with a high UTRS had a less favorable prognosis.
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Conclusion: These outcomes contributed to the elucidation of the complex

interrelationships within the BC tumor microenvironment. By specifically

targeting certain subpopulations of TCs, novel treatment strategies could

potentially be devised. This study shed light on the direction that future

research in BC should take, furnishing valuable information that can be utilized

to enhance treatment regimens.
KEYWORDS
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Introduction

Breast cancer (BC) is among the top three most frequently

occurring cancers globally and represents the leading cause of

cancer mortality among women (1, 2). According to the latest

data from the World Health Organization, in 2022, 2.3 million

women worldwide will be diagnosed with breast cancer and 670,000

will die from it. Global estimates show alarming inequalities in the

burden of breast cancer in terms of human development. For

example, in countries with a high human development index, 1 in

12 women will be diagnosed with breast cancer in their lifetime, and

1 in 71 women will die from breast cancer. In the context of all

malignant tumors in China, the incidence of BC occupies the fifth

position overall but holds the top spot among women. Despite the

relatively high incidence of early-stage BC, it is generally regarded as

being curable. The principal obstacle to the success of effective

treatment lies in intratumor heterogeneity (3, 4). BC can be

classified into at least four clinically significant molecular

subpopulations, namely ductal A, ductal B, HER2-enriched, and

basal-like. Through gene copy number and expression analysis,

more than a dozen distinct molecular subpopulations have been

identified (5). Among these subpopulations, ER+/HER2- BCs make

up approximately 60% to 70% of all BCs (6).

The exact etiology of BC is still not fully understood. However,

early-stage BC that is restricted to the axillary lymph nodes is

considered to be curable. In contrast, advanced metastatic BC is

currently incurable, and the focus of treatment is mainly on

prolonging survival and managing symptoms rather than

enhancing the quality of life (7). BC patients typically have a poor

prognosis due to highly aggressive tumors and the absence of early

warning signs, which makes treatment extremely challenging.

Despite recent advancements in BC treatment, only a small

number of patients can reap the benefits of the available options

because of the high recurrence rate and the limitations of post-

metastatic drugs and therapies. Consequently, it is essential to

explore new and innovative therapeutic strategies for BC.

Moreover, the processes responsible for tumor growth,

metastasis, treatment resistance, and immunosuppression are

concealed by the intricacy and diversity of malignancies. To

achieve effective tumor control and management, it is necessary
02
to have an in-depth comprehension of the molecular pathways that

underlie carcinogenesis and tumor development. Both the cancer

epithelial intracellular factor (8–10) have an impact on the

progression of BC. The epithelial-mesenchymal transition (EMT)

converts epithelial cells into mesenchymal cells, which promotes the

formation of tumor stem cells and augments the infiltration,

migration, and metastasis of tumor cells (TCs). Previous

investigations have already shown that the number of cells

expressing EMT-characteristic genes is substantially increased in

triple-negative breast cancer (TNBC) and ER+ BCs (11).

Investigating epithelial cells holds great significance for devising

strategies to restrain BC invasion and metastasis, reducing the

mortality rate among BC patients, and uncovering novel

treatment targets. Directing therapeutic endeavors towards the

TME could prove to be of utmost importance for future cancer

treatments, given that the diverse cell types within the TME have

considerably spurred oncology research. The TME has played a vital

role in the development and progression of BC (12, 13). The TME

represents a complex network that surrounds BC cells and consists

of numerous cellular components such as fibroblasts, endothelial

cells, and immune cells, as well as extracellular elements like

cytokines, hormones, extracellular matrix, and growth factors

(14). These various components have an impact on the biological

behavior of cancer and the efficacy of treatment (1, 15, 16).

Within the TME, epithelioid cells are a type of stem cells that

undergo EMT. During this process, they shed their original

morphological and functional characteristics and transform into

mesenchymal-like cells (17). EMT serves as a crucial step in tumor

development. TCs that experience EMT acquire invasive

capabilities, allowing them to penetrate the surrounding stroma

and establish a microenvironment that is favorable for tumor

growth and metastasis. Metabolically, EMT-induced TCs show

significant alterations. There is a notable shift in energy

metabolism, with an increased preference for glycolysis over

oxidative phosphorylation. This metabolic reprogramming

provides the cells with a more rapid supply of ATP, which is

essential for their enhanced migratory and invasive activities.

EMT is associated with tumor invasion, metastasis, and the

emergence of stem cell-like properties. Previous studies have

pointed out that EMT is a characteristic hallmark of BC (18).
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Recent advancements in high-throughput scRNA-seq have

demonstrated its ability to analyze heterogeneous tumors,

elucidate the transcriptomic characteristics of cancer cells and

their microenvironment, and explicate the interactions between

cancer cells and the components of the microenvironment (19–21).

This forms the basis for broadening our understanding of cancer

and formulating effective early detection and treatment strategies.

Although single cell transcriptome analysis has been previously

employed to investigate the BC TME, its application in the context

of BC is currently limited.

In this study, scRNA-seq was employed to analyze BC samples.

The objective was to clarify the immune microenvironment and

mapping of BC, thus providing novel perspectives for its treatment.

This paper conducts an in-depth exploration of the role played by

the subpopulations of TCs in BC as well as their connection with

tumor tissue. It offers precious insights into the causes and

progression of BC, which is of great assistance in improving

treatment approaches.
Methods

Data source

The scRNA-seq data pertaining to BC was obtained from the

Gene Expres s ion Omnibus (GEO) webs i t e (h t tps : / /

www.ncbi.nlm.nih.gov/geo/) under accession number GSE161529.

The details regarding patient clinical samples can be accessed at

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi. Given that this

study made use of data from a publicly available database, ethical

approval was not necessary.
Single cell RNA sequencing

Upon importing the gene expression data into R, the Seurat

software was employed to analyze it (22–26). The quality criteria

utilized for cell elimination were as follows: features ranging from

300 to 7,500, count values between 500 and 100,000, mitochondrial

gene expression constituting less than 25% of the total gene count,

and erythrocyte gene expression accounting for less than 5% of the

total gene count.

The “NormalizeData” and “ScaleData” functions in the Seurat R

package (27–29) were applied to normalize and standardize the gene

expression data. To identify the top 2,000 most variable genes for

principal component analysis (PCA), the “FindVariableFeatures” tool

was utilized (30–32). The “FindClusters” function was employed to

cluster the cells (33, 34), leveraging the first 30 principal components

(PCs). PCA was performed using “RunPCA.” Uniform moving

approximation and projection (UMAP) was used to reduce

dimensionality and visualize gene expression in the top 30 PCs (24,

25). Batch effects in the samples were mitigated using the Harmony

R package.
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Identification of cell subpopulations

Cell clusters were identified using the “FindClusters” and

“FindNeighbors” functions (35–37) of Seurat (38–40). To evaluate

differentially expressed genes (DEGs) in different cell clusters, the

“FindAllMarkers” function of Seurat (40–43) was used. The

Wilcoxon rank sum test was used in this study.
Trajectory analysis of TCs subpopulations

Initially, the CytoTRACE tool was used to assess each TCs

subgroup’s cellular stemness (38, 39, 44). It is able to reconstruct the

developmental trajectory of cells based on single-cell transcriptome

data, which is critical for understanding the differentiation

pathways of cells during development.

The determination of Cellular Lineages and pseudotimes was

carried out through the application of the Slingshot R program. In

this process, the branching histories of genealogical structures were

modeled by making use of synchronized master curves, and they

were further represented with the employment of clustering-based

minimal spanning trees.

Subsequently, we initiated the reconstruction of cell

differentiation trajectories with the assistance of the Monocle

software toolkit (45). These reconstructed trajectories were then

downscaled by means of DDRTree, and the progression of the

growth of subpopulation cells along the freshly constructed

trajectories was monitored. The acquisition of Gene trajectory

curves was achieved by utilizing the “getCurves” function. A

generalized additive model featuring a negative binomial

distribution for each individual gene was employed to scrutinize

the correlation between pseudotime and gene expression. This

particular technique rendered it feasible to model genes that

exhibited slow fluctuations in expression across the entirety of the

pseudotime continuum (46).
Enrichment analysis

Enrichment of DEGs was performed by using Gene Ontology

(GO) (47, 48), Kyoto Encyclopedia of Genes and Genomes (KEGG)

(49–52), and Genome Sequence Enrichment Analysis (GSEA) tools.

These tools can be accessed at the website http://software.

broadinstitute.org/gsea/msigdb and used together with the Cluster

Profiler R package.
Cell communication analysis

The CellChat R package (53) was employed to analyze intricate

cell-cell interactions and construct regulatory networks based on

ligand-receptor expression. By analyzing the ligand-receptor

interactions, we were able to infer communication between cells at

both the ligand-receptor and signal pathway levels. This is important
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for understanding the functional consequences of intercellular

communication. The “netVisual DiffInteraction” function was used

to precisely identify differences in cell communication intensity, while

the “IdentifyCommunicationPatterns” function was applied to

measure the number of communication patterns. A significance

level of 0.05 was set as the cutoff for determining statistical

significance. This approach enabled a detailed exploration and

quantification of the complex communication dynamics occurring

between cells, providing valuable insights into the underlying

biological processes and potential regulatory mechanisms.
pySCENIC analysis

To assess the transcriptional activity within distinct subpopulations

of TCs, we resorted to Python’s SCENIC analysis. SCENIC is a tool for

reconstructing gene regulatory networks using scRNA-seq data while

identifying stable cell states (54). This particular analytical method

enabled us to gain a deeper understanding of the regulatory

mechanisms governing gene expression in these specific TCs

subpopulations. By leveraging SCENIC, we could identify key

transcriptional regulators and their associated gene networks, thereby

shedding light on the molecular processes that might be driving the

behavior and characteristics of different TCs subsets.
Cell culture

The Cell lines BT-549 and MDA-MB-436 were obtained from

the Typical Culture Collection in the United States. For the

cultivation of the BT-549 cell line, RPMI1640 medium was used,

which was supplemented with 10% fetal bovine serum and 1%

penicillin-streptomycin. The culturing environment was

maintained at 37°C, with a gas mixture of 5% CO2 and 95%

humidity. In the case of the MDA-MB-436 cell line, it was

cultured in RPMI1640 medium supplemented with 10% FBS, 1%

penicillin-streptomycin, and an additional 1% sodium pyruvate.

The standard culturing conditions for this cell line were also set at

37°C, with 5% CO2 and 95% humidity. These specific culturing

protocols were essential for the proper growth and maintenance of

the respective cell lines, ensuring the reproducibility and reliability

of any experiments or studies conducted using them.
Cell transfection

The knockdown of CEBPD was accomplished by means of small

interfering RNA (siRNA) constructs procured from GenePharma

(Suzhou, China). The transfection process was carried out in strict

accordance with the protocol provided by the manufacturer of

Lipofectamine 3000 RNAiMAX (Invitrogen, USA). Cells that had

reached 50% confluency in 6-well plates were subjected to

transfection using two distinct knockdown constructs, namely Si-

CEBPD-1 and Si-CEBPD-2, along with a negative control (si-NC).

The transfection reagent Lipofectamine 3000 RNAiMAX (Invitrogen,

USA) was employed in each instance of transfection. This meticulous
Frontiers in Immunology 04
approach was crucial to ensure the effective and accurate knockdown

of CEBPD, allowing for the subsequent evaluation of its impact on

relevant cellular processes and phenotypes.
Cell viability assay

The cell viability of the transfected BT-549 and MDA-MB-436

cells was evaluated through the utilization of the CCK-8 assay. After

a 24-hour culture period, the cells were seeded at a density of 5 × 10³

per well in 96-well plates. Subsequently, 10mL of CCK-8 reagent

(A311-01, Vazyme) was added to each well, and the plates were

then incubated at 37°C in the dark for 2 hours. The absorbance at

450 nm was measured on each day from day 1 to day 4 post-

transfection using an enzyme marker (A33978, Thermo). The

average OD values were then plotted, providing a visual

representation of the cell viability over time. This experimental

setup and procedure allowed for a quantitative assessment of the

impact of the transfection on the viability of the cells, which is

crucial for understanding the potential effects of the CEBPD

knockdown on cell growth and survival.
5-Ethynyl-2’-deoxyuridine
proliferation assay

In a 6-well plate, 5×10³ transfected BT-549 and MDA-MB-436

cells were seeded into each well and then cultured overnight. A 2x

EdU working solution was formulated by mixing serum-free

medium with 10 mM EdU. The cells were incubated for 2 hours

at 37°C. After that, they were rinsed with PBS and fixed with 4%

paraformaldehyde for 30 minutes. Next, a permeabilization step

was carried out using a solution containing 2 mg/mL glycine and

0.5% Triton X-100 for 15 minutes. Subsequently, the cells were

stained with 1X Apollo and 1X Hoechst 33342 for 30 minutes at

room temperature. Finally, fluorescence microscopy was employed

to evaluate cell proliferation. This series of steps enabled the

visualization and quantification of the proliferative activity of the

transfected cells, providing valuable insights into the role of CEBPD

knockdown in modulating cell growth.
Wound-healing assay

The stably transfected cells were cultured until they reached

confluence within a 6-well plate. Subsequently, each well was

scraped carefully with a sterile 200mL pipette tip. To remove any

remaining cellular debris, the wells were then rinsed with PBS. After

that, the cells were incubated in a serum-free medium. Photographs

of the scratches were taken at 0 and 48 hours, and then the widths of

the scratches were precisely measured using the Image-J software.

This procedure allowed for an assessment of the migratory ability of

the stably transfected cells, as changes in the scratch widths over

time can indicate how effectively the cells are able to move and fill in

the gaps created by the scraping.
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Transwell assay

First, the cells were incubated in serum-free medium for a

period of 24 hours. After the Matrigel treatment was carried out, the

cell suspension was carefully placed in the upper chamber of the

Costar plate. Meanwhile, the lower chamber was filled with serum-

enriched medium. Subsequently, the cells were incubated for 48

hours within a culture incubator. To evaluate the invasive ability of

the cells, once the incubation was completed, they were fixed using

4% paraformaldehyde. After that, the cells were stained with crystal

violet. This series of steps and treatments enabled a determination

of how effectively the cells could penetrate through the Matrigel and

migrate towards the serum-enriched medium in the lower chamber,

thereby providing an assessment of their invasive capabilities.
Kaplan-Meier survival curves for
selected genes

Survival analysis was carried out by us with the utilization of the

R software packages known as survminer and survival. These

packages offer a range of functions and tools that are highly

valuable in analyzing and interpreting survival data.
Construction and validation of
prognostic model

We integrated 10 machine learning algorithms and 101

algorithm combinations. Based on 10x cross-validation, using ten

machine learning algorithms: stepwise Cox, random survival forest

[RSF], elastic network [Enet], supervised principal components

[SuperPC], partial least squares regression for Cox [plsRcox],

CoxBoost, survival support vector machine [survival-SVM],

Lasso, Ridge, and generalized boosted regression modeling

[GBM]) built 101 model combinations. The consistency index (C-

index) of the model combinations used (101 in total) across all

datasets (including the training set) is calculated and ranked

according to the average C-index. Finally, the evaluation results of

the models are visualized through heat maps and the most robust

and valuable prognostic models are selected.

Risk   score = Xi  �  Yi

In this context, the X denoted the coefficient, while Y represented

the level of gene expression. According to the calculated risk score,

patients were divided into high risk group and low risk group. The

common grouping method was to divide patients according to the

optimum cutoff value. Patients with a risk score higher than the

optimum cutoff value were classified as high risk group, and those

with a risk score lower than the optimum cutoff value were classified

as low risk group.

The constructed 101 algorithm combinations was evaluated

using a variety of methods. Kaplan-Meier survival analysis was used

to compare the survival difference between the high-risk group and

the low-risk group, draw the survival curve and calculate the log-
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rank P value, and evaluate the predictive ability of the model for

patient survival. Receiver operating characteristic curve (ROC

curve) and area under curve (AUC) were used to evaluate the

prediction accuracy of the model (55–57). The closer the AUC is to

1, the better the prediction performance of the model.
Estimation of immune cell infiltration

The computational analytic tools, namely CIBERSORT (http://

cibersort.stanford.edu/), ESTIMATE, and Xcell, were employed to

estimate the immune cell infiltration in each BC sample within the

TCGA dataset. Subsequently, by means of the CIBERSORT

method, a more in-depth examination was conducted regarding

the high or low quantity of immune cells in different groups, as well

as their associations with OS, modeling genes, and UTRS.
Somatic mutation analysis

The TCGA database furnished the requisite mutation data for

somatic mutation analysis. We examined the distribution of mutations

in both the modeled genes and the highly mutated genes. The

“maftools” software program was employed to calculate the tumor

mutation load (TMB) of each TCs sample. Based on the median TMB

value, the TCs samples were divided into high and low TMB groups.

Additionally, the Kaplan-Meier method was used to analyze the survival

outcomes of the different groups. Moreover, we investigated the copy

number variation (CNV) patterns of the modeled genes.
Results

Visualization of major cell types and cell
subpopulations during BC progression

After meticulous quality control procedures and the elimination

of batch effects, a total of 57,703 cells were successfully retained for

further analysis. We then proceeded with the downscaling

clustering of these cells. Based on tissue-specific markers sourced

from the relevant literature, these cells were classified into 8 major

cell types, namely T_NK cells, B cells and plasma cells, myeloid

cells, smooth muscle cells (SMCs), epithelial cells (EPCs),

endothelial cells (ECs), Fibroblasts, and Pericytes (Figure 1A). For

the BC patient cells belonging to these eight cell types, crucial

characteristics such as G2M.score, S.score, nCount_RNA, and

nFeature_RNA were visualized. Figure 1B illustrated the

differential expression patterns of the top five marker genes across

the eight distinct BC cell types. Through the analysis of cell type

expression in the ER+ Tumor and Normal groups of BC, it was

observed that the ER+ Tumor group had a significantly higher

proportion of EPCs, whereas the Normal group had a greater

prevalence of ECs and Fibroblasts (Figure 1C). Figure 1D

provided a detailed illustration of the distribution of the ER+

Tumor group and the Normal group among the various cell
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types. Additionally, Figure 1E demonstrated the expression levels of

different samples within the 8 different cell types. This

comprehensive set of analyses and visualizations offers valuable

insights into the cellular composition and characteristics of BC.

By employing inferCNV (Supplementary Figure 1) and

subsequent dimensionality reduction clustering techniques, we

were able to identify five distinct cell subpopulations. Based on

differential gene expression analysis and specific biomarkers of each

subgroup reported in the literature, five cell subgroups including

were shown in Figure 1F: C0 MUCL1+ TCs, C1 UGDH+ TCs, C2

ANKRD30A+ TCs, C3 PCLAF+ TCs, and C4 TM4SF1+ TCs. We

then analyzed the expression of these cell subpopulations in various

samples within both the ER+ Tumor and Normal groups of BC. It

was noted that the ER+ Tumor group showed a significantly greater

percentage of C0 MUCL1+ TCs and C2 ANKRD30A+ TCs in

comparison to the Normal group. On the contrary, the Normal

group had a significantly higher percentage of C4 TM4SF1+ TCs

than the ER+ Tumor group (Figure 1G). Figure 1H further

illustrated the expression patterns of the five different cell

subpopulations in both the ER+ Tumor and Normal groups,

providing a more detailed understanding of the differences in cell

subpopulation distribution and expression between these

two groups.

Supplementary Figure 2A presented the expression levels of

differential genes within the 5 cell subpopulations, offering insights

into the unique genetic characteristics of each subgroup. The

accuracy of the classification was verified by examining the

expression of these marker genes in the corresponding cell

populations. Supplementary Figure 2B provided a visual

representation of the UMAP distribution of named genes across

the five subpopulations, allowing for a better understanding of the

spatial relationships between genes and cell types. Supplementary

Figure 2C demonstrated that all five cellular subpopulations had a

strong association with the Oxidative phosphorylation pathway

among the metabolic pathways under analysis. This finding is

significant as it indicates that oxidative phosphorylation may have

a crucial role in the progression of many cancer cells, as supported

by previous research (58). The correlation between the 5 cellular

subpopulations and their highly expressed genes was also shown in

Supplementary Figure 2D, highlighting the potential functional

relationships between these genes and the cell subpopulations.

Finally, Supplementary Figure 2E illustrated the expression of the

identified genes within each respective cell subpopulation,

providing a more detailed view of the gene expression patterns

within each subgroup. Overall, these figures contribute to a more

comprehensive understanding of the molecular and cellular

characteristics of the studied cell subpopulations and their

potential implications in cancer biology.
Visualization of pseudotime series analysis
of BC TCs subpopulations by CytoTRACE,
monocle, and slingshot

In order to explore the differentiation and developmental

associations among the five TCs subpopulations, CytoTRACE was
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employed to carry out the analysis and visualization of TCs

differentiation, as depicted in Figure 2A. Box line plots were used to

showcase the differentiation potential of these cell subpopulations. The

results revealed that the cell stemness of the subpopulations decreased

progressively in the order of C3 - C1 - C2 - C4 - C0, as illustrated in

Figure 2B. Additionally, pseudotime analysis was performed to delve

into the differentiation process of TCs during the development of

cancer. This comprehensive set of analyses provided valuable insights

into the dynamic changes and relationships within the TCs

subpopulations during cancer progression.

UMAP plots were used to display the distribution of TCs

clusters on the pseudotime sequence and the corresponding 5

states on the pseudotime differentiation trajectories, as shown in

Figures 2C, D. Facet plots provided a detailed demonstration of the

distribution position of cells in each cluster on the pseudotime

series (Figure 2E). It was evident that the majority of C1 UGDH+

TCs were grouped at the end of the cell differentiation process. Bar

graphs presented the distribution of the five cell subpopulations

across the three states, with C0 MUCL1+ TCs being the most

prevalent on state 1, C2 ANKRD30A+ TCs being the highest on

state 2, and C1 UGDH+ TCs being the most abundant on state 3

(Figure 2F). Indeed, the ridge plot served as a crucial visual tool in

this context. By clearly presenting the distribution of cellular

subpopulations along the pseudotime, it lent further credence to

the finding that C1 UGDH+ TCs occupies the terminal stage of

pseudotime differentiation as seen in the facet plots (Figure 2G).

The violin plot, on the other hand, focused on the expression levels

of the five cell subpopulations throughout the pseudotime sequence.

Its revelation that C1 UGDH+ TCs exhibited the highest expression

levels at the end of pseudotime differentiation (Figure 2H) provided

valuable information about the transcriptional activity of this

particular subpopulation during the differentiation process. To

deduce the continuous branching genealogical structure in TCs

data, pseudotime trajectories of five cell subpopulations were

analyzed using Slingshot, resulting in two lineages, Lineage1 and

Lineage2. The distribution of these lineages was illustrated with a

UMAP plot (Supplementary Figure 3A). Next, the relationship

between the two Lineages and the pseudotime differentiation

trajectories was shown (Supplementary Figure 3B), and it could

be found that the starting positions of these two Lineages were the

same, but the endpoints of the differentiation were different, with

the endpoint of Lineage 1 being at C1 UGDH+ TCs, and the

endpoint of Lineage 2 being at C3 PCLAF+ TCs. GO-BP

enrichment was applied to analyze the two pseudotime

trajectories. Analysis to visualize the two pseudotime trajectories,

it was found that in the two trajectories, C1 was associated with

biological processes such as differentiation, C3 was associated with

biological processes such as cycle and mitotic, and C4 was

associated with biological processes such as chemotaxis

(Supplementary Figure 3C).

Supplementary Figure 3D provided scatter plots which served

to depict the manner in which named genes were distributed

among diverse subpopulations that were situated along Lineage 1 -

2. These scatter plots also effectively demonstrated the

differentiation trajectories of the named genes over the course

of pseudotime.
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CellChat analysis among all cells

In order to comprehensively and systematically decipher the

complex responses that occur within cells, we embarked on an

exploration of the relationships that exist between individual cells

and the ligand-receptor communication networks. This was

carried out with the intention of deepening our comprehension

of the intricate web of cellular interactions. Through the utilization

of CellChat analysis, we were able to construct elaborate

intercellular communication networks that encompassed a wide

range of cell types, including TCs, myeloid cells, Fibroblasts, and

T_NK cells. Moreover, we were successful in quantifying the
Frontiers in Immunology 07
interactions that were manifested by the lines interconnecting

the different cell types. The quantification of the interactions

between cell types was achieved by taking into account both the

number of pathways and the strength of the interaction. In

Figure 3A, these two aspects were visually represented by the

strength of the lines, where thicker lines were indicative of higher

values in terms of both the number of pathways and the

interaction strength. The circle plots presented in Figure 3B

demonstrated the correlation between the quantity and intensity

of interactions between C1 subpopulation and diverse cell types. It

was evident that C1 exhibited a closer relationship with ECs, B

cells and plasma cells, and myeloid cells.
FIGURE 1

scRNA-seq revealed major cell types during BC progression. (A) UMAP plot showed the distribution of 8 cell types of BC patient cells, each point
corresponded to a single cell colored according to the cell type. The UMAP plot visualized several relevant features of the 8 cell types of BC patient
cells: G2M.score, S.score, nCount_RNA, nFeature_RNA. (B) Dot plot showed differential expression of Top5 maker genes in 8 different cell types of
BC. The size of the dots indicated the percentage of the gene expressed in the subpopulation, and the shade of the color indicated the expression
level of the gene. (C) The bar graph showed the expression of cell types in different samples in the ER+ Tumor group and Normal group of BC.
Different colors indicated different cell types. (D) UMAP plot demonstrated the distribution of cells in ER+ Tumor group and Normal group of BC
patients. Each point corresponded to a single cell colored according to group. (E) Box line plot demonstrated the expression of different samples
between each cell type. (F) UMAP plot demonstrated the distribution of five cell subpopulations of BC patient cells, each point corresponded to a
single cell colored according to the cell subpopulation. Different colors indicated different cell subpopulations. (G) Bar graph demonstrated the
expression of cell subpopulations in different samples in ER+ Tumor group and Normal group in BC. (H) Box line graph demonstrated the
distribution of ER+ Tumor group and Normal group in 5 cell subpopulations.
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We made use of CellChat’s gene expression pattern analysis

methodologies to conduct an in-depth examination of cell and

signaling pathway interactions. At the outset, we determined the

connection between the inferred potential communication patterns

and the secreted cell groups, with the aim of grasping the efferent

communication patterns. Three distinct incoming signaling patterns

were discerned: pattern 1, which consisted of C0 MUCL1+ TCs, C1

UGDH+ TCs, C3 PCLAF+ TCs, C4 TM4SF1+ TCs, and ECs; pattern

2, encompassing Pericytes, myeloid_cells, B cells and plasma cells,

T_NK cells, SMC, and C2 ANKRD30A+ TCs; and pattern 3,

involving ECs, Fibroblasts, Pericytes, myeloid_cells, B cells and

plasma cells. In the similar circumstance, three outgoing signaling
Frontiers in Immunology 08
patterns were detected: pattern 1, composed of C1 UGDH+ TCs, C2

ANKRD30A+ TCs, C4 TM4SF1+ TCs, and SMC; pattern 2, including

Pericytes, Fibroblasts, T_NK cells, and SMC; and pattern 3, made up

of Pericytes, Fibroblasts, C0 MUCL1+ TCs, C1 UGDH+ TCs, C2

ANKRD30A+ TCs, C3 PCLAF+ TCs, and C4 TM4SF1+ TCs. Each of

these patterns was associated with specific incoming and outgoing

signaling, as depicted in Figure 3C. In the context of BC, every cell

type is capable of serving as both a signal transmitter and a receiver,

and the ligand-receptor interactions among these cell types

contribute to the development of BC, as illustrated in Figure 3D.

In addition to the investigation of communications within

individual pathways, a crucial question that arose was regarding the
FIGURE 2

Visualization of pseudotime series analysis of BC TCs subpopulations by CytoTRACE, Monocle 2 and Slingshot. (A) The left figure represented the
analysis of the differentiation of BC TCs using CytoTRACE and was shown in 2D. The color could represent the level of differentiation. The right
figure represented the CytoTRACE results displayed according to different TCs subpopulations. The colors represented different TCs subpopulations.
(B) Box line plot demonstrated the predicted ordering by CytoTRACE of TCs subpopulations. (C) UMAP plot demonstrated the differentiation of 5
TCs subpopulations on the pseudotime trajectory. (D) UMAP plot demonstrated cluster distribution of the 5 TCs subpopulations on the pseudotime
trajectory. (E) Split-plane plot demonstrated the distribution of each of the 5 clusters on the pseudotime trajectory. (F) Bar graph demonstrated the
expression in 5 different cell subpopulations in different states. (G) Ridge plot demonstrated the expression of the 5 cell subpopulations on the
pseudotime. (H) Violin plot demonstrated the expression of 5 different cell subpopulations on the pseudotime.
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manner in which diverse cell populations and signaling pathways

manage to coordinate their respective functions. To address this,

CellChat made use of a pattern recognition approach that was based

on nonnegative matrix decomposition. This approach was specifically

designed to detect global communication patterns and to pinpoint the

key signals present across a variety of cell groups.

Upon the application of this particular analysis, it became

evident that there were three distinct outgoing signaling patterns

as well as three incoming signaling patterns. The outcomes of this

analysis further demonstrated that the incoming signaling directed

towards the subpopulations of TCs mainly adheres to pattern 3.
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This pattern 3 was found to encompass a range of communicating

molecules, including but not limited to CD99, JAM, and CDH.

On the contrary, an examination of the communication

patterns of the target cells brought to light that the outgoing

signaling of TCs was predominantly regulated by pattern 2. This

pattern 2 encompassed several signaling pathways such as MIF,

CD99, and CDH1, along with others, as can be seen in Figure 3E.

Ultimately, our investigation led to the discovery that CDH was

intimately associated with the subpopulations of TCs in both the

incoming and outgoing aspects, as depicted in Supplementary

Figure 4A. CDH (Cadherin) family is an important cell adhesion
FIGURE 3

CellChat analysis between all cells. (A) Circle plots showed the number (left) and strength (right) of interactions between all cells. (B) String diagrams
showed the correlation between C1 UGDH+ TCs and other cell subpopulations and cell types. (C) Heatmap showed pattern recognition of incoming
cells (top), and outgoing cells (bottom) in all cells. (D) Outgoing contribution bubble plot and incoming contribution bubble plot showed cellular
communication patterns between various cell subpopulations of TCs and other cells. (E) Sankey diagrams showed the inferred incoming and
outgoing communication patterns of secretory cells, showing the correspondence between inferred potential patterns and cell populations, and
signaling pathways. Top: Incoming Sankey diagram, bottom: Outgoing Sankey diagram.
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molecule, which plays a key role in the occurrence, development,

invasion and metastasis of breast cancer

To gain a deeper understanding of the CDH signaling pathway

and its associated pathways, a comprehensive visualization and

analysis were carried out. Cell types were carefully identified as both

mediators and influencers in the context of CDH signaling-

mediated intercellular communication. Among the TCs

subpopulations, it was observed that C1 UGDH+ TCs displayed

the highest level of expression within the CDH signaling pathway,

as clearly shown in Supplementary Figure 4C. A slice map was

presented, which effectively depicted the targeting of CDH released

by all cell types, as illustrated in Supplementary Figure 4B.

Additionally, a violin plot was employed to vividly demonstrate

that the TCs subpopulation C1 UGDH+ TCs exhibited a notably

high expression of CDH1, a gene that is closely related to the CDH

pathway, when compared across different cell types, as can be seen

in Supplementary Figure 4D.

Subsequently, the correlation between various cell types within

the CDH signaling network was further elucidated through the use

of heatmaps, as presented in Supplementary Figure 4E.
Screened the genes that made up the risk
score group and conducted an
association analysis

We conducted a meticulous cross-checking process on a total of

101 prediction models with the aim of obtaining the C-index for

each individual model. Through this comprehensive analysis, we

were able to identify and obtain 15 genes that are crucial for

building models by utilizing the StepCox[backward]+CoxBoost

method. The details regarding this process can be further

visualized and understood through Figures 4A, B.

In the course of this particular work, a detailed examination of

the clinical significance pertaining to the identified cell types was

carried out. This was achieved by performing a univariate COX

analysis specifically on the top 100 marker genes of C1 UGDH+

TCs. The results of this analysis brought to light that a total of 15

genes were found to be associated with patient prognosis. These

genes included ZNF236, USF2, RXRA, RELB, POU2AF1, NFE2,

KLF5, JUND, GATA3, GABPA, FOSL2, ETV4, EOMES, CEBPD, and

ATF4, as clearly depicted in Figure 4C. Among these 15 genes, the

majority of them were regarded as protective variables. However, a

small percentage of these genes were identified as risk factors, with

the significance level being set at P < 0.05. To further illustrate the

situation, a bar chart was generated. This bar chart was designed to

display the expression of the 15 genes. In the process of creating this

bar chart, the gene coef value was set to 0, and 0 was taken as the

standard for comparison, as shown in Figure 4D.

The risk score for each patient within the TCGA-BRCA dataset

was computed by making use of the expression levels of the 15 genes

along with their respective regression coefficients. Subsequently, the

distribution of these risk scores within the TCGA- BRCA cohort

was presented. The patients were categorized into two distinct

groups, namely the high and low UTRS (UGDH tumor risk

score) groups, based on the optimal cutoff value. Both the scatter
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plot and the curve plot were utilized to illustrate the risk scores of

these two groups, namely the high and low UTRS groups. This

allowed for a direct comparison of the risk scores between the two

groups. Moreover, the curve plot also demonstrated how the risk

scores vary over a particular range or threshold, as can be seen in

Figure 4E. In order to investigate the differences in gene expression

levels that exist between the two groups, a heatmap was employed.

This heatmap effectively represented the disparities in gene

expression between the high and low UTRS groups, as depicted

in Figure 4F.

Subsequently, a survival analysis was conducted by us. In this

process, the 15 selected risk score genes were divided into two groups,

namely the high UTRS group and the low UTRS group. It was

observed that the group with a high risk score demonstrated a

significantly worse prognosis when compared to the group with a

low risk score, as illustrated in Supplementary Figure 5A. Additionally,

the profile of each gene along with its associated prognosis is presented

in Supplementary Figure 6. To evaluate the independence of risk

variables, a gene-cell clinical prediction model was constructed. This

was achieved by combining various clinical pathological aspects, such

as age, race, T, N, and M stages, with the high and low UTRS groups

through the application of multivariate Cox regression. The analysis

outcomes indicated that the UTRS served as a distinct and unique risk

factor, as shown in Supplementary Figure 5B.

A nomogram chart was then generated with the aim of

displaying the survival rates after one, three, and five years. This

nomogram incorporated multiple factors including age, race, T, N,

and M stages, as depicted in Supplementary Figure 5C.

Furthermore, the survival graphs and ROC curves of the two data

sets GSE37751 and GSE159956 were also presented (Supplementary

Figure 7). It was noted that the survival conditions within the high

UTRS group were also considerably worse in these data sets.
Comparative analysis of immune
infiltration between high and low
UTRS groups

In the course of this study, an in-depth examination was carried

out to explore the differences in immune infiltration between the high

and lowUTRS groups. The focus was on analyzing the association that

exists between immune cells and these respective groups. A heatmap

was employed to vividly illustrate the differential expression of scores

and cells by making use of the ESTIMATE, CIBERSORT, and XCELL

methods, as clearly depicted in Figure 5A. We further utilized stacked

bar graphs to effectively illustrate the predicted abundance of various

immune cells, thereby providing a clear showcase of the immune

infiltration situation, as presented in Figure 5B. Additionally, box line

plots were used to illustrate the estimated proportions of various

immune cells. Through this analysis, it was revealed that T cells CD4

memory resting exhibited the highest expression level, as can be seen

in Figure 5C. Moreover, by applying the CIBERSORT algorithm, we

conducted an analysis of immune cell infiltration in BC patients

sourced from the TCGA database. This analysis successfully revealed

the predicted abundance of immune cells in both the high and low

UTRS groups, as shown in Figure 5D.
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Variance and mutation analysis were used
to analyze the differences between the
two groups

In order to delve into the distinctions between the high and low

UTRS groups, a comprehensive set of analyses was carried out.

Volcano plots, as depicted in Figure 5E, were utilized to vividly

illustrate the differential gene expression that existed between these

two groups. To gain a clearer understanding of the potential functions

and roles that each subpopulation might play in the initiation and

progression of BC, both functional enrichment and KEGG enrichment

analyses were conducted. The outcomes of these analyses for different

genes were presented in the form of bar charts. The findings from these

investigations revealed that the differential genes were predominantly

associated with several key aspects, including Staphylococcus aureus
Frontiers in Immunology 11
infection, the Estrogen signaling pathway, and a number of other

relevant pathways, as shown in Figure 5F. Furthermore, through high-

throughput mRNA sequencing, in-depth bioinformatics analysis, and

pharmacological studies, it was uncovered that Staphylococcus aureus

has the ability to facilitate breast cell metastasis. This occurs specifically

through the innate immune pathway, especially within cancer cells

(59). Estrogens play an important role in regulating the growth and

differentiation of normal, premalignant and malignant cell types,

especially breast epithelial cells (60).

The GOBP enrichment analysis of the differential genes

provided valuable insights into their participation in specific

pathways. As demonstrated by the dot graphs in Supplementary

Figure 8A, these differential genes were found to be involved in

several key pathways. These included intermediate filament

organization, which pertains to the structuring and arrangement
FIGURE 4

Construction of prognosis model and survival analysis. (A) A total of 101 prediction models were cross-validated by the ten-fold framework, and the
C-index of each model was further calculated across all validation datasets. (B) We screened 15 model genes using StepCox[backward]+CoxBoost.
(C) The forest map showed a Univariate analysis of the Risk score genes. HR<1 protective factors, HR>1 risk factors. (D) The bar chart displayed the
expression levels of 15 genes when the coefficient value for the genes was set as 0, providing information about the relative expression levels of
these genes within the context of the analysis. (E) The scatter plot and curve plot depicted the risk scores of two groups: high and low UTRS groups,
allowing for a comparison of the risk scores between these two groups, and the curve plot showed how the UTRS change over a specific range or
threshold. (F) The heatmap represented the differences in gene expression between the high and low UTRS groups, using color scales based on
standardized data. The low Risk score group was represented by green, while the high UTRS group was represented by red.
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of intermediate filaments within cells. Another pathway was body

fluid secretion, which is crucial for the proper functioning of various

physiological processes involving the release of fluids. Additionally,

intermediate filament cytoskeleton organization was also

implicated, highlighting the role of these genes in maintaining the

integrity and functionality of the intermediate filament

cytoskeleton. Moreover, intermediate filament-based processes

were also part of the pathways associated with these differential

genes. Furthermore, the GSEA scoring of the GO-BP enrichment

items for the differential genes shed light on the enrichment scores

across different pathways. This information, as presented in

Supplementary Figure 8B, allowed for a more detailed
Frontiers in Immunology 12
understanding of the significance and relative importance of the

enrichment of these genes within the various pathways

under consideration.

Supplementary Figure 8C provided a visual representation of the

correlation among the mutations of genes that contribute to the UTRS

score in the thermogram. To further explore the correlation between

gene mutations and the immune components within the TME,

additional research was conducted. In the initial stage, the top 20

most frequently mutated genes were identified within two somatic cell

groups. The upper bar graph was utilized to depict the mutation load

on a per-sample basis, while the right bar graph was employed to

illustrate the overall mutation ratio of each gene across these samples,
FIGURE 5

Differential analysis of immune infiltration in high and low risk score groups. (A) Heatmap showed differential expression in the immune infiltrates of
high and low risk score group. (B) Stacked bar graph of immune infiltration. (C) Estimated proportion of 22 immune cells was shown by box-and-
line plot. (D) Eestimated proportion of 22 immune cells in high and low risk score groups was shown by box-and-line plot. (E) Volcano plot showed
DEGs in high and low risk score groups. (F) Results of enrichment on different pathways was shown by KEGG enrichment analysis of
differential genes.
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as shown in Supplementary Figure 8D. By employing histograms to

display chromosome gain and loss, it was evident that the highest level

of CNV gain was observed in CEBPD, whereas the maximum CNV

loss occurred in POU2AF1, as depicted in Supplementary Figure 8E.

The analysis and visualization of cell mutation data from both groups

led to the discovery of mutations in 15 genes within the model, as

illustrated in Supplementary Figure 8F.

We made use of various graphical representations such as box

charts and bar charts to showcase the overall mutation situation in

patients with TCGA- BRCA. Specifically, in Supplementary

Figure 8G, the box chart and percentage histogram were utilized

to present the mutation status. The box chart located at the top left

displayed the total mutation situation of all samples. The box

diagram at the top right illustrated the ratio of base transversion

and transformation, where Ti denoted transformation (involving

the replacement of purine by purine and pyrimidine by pyrimidine)

and Tv denoted transversion (substitution between purine

and pyrimidine). The percentage bar chart positioned below

showed the mutation details in each sample, as presented in

Supplementary Figure 8H.
Identified TFs regulator modules driving BC
cell subset functions

To identify the core TFs within BC cell subpopulations,

SCENIC analysis was carried out. PySCENIC, in particular, has

the capability to infer gene regulatory networks that span across all

BC cell subpopulations. Based on the UMAP plot of BC
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subpopulations, as depicted in Figure 6A, the relationship

between the five cellular subpopulations of BC cells and their

respective phases was demonstrated in combination with a heat

map, as shown in Figure 6B. Furthermore, through the utilization of

the connectivity specificity index (CSI) substrate, we were able to

identify five regulatory submodules of BC cell subpopulations.

These submodules were divided into five primary modules,

namely M1, M2, M3, M4, and M5, as illustrated in Figure 6C.

To improve the visualization of gene expression, bar graphs and

scatter plots were utilized. Bar graphs and scatter plots were

employed to illustrate the expression of BC cell subpopulations

with regard to the five TF regulator modules, as presented in

Figure 6D and Supplementary Figure 9A. Moreover, scatter plots

were used to depict the fraction of variance across different

subpopulations and groups respectively, as shown in

Supplementary Figures 9B, C.

Supplementary Figure 9D presented the ranking of regulons

within BC cell subpopulations based on their specificity scores.

It was evident that among the transcription factors corresponding

to the C1 subpopulation, CEBPD exhibited the highest

specificity score.
Experimental verification has proved that
knocking down CEBPD can affect the
proliferation and migration of tumor cells

In order to conduct a more in-depth exploration of the role

played by CEBPD, we carried out in vitro experiments by utilizing
FIGURE 6

Identification of TF regulator modules in BC cell subpopulations. (A) UMAP plot demonstrated the distribution of the 5 cell subpopulations in BC.
(B) Heatmap demonstrated the connection between the 5 cellular subpopulations and subpopulations in BC cells. (C) Identification of 5 regulatory
submodules of BC cell subpopulations based on the CSI substrate. (D) Box line of the expression of the 5 TF regulatory submodules of BC
cell subpopulations.
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the BT-549 and MDA-MB-436 cell lines (61). Initially, we

proceeded with the knockdown of CEBPD. Subsequently, we

measured the amounts of mRNA and protein expression both in

the pre-knockdown and post-knockdown states. It was discovered

that in both of these cell lines, the levels of mRNA and protein

expression were substantially lower when compared to those of the

control groups, as clearly demonstrated in Figure 7A. After the

CEBPD knockdown, the results of the CCK-8 test indicated a

significant decline in cell viability, as shown in Figure 7B.

The EDU and colony formation assays were then employed to

verify the impact of CEBPD knockdown. These assays effectively

demonstrated that the knockdown of CEBPD prevented cell

division, as depicted in Figures 7C, D, F, G.

Moreover, according to the scratch and transwell experiments,

the knockdown of CEBPD led to a dramatic decrease in cell

migration and invasion, as presented in Figures 7E, G–I.

Collectively, these findings strongly suggested that the

knockdown of CEBPD had the effect of suppressing tumor

development by impeding cell activity, proliferation, migration,

and invasion.
Discussion

The development and application of scRNA-seq within the realm

of cancer research have significantly enhanced the diagnosis,

treatment, and prognosis prediction of numerous malignancies.

This has been achieved by delving deeper into our understanding

of the biological characteristics and dynamic processes that occur

within malignant regions, as evidenced by previous studies (62–64).

In this research endeavor, a meticulous examination was carried out

on the tumor epithelial cells present within BC. The objective was to

confirm the pro-oncogenic role played by a specific subpopulation.

This was achieved through a comprehensive analysis of C1 UGDH+

TCs along with their various subpopulations.

Subsequently, the transcription factor CEBPD was successfully

identified by means of cellular communication analysis. To further

solidify the understanding of its function, the pro-oncogenic role of

this gene was rigorously validated through the implementation of a

cellular knockdown assay. This involved manipulating the cellular

environment to observe the effects of reducing the expression of

CEBPD and thereby determining its impact on oncogenic

processes (65).

This study harnessed the power of scRNA-seq technology to

conduct an in-depth and comprehensive characterization of the

cellular heterogeneity exhibited by TCs. Through this analysis, we

were able to identify a diverse range of cell types. Among the non-

immune cells, smooth muscle cells were detected, while in the realm

of immune cells, T_NK cells, MCs, and myeloid cells were

discovered. Moreover, we undertook a detailed and meticulous

analysis of the sample sources from which these various cell types

were derived, as well as their distribution characteristics during that

particular stage of the study. Among these cell types, EPCs

particularly caught our attention. It is well-known that EMT plays

a crucial role in the progression of early-stage tumors, transforming

them into more aggressive malignancies, as described in reference
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(66). This process is inextricably linked to the formation of BC.

Tumor invasion and metastasis are indeed the primary factors

contributing to recurrence and mortality following treatment in

BC patients. This fact underlines the significance of thoroughly

describing and analyzing the TME with specific regard to EPCs. In

prior studies, as indicated by references (44, 67), EPCs have been

demonstrated to be associated with pro-tumorigenic effects, further

emphasizing the importance of understanding their role within the

context of BC and the TME.

Although there is an increasing body of evidence regarding the

presence of EPCs within tumors, the exact role that these EPCs play

within the TME remains to be fully elucidated (44). Consequently,

our research efforts were directed towards a detailed examination of

EPCs. To achieve this, we employed the inferCNV technique

followed by dimensionality reduction clustering. Through this

approach, we were able to successfully identify five distinct

cell subpopulations.

By integrating the information about the sample sources, it was

observed that the cell subpopulation C1 only emerged within the ER

+ Tumor group. Notably, the ER+ tumor group demonstrated a

considerably higher abundance of C1 UGDH+ TCs in comparison

to the Normal group. This disparity can likely be attributed to the

role that ER plays. ER is involved in promoting the proliferation and

expansion of breast epithelial cells. Such actions have a significant

impact on various aspects of breast health, including breast

development, the process of carcinogenesis, and the progression

towards more severe systemic diseases (68). By examining the top 5

metabolism-related pathways of each subpopulation, it was

determined that oxidative phosphorylation exhibited the highest

correlation with the C1 subpopulation. There is existing evidence

suggesting that oxidative phosphorylation plays a crucial role in the

progression of numerous cancer cells (58). From the perspective of

cell proliferation, breast cancer cells often require more energy than

normal cells to maintain their rapid division and growth. Oxidative

phosphorylation pathway can produce ATP efficiently, providing

sufficient energy for the energy-consuming processes of DNA

replication, protein synthesis and cell division of breast cancer

cells. In some breast cancer subtypes, such as C1 UGDH +

subgroup, the activity of oxidative phosphorylation pathway is

significantly enhanced, which accelerates the proliferation rate of

these cells and promotes the growth and development of tumors. In

the predicted ordering based on CytoTRACE, the C1 UGDH+ TCs

were expressed at relatively higher levels, which implies a greater

degree of differentiation. This, in turn, indicates a higher level of cell

stemness within this subpopulation (69). During the pseudotime

analysis, the C1 UGDH+ TCs subpopulation was predominantly

observed at the terminal stage of the differentiation trajectory. This

positioning suggests a higher level of malignancy. Moreover, the

high stemness of this cell subpopulation is closely associated with

the tumor metastatic ability (70). Finally, in the slingshot analysis,

the subpopulation of C1 UGDH+ TCs was located at the end of

Lineage1, which is equivalent to the end of the differentiation

process. This finding further validates the aforementioned points.

Consequently, the target subpopulation was identified as C1

UGDH+TC through the identification of highly expressed genes in

each subpopulation along with the slingshot pseudotime analysis.
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We made use of CellChat communication pattern analysis to

delve into the interactions that occur between the C1 UGDH+ TCs

subpopulation and other cell types. Through the application of

CellChat analysis, we were able to construct intercellular

communication networks. These networks involved T_NK cells, B

cells and plasma cells, myeloid cells, as well as various TC
Frontiers in Immunology 15
subpopulations, with the aim of clarifying the interactions

between the C1 UGDH+ TC subpopulations and other cell types.

Furthermore, we identified three efferent and afferent patterns,

along with their corresponding signaling pathway expressions. As

a result of this analysis, we discovered the CDH signaling pathway.

It was found that C1 is highly expressed on CDH. Moreover, it has
FIGURE 7

In vitro experimental validation of CEBPD. (A) After CEBPD knock-down, the expression levels of mRNA and protein decreased significantly. (B) CCK-
8 detection showed that compared with the control group, the cell viability was significantly decreased after CEBPD knock-down. (C, D) The colony
formation assay showed that the number of colonies decreased significantly after CEBPD was knocked down. (E) Scratch test showed that CEBPD
knockdown inhibited cell migration. (F) EDU staining confirmed that CEBPD knock-down had inhibitory effect on cell proliferation. (G) Bar chart
showed that the ability of cell migration and proliferation decreased significantly after CEBPD. (H, I) Transwell experiment showed that CEBPD
knockdown inhibited the migration and invasion of TCs in BT-549 and MDA-MB-436 cell lines. *, p < 0.05; **, p < 0.0 1; ***, p < 0.001 indicates a
significant difference, and NS indicates a non-significant difference.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1539074
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ni et al. 10.3389/fimmu.2025.1539074
been confirmed in previous studies that several CDH-related genes

play a role in promoting tumor growth. Based on these findings, it

can be inferred that the C1 subpopulation may also have a role in

promoting tumor development (71).

Immune cells serve as the cornerstone of immunotherapy.

Understanding immune infiltration is of utmost importance as it

is crucial for uncovering molecular mechanisms and for the

development of novel strategies to improve clinical outcomes

(72). Consequently, with the aim of further exploring the roles of

two distinct subpopulations in tumor progression, we focused our

study on the high UTRS group and the low UTRS group. We then

proceeded to analyze the immune infiltration within these two

groups. It was observed that the high UTRS group was

predominantly composed of Macrophages M1. In contrast, the

low UTRS group encompassed various cell types such as

Macrophages M0, Macrophages M2, resting memory CD4 T cells,

and naive B cells (73). The survival rate of the low UTRS group was

found to be better, whereas the survival rate of the high UTRS group

was poorer. This indicates that the low UTRS group may potentially

benefit from immunotherapy, while the high UTRS group may

exhibit resistance to it. To investigate the impact of the C1 UGDH+

TCs subpopulation on tumors, an enrichment analysis was

conducted. This analysis identified specific genes such as KRT13,

UPK1B, and FTHL17. KRT13 has the potential to promote tumor

metastasis (74). UPK1B, which is a transmembrane tetraprotein, is

associated with the tumorigenesis and progression of bladder,

stomach, and colorectal cancers. FTHL17 is linked to cancer

development, particularly in colon cancer (75). The enrichment

pathway analysis using GO-BP and KEGG for the C1 UGDH+ TCs

subpopulation revealed its extensive involvement in pathways such

as intermediate filament organization, body fluid secretion, and

processes related to the intermediate filament cytoskeleton. All of

these pathways suggest that the C1 UGDH+ TCs subpopulation

may be involved in EMT.

In summary, based on the up-regulated genes and the

enrichment pathways identified, we propose that the C1 UGDH+

TCs subpopulation represents TCs within epithelial cells. These

cells display a loss of apical polarity and adhesion, while

simultaneously acquiring mesenchymal characteristics and

migration capabilities. This, in turn, promotes tumor progression

and enhances the tumorigenic, metastatic, and drug resistance

properties of cancer cells (76, 77).

To investigate the relationship between this subpopulation and

prognosis, we established a prognostic score (UTRS) to evaluate its

relationship with prognosis. It was found that the prognosis of

patients in the high-risk group was significantly worse than that in

the low-risk group, indicating that the tumor cells in the high-risk

group may have more characteristics of tumor stem cells, and may

be related to the stronger proliferation and invasion ability of tumor

cells, which is reflected in the context of the discussion. Compared

to other models, our model shows higher predictive accuracy. By

calculating the area under the curve (AUC) to evaluate the model’s

ability to distinguish the prognosis of breast cancer patients, our

model can predict the prognosis of patients more accurately, and

provide a more reliable decision basis for clinicians. In addition, our

risk score model is based on a few easy-to-obtain clinical and
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molecular indicators, which is more convenient for clinical

application than other models that use a large number of

complex detection indicators. Breast cancer is highly

heterogeneous, and the tumor cells of different patients have great

differences in gene expression and molecular characteristics. Our

model can better capture this tumor heterogeneity and more

comprehensively characterize tumor cells through comprehensive

analysis of single-cell data or multi-omics data, thereby improving

prognosis prediction accuracy for patients with different subtypes of

breast cancer. In contrast, some traditional models may not fully

consider tumor heterogeneity, resulting in inaccurate prognosis

assessment for certain subtypes of patients (78).

The gene regulatory network of C1 UGDH+ TCs was analyzed

through the application of pySCENIC, which led to the

identification of CEBPD as a key regulatory factor. Analyses of

clinical samples and public databases demonstrated that CEBPD

was significantly up-regulated in glioblastoma. Moreover, elevated

levels of CEBPD were associated with a poor prognosis.

Additionally, under anoxic conditions, CEBPD was highly

expressed in glioblastoma tissues and cell lines (79). These

findings suggest that CEBPD may also play a role in promoting

the development of BC.

Simultaneously, to further verify the role of CEBPD in BC, in

vitro experiments were carried out using the BT-549 and MDA-

MB-436 cell lines. Through these experiments, it was observed that

the knockout of CEBPD inhibited the activity, migration, and

proliferation of TCs, thereby suppressing tumor growth. This

effectively verified the conjecture that CEBPD could promote the

development of BC.

Our study was designed with the aim of highlighting the role of

TCs in the progression of BC, addressing related concerns, and

enhancing the understanding of the BC tumor microenvironment.

The novelty of this study lies in its exploration of BC from a new

perspective. It provides a fresh outlook on targeting EPCs for BC

treatment and supports CEBPD as a potential cancer therapeutic

target. Moreover, we were able to discover the communication

pathways between tumors and our target TCs subpopulations.

It is anticipated that the development of targeted therapies

against UGDH+ TCs will progress further in the future. In the

future, we will carry out research on UGDH+ TCs from many

aspects, such as: To study which transcription factors directly

regulate the expression of UGDH subsets related genes, and

identify the binding sites between transcription factors and

UGDH gene promoter or enhancer regions by ChIP-seq

(chromatin immunoprecipitation sequencing) and other

technologies, so as to clarify the transcriptional regulatory

network. To explore the synergistic relationship between UGDH

subgroup and other cell subgroups in metabolism; Explore the use

of UGDH subgroups in combination with other known disease

markers to improve the sensitivity and specificity of diagnosis (80).

Patients with different UTRS levels were associated with

clinicopathological characteristics of tumors, such as tumor stage,

grade, size, and lymph node metastasis. To study the relationship

between UTRS level and the efficacy of different treatment

modalities (such as surgery, chemotherapy, radiotherapy,

immunotherapy, etc.). The completion of these studies will
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further deepen our understanding of this subgroup and further

guide future clinical treatment.

Breast cancer is a highly heterogeneous disease, and

conventional bulk sequencing or histopathological analysis can

only provide average information about tumor tissue, and cannot

reveal the characteristics of individual cells. By using single-cell

technology, we can carry out multi-omics analysis of gene

expression, genome, epigenetics and so on a single cell, so as to

accurately identify different cell subtypes, and deeply understand

the pathogenesis and progression of breast cancer (81, 82). Single-

cell technology can simultaneously analyze tumor cells, immune

cells, fibroblasts and other cell types, comprehensively characterize

the cell composition and interaction of tumor microenvironment,

and help reveal the complex relationship between tumor cells and

microenvironment. Our research helps to discover biomarkers

associated with drug targets, providing guidance for drug

development and clinical trials.

However, it must be noted that this research does have certain

limitations. First, there are some limitations to the TCGA and GEO

databases we used. For example, data in TCGA and GEO come

from different research institutions and experimental platforms,

and there are differences in data collection and processing methods.

Despite the large amount of data available from TCGA and GEO,

sample sizes may still be insufficient for certain patient populations

with rare cancer subtypes or specific clinical features. The collection

of TCGA and GEO data is not a random sample, but is based on the

needs and feasibility of the research project. This can lead to

selection bias in the sample, i.e. patients included in the database

may not be fully representative of the overall characteristics of all

cancer patients. Cancers are highly heterogeneous, with significant

differences in biological behavior, molecular characteristics, and

prognosis among different subtypes of cancer. A prognostic model

developed based on mixed cancer subtype data may not accurately

predict the prognosis of patients with each subtype. In addition, the

diversity of the sample is insufficient, which may not be able to

comprehensively represent various types of BC patients, which may

affect the universality of the study results. In addition, there are

uneven tumor stages, and the distribution of samples at different

stages may be uneven, which will interfere with the accurate analysis

of the characteristics and rules of different tumor stages, and thus

affect the reliability and generalization of the research results. In

order to enhance the reliability and universality of the prognostic

model, we are currently actively collecting independent clinical data

sets, which will be derived from breast cancer patients in different

regions and different hospitals, covering multiple subtypes and

different clinical characteristics, to ensure the diversity and

representativeness of the samples. And in vitro experiments were

conducted. To ensure more reliable conclusions, these results

should be confirmed by future research and cross-compared

across different cancer types. For a more comprehensive

validation, based on the potential therapeutic targets discovered

in this study, such as C1 UGDH+TCs and CEBPD, we plan to

conduct cell - line and animal - model experiments. After that,

multiple functional assays will be carried out to explore their roles.
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We aim to clarify the functions and therapeutic effects of these

targets, laying a solid foundation for pre - clinical and clinical trials.
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SUPPLEMENTARY FIGURE 1

The correlation between 15 modeled genes and survival rate was showed by

the survival graph.

SUPPLEMENTARY FIGURE 2

(A) Volcano plots demonstrated the differentially expressed genes in the 5
cellular subpopulations. (B) The distribution of named genes of 5

subpopulations on UMAP was shown. (C) Heatmap demonstrated the Top
5 metabolism-related pathways with high correlation to the 5 cell

subpopulations. (D) Heatmap demonstrated the correlation between the 5

cellular subpopulations of BC and their corresponding highly expressed
genes. (E) Violin plot showed the expression of the 5 named genes in each

of the 5 cellular subpopulations.

SUPPLEMENTARY FIGURE 3

(A) UMAP plot demonstrated the distribution of BC TCs over all TCs by fitting

2 differentiation trajectories through the proposed temporal order. (B) UMAP

plot demonstrated Lineage 1-2 differentiation trajectories at the proposed
temporal sequence. (C) Heatmap of GO-BP enrichment analysis

demonstrated the correlation between the 5 cellular subpopulations of BC
and their corresponding highly expressed pathways. (D) Scatterplot

demonstrated the trajectories of the named genes of the 5 cellular
subpopulations of BC TCs obtained after slingshot visualization of the

changes over 2 Lineages.

SUPPLEMENTARY FIGURE 4

(A) Heatmap demonstrated afferent and efferent signaling intensities for the
full cellular interactions. (B) Hierarchical plot showed the interactions

between TCs and other cells in the CDH signaling pathway. Solid and
hollow circles indicated source and target cell types, respectively. The edge

color of the middle circle corresponded to the signaling source. (C) The
centrality score of the CDH signal path network was shown through a heat

map, showing the relative importance of each cell group. (D) Violin plot

showed the expression of genes associated with the CDH signaling pathway
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in subpopulations of TCs and other cell types. (E) Heatmap showed cellular
interactions in the CDH signaling pathway.

SUPPLEMENTARY FIGURE 5

(A) The survival graph showed the relationship between overall survival rate

and UTRS. (B) The forest map showed a Multivariate analysis of the genes that
made up the UTRS. HR>1 risk factor, HR<1 protective factor. (C) Nomogram

predicted 1-year, 3-year, and 5-year overall survival based on age, high and
low Risk score groups, and stages.

SUPPLEMENTARY FIGURE 6

InferCNV explored sc RNA-seq data from breast cancer cells to distinguish

the cells that we want to study.

SUPPLEMENTARY FIGURE 7

(A) Left: The survival graph showed the relationship between overall survival

rate and UTRS of GSE37751. Right: ROC curves showed the 1 -, 3 -, and 5-year

OS in the GSE37751 dataset. (B) Left: The survival graph showed the
relationship between overall survival rate and UTRS of GSE159956. Right:

ROC curves showed the 1 -, 3 -, and 5-year OS in the GSE159956 dataset.

SUPPLEMENTARY FIGURE 8

(A) Dot plot showed the results of all GO-BP enrichment analyses. (B) GSEA

scoring of GO-BP enrichment entries for differential genes showed the

enrichment score values for different pathways. (C) Heatmap showed the
correlation of the mutation profiles of the genes that made up the risk score

group. (D) Mutation waterfall plot showed the differences in the top 20 most
frequently mutated genes in somatic cells between the two groups. The

upper bars indicated the mutation load for each sample, and the right bars
indicated the total percentage of mutations in that gene in those samples. (E)
Bar graph showed the results of predicting chromosome gains and losses in

TCGA samples. Blue color indicated chromosome copy number gain; red
color indicated chromosome copy number loss; and indicated no change in

chromosome copy number. (F) Mutation waterfall plot showed mutations in
the genes that made up the risk score group in the samples. The upper bars

indicated the mutation load in each sample, and the right bars indicated the
total percentage of mutations in that gene in those samples. (G) Overall

description of the mutation profile of TCGA- BRCA patients. (H) Upper left:
total mutations in all samples; Upper right: percentage of base substitutions
and conversions, Ti referred to conversions (purines replaced by purines and

pyrimidines replaced by pyrimidines) and Tv referred to subversions
(substitutions between purines and pyrimidines); Lower: percentage bar

graphs presented the mutations in each sample.

SUPPLEMENTARY FIGURE 9

(A) Dot plots of the expression of the 5 TF regulatory submodules of BC cell
subpopulations. (B, C) Scatter plots demonstrated the fraction of variance

across subpopulations and groups of 5 cell subpopulations of BC,
respectively. (D) Ranking of regulators in 5 cell subpopulations of BC cells

based on RSS.
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