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Hepatocellular carcinoma (HCC) is the most prevalent primary liver malignancy

and a leading cause of cancer-related deaths globally. The asymptomatic

progression of early-stage HCC often results in diagnosis at advanced stages,

significantly limiting therapeutic options and worsening prognosis.

Immunotherapy, with immune checkpoint inhibitors (ICIs) at the forefront, has

revolutionized HCC treatment. Nevertheless, tumor heterogeneity, immune

evasion, and the presence of immunosuppressive components within the

tumor immune microenvironment (TIME) continue to compromise its efficacy.

Furthermore, resistance or non-responsiveness to ICIs in some patients

underscores the urgent need to unravel the complexities of the TIME and to

design innovative strategies that enhance immunotherapeutic outcomes.

Emerging evidence has revealed the pivotal role of N6-methyladenosine

(m6A), a prominent RNA methylation modification, in shaping the TIME in

HCC. By regulating RNA stability and translation, m6A influences immune-

related factors, including cytokines and immune checkpoint molecules. This

modification governs PD-L1 expression, facilitating immune escape and

contributing to resistance against ICIs. Advances in this field have also

identified m6A-related regulators as promising biomarkers for predicting

immunotherapy response and as potential therapeutic targets for optimizing

treatment efficacy. This review examines the regulatory mechanisms of m6A

modification within the TIME of HCC, with a focus on its impact on immune cells

and cytokine dynamics. It also explores the therapeutic potential of targeting

m6A pathways to improve immunotherapy efficacy and outlines emerging

directions for future research. These insights aim to provide a foundation for

developing novel strategies to overcome immune resistance and advance

HCC treatment.
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1 Introduction

Hepatocellular carcinoma (HCC) is the most common type of

primary liver cancer globally and a leading cause of cancer-related

deaths. Its high incidence is often linked to chronic hepatitis virus

infections (HBV or HCV), liver cirrhosis, excessive alcohol

consumption, and non-alcoholic fatty liver disease (1). Due to the lack

of early symptoms, many HCC patients are diagnosed at advanced

stages, leading to limited treatment options and poor prognosis.

Recently, immunotherapy, particularly immune checkpoint inhibitors,

has brought new hope for HCC treatment (2). However, challenges like

liver cancer heterogeneity, immune evasion, and immunosuppressive

cells in the tumor microenvironment (TME) undermine immune

responses (3). Additionally, some patients show resistance or no

response, limiting its effectiveness (4).Thus, a deeper understanding of

the HCC immune microenvironment and immune evasion

mechanisms is crucial for improving immunotherapy outcomes.

Post-transcriptional modifications (PTMs) are critical regulatory

processes that occur after RNA is transcribed from DNA. These

modifications are widely found in various types of RNA, including

messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA

(rRNA), and non-coding RNA. PTMs play a critical role in regulating

gene expression by modulating RNA stability, splicing, translation,

transport, and degradation (5). Key types of RNA modifications

include N6-methyladenosine (m6A), 5-methylcytosine (m5C),

pseudouridine (Y), N1-methyladenosine (m1A), and adenosine-to-

inosine (A-to-I) editing(6).Among these,m6A is themostwell-known

and extensively studied, predominantly found in mRNA. m6A is

dynamically regulated by specific enzymes: “writers” (e.g., METTL3),

“erasers” (e.g., FTO and ALKBH5), and “readers” (e.g., YTHDF1) (7).

This dynamicmodification allows RNA to quickly respond to internal

and external signals, influencing its fate and function.

In recent years, m6A modification has emerged as a key regulator

in the immunotherapy of HCC, attracting growing attention. By

modulating the expression of immune checkpoint molecules, such as

PD-1 and PD-L1, m6A facilitates tumor immune evasion, thereby

compromising the anti-tumor activity of T cells (8). Moreover, m6A

influences the polarization of tumor-associatedmacrophages (TAMs),

reshaping immune responses within the TME (9). Given the dynamic

and reversible nature of m6A, targeting this modification presents a

promising therapeutic strategy for HCC immunotherapy (10, 11).

Such interventions could enhance treatment sensitivity and foster the

development of novel therapeutics. This review aims to elucidate the

pivotal role of m6A modification in HCC immunotherapy, dissect its

underlying mechanisms in regulating tumor immune evasion and

remodeling of the TME, and assess its potential as a therapeutic target

for improved clinical outcomes.

2 The dynamic regulation of of m6A
modification and its role in HCC

2.1 The dynamic regulation of m6A
modification in cellular processes

The regulation of m6A modification is dynamically controlled

by three distinct classes of proteins: “writers,” “erasers,” and
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“readers.” Acting in concert, these proteins mediate the

deposition, removal, and interpretation of m6A marks, ensuring

the reversible and precise nature of this epitranscriptomic

modification. Collectively, they establish a complex regulatory

network that governs RNA metabolism and gene expression,

underpinning a wide array of critical cellular processes (Figure 1).

2.1.1 Writers
The installation of m6A marks is driven by the m6A

methyltransferase complex, with METTL3 and METTL14

functioning as the core catalytic components responsible for

methylating the N6 position of adenosine at specific RNA sites

(12, 13). METTL3 accounts for catalyzing approximately 95% of

m6A modifications on mRNA (14). Supporting proteins such as

WTAP, KIAA1429, and RBM15 contribute to site specificity and

enhance methylation efficiency (15, 16). This writer complex

typically modifies regions near the 5’ and 3’ untranslated regions

(UTRs), regulating key processes like RNA stability, splicing, and

translation efficiency (17).

2.1.2 Erasers
m6A modification is dynamic and reversible, with its removal

facilitated by demethylases, or “erasers.” The primary enzymes

responsible for this demethylation are FTO (fat mass and obesity-

associated protein) and ALKBH5 (18). FTO was the first

demethylase identified (19), with a crucial role in reversing m6A

modifications, while ALKBH5 contributes to post-transcriptional

regulation of RNA, influencing RNA stability, splicing, and

translation (20, 21). By removing m6A, these erasers restore

RNA to its unmodified state, affecting its stability and

translational capacity.

2.1.3 Readers
The biological effects of m6A modification are mediated by

“reader” proteins, which recognize and bind to m6A-modified sites,

thereby dictating the fate of the RNA. Major reader proteins include

the YTHDF1/2/3 and YTHDC1/2 families, which regulate RNA

degradation, transport, splicing, and translation (22, 23). For

example, YTHDF1 enhances protein synthesis by promoting

mRNA translation, whereas YTHDF2 directs the degradation of

m6A-modified RNA. In addition, the IGF2BP family stabilizes

m6A-marked mRNAs, further refining gene expression at the

post-transcriptional level (24, 25).
2.2 Functional roles of m6A in HCC

As a dynamic and reversible RNA methylation process, m6A

exerts a profound influence on HCC progression initiation and

progression by modulating RNA stability, splicing, translation, and

degradation. This biochemical modification governs the expression

of both oncogenes and tumor suppressor genes, thereby affecting

HCC cell proliferation and apoptosis. The writer enzyme METTL3

facilitates tumor growth by stabilizing oncogene mRNA, whereas

erasers such as FTO and ALKBH5 suppress tumor progression by

removing m6A marks (26–29). Additionally, m6A enhances HCC
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cell migration and invasion by regulating metastasis-related genes,

including VEGFA and ZEB1, and promoting epithelial-

mesenchymal transition (EMT), thus elevating metastatic

potential (30, 31). m6A modification also sustains HCC cell stem-

like properties by modulating stemness-associated genes, such as

SOX2 and KLF4, which contribute to drug resistance and recurrence

(32, 33). Furthermore, m6A facilitates immune evasion by

modulating immune checkpoint molecules like PD-L1, helping

HCC cells escape immune surveillance (34, 35). Given the

dynamic and reversible nature of m6A, targeting m6A regulatory

enzymes (e.g., METTL3 and FTO) presents a promising therapeutic

approach. Modulating m6A modification offers an opportunity to

influence HCC proliferation, metastasis, and immune evasion,

creating new avenues for HCC treatment.
3 Impact of m6A modification on the
immune microenvironment in HCC

The TME of HCC possesses unique immunosuppressive

characteristics that support tumor growth and enable immune

evasion. This TME includes regulatory T cells (Tregs), myeloid-

derived suppressor cells (MDSCs), and M2-polarized tumor-associated

macrophages (TAMs), all of which release immunosuppressive factors

like IL-10 and TGF-b to inhibit anti-tumor responses (3, 36–38). Tumor

cells further promote immune escape by expressing PD-L1, which

interacts with PD-1 on T cells, reducing T-cell-mediated anti-tumor
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activity. Hypoxia within the TME intensifies immunosuppression and

drives tumor resistance, while the liver’s immune-tolerant nature

provides an ideal environment for tumor cell survival and spread (39,

40). Thus, the TME, though challenging, presents a promising target for

immunotherapy in HCC.
3.1 Regulation of immune cell function by
m6A in HCC

3.1.1 T Cells
In HCC, high expression levels of m6A writers, particularly

METTL3, are associated with poor prognosis, as they enhance PD-

L1 levels and subsequently inhibit T cell-mediated anti-tumor

responses (41, 42). METTL3-mediated m6A modification also

upregulates the non-coding RNA TUG1, which increases the

expression of PD-L1 and CD47 via miR-141 and miR-340

sponging and interaction with YBX1, a transcriptional regulator.

This regulation suppresses CD8+ T cell activation, aiding immune

evasion and contributing to tumor progression (42). Another recent

study found that METTL3 stabilizes SMPDL3A via m6A

modification, promoting HCC growth and immune evasion by

interacting with IGF2BP1. Knockdown of METTL3 activated CD8

+ T cells, increasing TNFa/IFN-g production and reducing HCC

cell survival. SMPDL3A overexpression reverses these effects (43).

Additionally, METTL3 facilitates immune escape in non-alcoholic

fatty liver disease-associated HCC (NAFLD-HCC) by promoting
FIGURE 1

The dynamicregulation of m6A modification. The regulation of m6A modification is mediated by three distinct classes of proteins that collaboratively
maintain its dynamic and reversible nature. “Writers,” including METTL3 and METTL14, catalyze the addition of m6A marks, while “erasers,”
represented by FTO and ALKBH5, remove these modifications. “Readers,” encompassing the YTH and IGF2BP protein families, decode m6A marks to
influence RNA processes, including stability, splicing, and translation. Collectively, these regulators establish a sophisticated epitranscriptomic
network that fine-tunes RNA metabolism and gene expression.
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cholesterol biosynthesis, which further impairs CD8+ T cell

function. Targeting METTL3 in conjunction with PD-1 blockade

has demonstrated synergistic effects in restoring CD8+ T cell

cytotoxicity (44). WTAP, another m6A writer, stabilizes PD-L1

mRNA, which promotes immune evasion and enhances aerobic

glycolysis in HCC cells. This effect suppresses the tumor-killing

function of CD8+ T cells, but can be reversed through WTAP

knockdown, thus improving T cell anti-tumor activity (45).

Similarly, the m6A “eraser” FTO stabilizes GPNMB mRNA,

which inhibits CD8+ T cell activation through SDC4 receptor

binding in small extracellular vesicles (sEVs). Knocking down

FTO enhances CD8+ T cell recruitment and bolsters anti-tumor

responses (28). BMI1, independent of its classical role, influences

CD127+KLRG1+ memory CD8+ T cell differentiation in HCC by

regulating TCF1 expression. BMI1 interacts with YTHDF2 to

prevent m6A-driven degradation of TCF1 mRNA. This regulation

shifts T cells towards memory and effector states, enhancing their

tumor-killing abilities. Meanwhile, tumor cell-intrinsic BMI1

expression downregulates BMI1 in T cells. Liver-specific BMI1

knockdown effectively restores CD8+ T cell functionality and

supports immunotherapy efficacy in HCC (46). In NASH-HCC,

YTHDF1, an m6A reader, promotes MDSC accumulation and

suppresses CD8+ T cell functionality via IL-6 secretion. By

binding to m6A-modified EZH2 mRNA, YTHDF1 enhances IL-6

production. siRNA targeting of YTHDF1 has shown potential in

enhancing anti-PD-1 therapy, making YTHDF1 a promising target

in immune-based HCC therapies (47). Exosomal circCCAR1,

stabilized by WTAP-mediated m6A modification, promotes HCC

growth by forming a feedback loop with miR-127-5p and WTAP.

When absorbed by CD8+ T cells, circCCAR1 induces dysfunction

by stabilizing PD-1 and promoting resistance to anti-PD1 therapy.

This effect is further enhanced through PD-L1 transcription

activation by EP300-induced CCAR1 and b-catenin interaction,

which reinforces immune evasion (48).
3.1.2 Tumor-associated macrophages
Macrophages in the HCC TME are primarily polarized to the

M2 phenotype, which secretes immunosuppressive cytokines like

IL-10 and TGF-b, promoting tumor growth and suppressing anti-

tumor T cell activity. METTL3- and METTL16-mediated m6A

modification stabilizes ZNNT1 in HCC, which enhances

macrophage recruitment and polarization to M2 via the

osteopontin (OPN)/S100A9 feedback loop, ultimately supporting

immune evasion and tumor progression (49). Similarly, the lncRNA

miR4458HG, through the m6A reader IGF2BP2, stabilizes key

glycolytic mRNAs like HK2 and GLUT1, promoting glucose

metabolism and tumor-associated macrophage polarization in

HCC, thereby contributing to immune suppression (50). In

contrast, circFUT8 downregulation via M1 macrophage-derived

exosomal miR-628-5p limits METTL14-mediated m6A

modification, reducing circFUT8’s influence on the circFUT8/

miR-552-3p/CHMP4B pathway, and suppressing HCC

progression by inhibiting tumor growth and immune suppression

(51). Additionally, ALKBH5 overexpression in HCC enhances

tumor progression by upregulating MAP3K8 through m6A
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modification, leading to JNK and ERK pathway activation. This

triggers IL-8 expression, attracting macrophages and amplifying

immune evasion (52). In HBV-related HCC, the METTL3-mediated

upregulation of lncRNA MAAS in M2 macrophages drives tumor

progression. HBV-associated antigenHBeAg elevatesMAAS,which is

then transferred to HCC cells through exosomes. Inside HCC cells,

MAAS stabilizes c-Myc, promoting cell cycle progression and

proliferation, thus highlighting an m6A-regulated feedback loop

contributing to HCC malignancy and immune escape (53).

Together, these findings underscore m6A modification’s regulatory

role in macrophage polarization in HCC, providingmultiple potential

targets for therapeutic intervention.

3.1.3 Dendritic cells
m6A modification significantly impacts the antigen-presenting

function of dendritic cells (DCs), with downstream effects on T cell

activation and antitumor immunity. The m6A reader YTHDF1

specifically modulates DC function by influencing neoantigen

presentation. In YTHDF1-deficient mice, increased cross-

presentation of tumor antigens by DCs strengthens CD8+ T cell

activation and antitumor responses. Mechanistically, YTHDF1

binds m6A-modified transcripts of lysosomal proteases,

enhancing cathepsin translation and thus limiting cross-

presentation. Inhibiting cathepsins in wild-type DCs similarly

boosts antigen presentation, demonstrating YTHDF1’s role as a

potential immunotherapy target, especially in conjunction with PD-

L1 checkpoint inhibitors (54). Under radiotherapy, YTHDF1

upregulation in DCs reduces IFN-I production via STING

degradation, impairing DC cross-priming and diminishing T cell

activation. Loss of YTHDF1 not only amplifies radiotherapy efficacy

in melanoma models but also induces long-lasting immunity,

marked by robust CD4+ and CD8+ T cell responses and IFN-g
secretion, as seen in gastric cancer studies (55, 56). Collectively,

these findings position YTHDF1 and m6A modulation in DCs as

promising targets to enhance T cell-mediated antitumor immunity

and improve cancer immunotherapies.

3.1.4 Myeloid-derived suppressor cells
MDSCs, known for their immunosuppressive function, contribute

to T-cell inhibition and facilitate tumor immune evasion. Elevated

m6A levels enhance the immunosuppressive nature of MDSCs,

promoting their accumulation and activation within the TME. In

colorectal cancer (CRC), high m6A levels and reduced ALKBH5

expression in MDSCs correlate with increased immunosuppressive

capacity. ALKBH5 overexpression reduces m6A levels on Arg-1

mRNA, destabilizing its expression and diminishing MDSC-

mediated suppression (57). METTL3 also plays a key role in MDSC

regulation. In CRC models, METTL3 promotes MDSC migration by

activating the m6A-BHLHE41-CXCL1 pathway. Silencing METTL3

reduces MDSC accumulation and promotes CD4+ and CD8+ T-cell

proliferation, suppressingCRCgrowth.Mechanistic studies reveal that

METTL3 induces BHLHE41 expression in an m6A-dependent

manner, which in turn activates CXCL1, guiding MDSC migration

through the CXCR2 axis (58). In ovarian cancer, Mettl3 deficiency

within myeloid cells shifts immune balance from M1 to M2
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macrophage polarization, enhancing pro-tumorigenic inflammation

via cytokines including IL-1b, CCL2, and CXCL2 (59). This

modulation underscores Mettl3’s role in maintaining immune

response homeostasis within the TME.

Figure 2 illustrates the m6A-mediated regulation of immune cells

within the HCC microenvironment. Although m6A modification is a

pivotal regulator of immune evasion and tumor progression in HCC,

significant gaps hinder its therapeutic translation. Current research

overly focuses on PD-1/PD-L1 blockade in T cells, neglecting

alternative immune checkpoints and downstream pathways. The

role of m6A-modified non-coding RNAs in immune dysfunction

also demands further investigation to identify novel targets. In

macrophages, the mechanisms driving M2 polarization and their

interaction with immune networks remain poorly understood, and

the feedback roles of METTL3 and ALKBH5 within the TME lack

clarity. Advancing m6A targeted immunotherapy necessitates a

broader investigation into immune interactions, alternative

pathways, and HCC specific mechanisms.
3.2 Modulation of cytokine dynamics by
m6A in HCC

3.2.1 Inflammatory cytokines
3.2.1.1 m6A drives interleukins production

m6A modification plays a crucial role in modulating interleukin

(IL) signaling, significantly influencing HCC progression and
Frontiers in Immunology 05
inflammation. One key interleukin, IL-6, is highly regulated by

m6A modification. Enhanced m6A methylation stabilizes IL-6

mRNA, increasing its expression in the HCC microenvironment,

which promotes tumor cell proliferation and survival. A notable

feedback loop involving exosomal SLC16A1-AS1 stabilizes SLC16A1

mRNA via m6A, enhancing lactate influx and activating the c-Raf/

ERK pathway. This pathway induces M2 macrophage polarization,

which in turn secretes IL-6, activating STAT3 signaling. STAT3

activation leads to METTL3 upregulation, further stabilizing

SLC16A1-AS1 through m6A modification, promoting HCC

growth, invasion, and glycolysis (60). YTHDF1 overexpression in

NASH-HCC promotes IL-6 secretion through m6A-modified EZH2

(47), resulting in MDSC recruitment and CD8+ T-cell suppression.

Similarified GNAS upregulation by LPS stimulation enhances IL-6

expression by elevating m6A methylation of mRNA, while GNAS

knockdown diminishes IL-6, thereby inhibiting tumor growth (61).

Beyond IL-6, reduced YTHDF2 in HCC increases m6A-

modified IL-11 mRNA, exacerbating inflammation and metastasis

by impairing the degradation of IL11 and SERPINE2 mRNAs (62).

Additionally, upregulated m6A-modified RNA AC026356.1

enhances cancer progression by binding IGF2BP1, stabilizing

IL11 mRNA, and activating IL11/STAT3 signaling (63). In

chronic liver inflammation, MeRIP-seq analysis revealed reduced

m6A methylation of IL-17RA mRNA, linked to inflammation-

driven HCC. The demethylase FTO, rather than METTL3,

primarily mediates this reduced methylation (64). Furthermore,

in alcoholic steatohepatitis (ASH), chronic alcohol intake induces
FIGURE 2

m6A regulation of immune cells in HCC microenvironment. m6A modification plays a critical role in modulating the TIME of HCC, driving immune evasion
and affecting therapeutic responses. In T cells, METTL3 promotes PD-L1 expression and suppresses CD8+ T cell activity, while FTO stabilizes GPNMB, further
impairing their cytotoxicity. In TAMs, m6A drives M2 polarization through METTL3 and ALKBH5, enhancing immunosuppressive cytokine production. In DCs,
YTHDF1 limits antigen presentation, reducing CD8+ T cell activation. Additionally, m6A enhances MDSC immunosuppressive functions. The role of m6A in
regulating immune cells within the HCC TIME underscores its potential as a promising therapeutic target to improve immunotherapy outcomes.
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Kupffer cell pyroptosis and increases IL-1b release. Silencing

METTL3 alleviates this inflammation by regulating pri-miR-34A

splicing (65), highlighting METTL3 as a key modulator of

interleukin-driven inflammation and a potential therapeutic target.

3.2.1.2 m6A amplifies TGF-b effects

m6A modification has emerged as a pivotal regulator of TGF-b
signaling, profoundly influencing cancer progression and immune

modulation. In HCC, TGF-b-induced METTL3-mediated m6A

modification destabilizes ITIH1 mRNA, disrupting fibronectin

and focal adhesion kinase signaling, thus driving tumor growth

and invasion (66). Additionally, TGF-b induces m6A modification

that destabilizes PCDHGA9 mRNA, facilitating HCC progression

and metastasis (67). In gastric carcinoma, aberrant overexpression

of the m6A regulator WTAP stabilizes TGF-b mRNA, promoting

cell migration, EMT, and resistance to chemoradiotherapy (68).

Similarly, in breast cancer, YTHDC1 enhances the stability of m6A-

modified SMAD3 mRNA, potentiating TGF-b signaling and

enabling lung metastasis. Loss of YTHDC1 disrupts EMT and cell

migration, highlighting its critical role in TGF-b-mediated tumor

progression (69).

In addition to malignancies, m6A modification interconnects

metabolic and inflammatory pathways in liver diseases. In NASH,

LPS-induced NF-kB activation upregulates METTL3/METTL14,

driving hypermethylation of TGF-b1 mRNA at its 5’ UTR,

enhancing translation and linking inflammation to fibrosis (70).

Correspondingly, the liver progenitor-specific gene RALYL

mitigates m6A modification on TGF-b2 mRNA, stabilizing its

expression and activating the PI3K/AKT and STAT3 pathways to

promote tumorigenicity and metastasis in HCC (71).

3.2.1.3 Interferon modulation by m6A

As key anti-tumor cytokines, the expression of interferons is

also regulated by m6A modification. In radiation-induced liver

diseases (RILD), irradiation triggers ALKBH5 to demethylate

m6A residues in the 3’ UTR of HMGB1, activating the STING-

IRF3 pathway and promoting the production of type I interferon

(IFN), which contributes to hepatocyte apoptosis. Loss of

ALKBH5 or silencing of HMGB1 reduces IFN levels and

inflammation. Also, YTHDF2 facilitates the degradation of

m6A-modified HMGB1, further linking m6A to the regulation

of liver inflammation and apoptosis (72). In liver cancer, MATR3

inhibits IFN signaling by binding to DHX58 mRNA, recruiting

YTHDF2, and promoting mRNA degradation. MATR3 knockout

restores IFN signaling, enhancing CD8+ T cell-mediated tumor

elimination (73). In HBV-related HCC, elevated serum pgRNA

levels are associated with poor prognosis. IFN-a-2a enhances

m6A modification of pgRNA, leading to its destabilization and

reduced tumorigenicity, suggesting that targeting m6A-modified

pgRNA may improve IFN signaling and offer a potential

therapeutic strategy for HCC (74).

3.2.2 Chemokines
Mult iple s tudies have establ ished that m6A RNA

modification regulates chemokine expression by modulating
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mRNA stability and translation. In acute liver failure (ALF),

tristetraprolin (TTP) upregulation enhances m6A modification of

CCL2 and CCL5, leading to mRNA destabilization and reduced

expression. This m6A-mediated degradation, driven by enzymes

such as METTL14, alleviates liver injury (75). In intrahepatic

cholangiocarcinoma (ICC), hepatocyte-secreted CCL3 promotes

metastasis via VIRMA-mediated m6A modification, which

upregulates SIRT1 and drives tumor progression (76). Similarly,

hepatitis B virus (HBV) surface antigens (SHBs) increase CCR9

expression through KIAA1429-mediated m6A modification,

stabilizing CCR9 mRNA and facilitating HCC progression and

regorafenib resistance (77). This stabilization positions CCR9 as a

critical therapeutic target and prognostic biomarker in HBV-related

HCC.Additionally, them6Areader proteinYTHDF2stabilizesCx3cl1

mRNA in peritumoral hepatocytes, enhancing CD8+ T cell

recruitment and activation via the cGAS-STING pathway (78). The

m6A-dependent process bolsters immune responses, improves

immunotherapy efficacy, and suppresses liver tumor growth. In

metabolic-associated fatty liver disease (MAFLD), reduced

METTL14 expression diminishes GLS2 translation via the m6A/

YTHDF1 axis, exacerbating oxidative stress and recruiting pro-

fibrotic Cx3cr1+ macrophages. These macrophages activate hepatic

stellate cells via the CX3CR1/MyD88/NF-kB signaling axis,

contributing to liver fibrosis (79). Restoring METTL14 expression or

inhibiting MyD88 signaling alleviates fibrosis, offering promising

avenues for intervention in MAFLD.

m6A modification critically regulates inflammatory cytokines

and chemokines, shaping HCC progression and immune evasion

(Figure 3). Stabilization of IL-6 mRNA by m6A promotes tumor

proliferation, while aberrant m6A modifications of IL-11 and IL-

17RA exacerbate inflammation and metastasis. TGF-b signaling

and interferon pathways, modulated by m6A, further drive

invasion, immune suppression, and resistance. Chemokines such

as CCL2 and CCL3 are similarly affected, altering the TME and

therapy responses. However, the current understanding is limited

by the lack of precise, in vivomodels to dissect m6A’s temporal and

spatial effects. Future research should integrate multi-omics, single-

cell technologies, and m6A targeted therapeutics to refine

mechanistic insights and clinical applications.
4 Potential applications of m6A
modification in HCC immunotherapy

ICIs, including PD-1/PD-L1 inhibitors (e.g., nivolumab and

pembrolizumab) and CTLA-4 inhibitors (e.g., ipilimumab), have

emerged as a central immunotherapy strategy for liver cancer, acting

by restoring T-cell activity through the blockade of immune

checkpoint molecules. Despite their promise, patient response rates

to ICIs remain suboptimal, with resistance being a frequent challenge.

Recent studies highlight the pivotal role of m6A modification in

modulating PD-L1 expression and immune cell function within the

TME. Targeting m6A may attenuate tumor immune evasion

mechanisms, thereby enhancing the anti-tumor efficacy of ICIs in

liver cancer.
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4.1 Influence of m6A regulation on the
efficacy of immune checkpoint inhibitors

The m6A methyltransferases METTL3 and METTL14

intricately orchestrate immune responses by selectively modulating

specific mRNA targets. METTL3 amplifies the translation of SCAP

mRNA in NAFLD-HCC, promoting cholesterol biosynthesis while

simultaneously impairing the cytotoxic capacity of CD8+ T cells.

Inhibition of METTL3 synergizes with anti-PD-1 therapy, thereby

restoring immune functionality (79). Similarly, METTL14 facilitates

the degradation of Siah2 mRNA through m6A modification and

YTHDF2-mediated decay in cholangiocarcinoma (CCA). Siah2

promotes PD-L1 ubiquitination, enhancing immune evasion.

Suppressing Siah2 significantly improves the therapeutic efficacy of

immune checkpoint inhibitors (ICIs) (80). In intrahepatic

cholangiocarcinoma (ICC), the m6A demethylase ALKBH5 has

been shown to diminish m6A methylation on PD-L1 mRNA,

shielding it from YTHDF2-mediated degradation. This

stabilization sustains PD-L1 expression, suppressing T-cell

activation and reshaping the tumor immune microenvironment

(TIME) to favor immune escape. Notably, tumors with elevated

nuclear ALKBH5 expression exhibit heightened sensitivity to anti-

PD-1 therapy (81).

The m6A readers YTHDF1 and YTHDF2 play distinct but

complementary roles in modulating immune responses. YTHDF1

enhances the translation of EZH2 mRNA in NASH-HCC, which
Frontiers in Immunology 07
promotes IL-6 secretion and the recruitment of MDSCs, collectively

impairing CD8+ T-cell function (47). Strikingly, YTHDF1

silencing, when combined with anti-PD-1 therapy, significantly

suppresses tumor progression. Moreover, circRHBDD1 functions

as a cofactor for YTHDF1, directing it to PIK3R1 mRNA, thereby

driving aerobic glycolysis and contributing to resistance against

anti-PD-1 therapy (82). Conversely, YTHDF2 is essential for

maintaining mitochondrial fitness and chromatin remodeling in

CD8+ T cells via m6A-dependent RNA decay, processes critical for

sustaining T-cell polyfunctionality (83). Loss of YTHDF2

diminishes the efficacy of ICIs, whereas inhibition of IKZF1/3

restores T-cell functionality, underscoring its therapeutic relevance.

Circular RNAs (circRNAs) stabilized by m6A modifications have

also been identified as critical mediators of immune evasion and

therapeutic resistance. In HCC, circCCAR1, stabilized through

WTAP-mediated m6A modification, forms a feedback loop with

miR-127-5p, upregulating WTAP expression. Secreted via exosomes,

circCCAR1 stabilizes PD-1 expression in CD8+ T cells, inducing

dysfunction and resistance to ICIs (48). Similarly, circRHBDD1

facilitates immune escape by recruiting YTHDF1 to PIK3R1 mRNA

(82), thereby enhancing glycolysis—a vulnerability that can be

therapeutically targeted to improve the efficacy of PD-1 blockade.

One recent study revealed that TAM transfer m6A-modified circPETH

via extracellular vesicles to HCC cells, where it encodes circPETH-

147aa. This protein promotes glycolysis and metastasis by facilitating

PKM2-catalyzed ALDOA-S36 phosphorylation and impairs CD8+ T
FIGURE 3

m6A regulation of inflammatory and chemokine signaling in HCC. m6A modification serves as a pivotal regulator of inflammatory cytokines and
chemokines in the TME of HCC, shaping immune responses and driving tumor progression. Stabilization of IL-6 mRNA by m6A enhances STAT3
activation, promoting immune suppression through M2 macrophage polarization and recruitment of MDSCs. Similarly, reduced YTHDF2 expression
leads to the stabilization of m6A-modified IL-11 mRNA, further amplifying inflammation and metastasis. TGF-b signaling is tightly modulated by m6A,
where METTL3-mediated destabilization of tumor-suppressive transcripts facilitates tumor growth and links inflammation to fibrosis. In addition to
cytokines, m6A regulates chemokine system, with KIAA1429 stabilizing CCR9 mRNA in HBV-related HCC, driving metastasis and resistance to
therapy. Conversely, YTHDF2-stabilized Cx3cl1 promotes CD8+ T cell recruitment and activation, underscoring m6A’s dual role in HCC.
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cell function by stabilizing SLC43A2 mRNA, driving resistance to

immune checkpoint blocker (ICB). Norathyriol, a small molecule

targeting circPETH-147aa, reverses these effects, enhancing anti-PD1

therapy and restoring CD8+ T-cell activity, highlighting its potential in

overcoming ICB resistance in HCC (84). Another study demonstrated

lncRNATUG1, upregulated byMETTL3-mediatedm6Amodification,

drives HCC immune evasion. The combination of TUG1-siRNA

therapy with anti-PD-L1 antibodies exhibits synergistic tumor

suppression effects (42).

Additionally, m6A modifies IDO1 expression through the IFN-

g/JAK1/STAT1 pathway, promoting immune escape and PD-L1

upregulation. IDO1 inhibition with Abrine reduces PD-L1

expression, enhances macrophage phagocytosis, and, when

combined with anti-PD-1 therapy, improves T cell responses,

suppressing tumor growth (85).

The intricate interplay between m6A regulatory pathways and

immune responses unveils numerous therapeutic opportunities

(Table 1). Targeting m6A writers (METTL3/14), erasers (ALKBH5),

readers (YTHDF1/2), and circRNA-driven pathways (circCCAR1,

circRHBDD1) represents a promising strategy to overcome resistance

to ICIs.
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4.2 Potential of m6A as a biomarker
in immunotherapy

m6A modification levels show promise as potential biomarkers

for predicting HCC patient responses to immunotherapy.

Integrating m6A-related gene expression with immunotherapy

regimens could provide a basis for personalized treatment,

improving patients’ responses to immunotherapy. Machine

learning (ML) is a powerful tool for predicting immunotherapy

efficacy in HCC, combining multi-omics data such as genomics,

immune checkpoint expression, and TIME features. The inclusion

of m6A-related gene signatures improves the accuracy of these ML

models, facilitating better patient stratification based on tumor

mutation burden (TMB), immune infiltration, and m6A

modification patterns. The integration of m6A data with clinical

and radiomic features offers a more comprehensive approach to

personalized immunotherapy, providing insights into the likelihood

of response to treatments like anti-PD-1 and CTLA-4 inhibitors.

Further research is needed to validate these models for clinical use.

Table 2 summarizes recent m6A-related risk models associated with

predicting immunotherapy efficacy.
TABLE 1 Roles of m6A regulators in immune responses and therapeutic potential.

Key
Molecules

Mechanism Impact Therapeutic Strategy
Ref.

METTL3 Enhances the translation of SCAP mRNA in NAFLD-HCC, promoting
cholesterol biosynthesis; impairs cytotoxicity of CD8+ T cells.

Promotes immune evasion
and tumor progression.

METTL3 inhibitors combined
with anti-PD-1 therapy restore
immune function.

(79)

METTL14 Facilitates degradation of Siah2 mRNA via m6A modification and
YTHDF2-mediated decay.

Siah2 degradation reduces
PD-L1 ubiquitination,
enhancing immune evasion.

Suppressing Siah2 enhances the
efficacy of ICIs.

(80)

ALKBH5 Reduces m6A methylation on PD-L1 mRNA, shielding it from YTHDF2-
mediated degradation, maintaining high PD-L1 expression.

Inhibits T-cell activation,
reshapes the TIME, and
enables immune escape.

Tumors with high nuclear
ALKBH5 expression exhibit
sensitivity to anti-PD-
1 therapy.

(81)

YTHDF1 Enhances EZH2 mRNA translation, promoting IL-6 secretion and MDSC
recruitment, impairing CD8+ T-cell function; drives PIK3R1 mRNA
aerobic glycolysis via circRHBDD1, causing resistance to anti-PD-
1 therapy.

Promotes immune
suppression and
therapeutic resistance.

Silencing YTHDF1 combined
with anti-PD-1 therapy
significantly inhibits
tumor progression.

(47)
(82)

YTHDF2 Maintains mitochondrial fitness and chromatin remodeling in CD8+ T
cells via m6A-dependent RNA decay, sustaining T-cell polyfunctionality.

Loss of YTHDF2 diminishes
ICIs efficacy; IKZF1/3
inhibition restores T-
cell functionality.

A key molecule in maintaining
T-cell function with therapeutic
target potential.

(83)

circCCAR1 Stabilized by WTAP-mediated m6A modification; forms a feedback loop
with miR-127-5p to upregulate WTAP; secreted via exosomes, stabilizes
PD-1 in CD8+ T cells, inducing dysfunction and resistance to ICIs.

Enhances immune evasion
and resistance to anti-PD-
1 therapy.

Targeting circCCAR1 and its
associated pathways could
enhance anti-PD-1
therapy efficacy.

(48)

CircPETH m6A-driven circPETH-147aa enhances PKM2 activity and SLC43A2
stability, promoting HCC glycolysis, metastasis, and CD8+ T
cell dysfunction.

circPETH-147aa attenuats
CD8+ T cell mediated
immunity against HCC.

Norathyriol, an inhibitor of
circPETH-147aa, enhances
anti-PD1 efficacy.

(84)

Circ
RHBDD1

Recruits YTHDF1 to PIK3R1 mRNA, enhancing glycolysis and promoting
immune evasion.

A key driver of resistance to
anti-PD-1 therapy.

Inhibiting circRHBDD1 could
improve the efficacy of anti-
PD-1 therapy.

(82)

LncRNA
TUG1

TUG1 upregulated by METTL3 modified m6A sponges miR-141/miR-340
and binds YBX1 to elevate PD-L1/CD47.

TUG1 shows a positive
correlation with PD-L1
and CD47.

TUG1-siRNA and anti-PD-L1
synergistically suppress HCC.

(42)
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5 Discussion and conclusion

m6A modification, a prevalent form of RNA methylation, is

emerging as a critical regulator of HCC progression and immune

response. Acting as an epigenetic mechanism, m6A influences

various cellular processes, including immune cell function,

inflammatory cytokine production, and immune checkpoint

regulation, ultimately shaping the TIME and impacting the

efficacy of immunotherapy. Understanding how m6A alters the

immune landscape in HCC reveals its potential as a therapeutic

target, particularly for enhancing immunotherapy outcomes.

The TIME within HCC is composed of various immune cells,

including T cells, macrophages, and dendritic cells, all of which

interact with tumor cells to drive both tumor progression and
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immune evasion. m6A modification plays a central role in

modulating the mRNA stability and translation of molecules that

mediate these interactions. For instance, METTL3, a key m6A

methyltransferase, promotes the expression of IL-6 (99), a

cytokine known to recruit myeloid-derived suppressor cells

(MDSCs) and inhibit CD8+ T cell cytotoxicity. This contributes

to the suppression of antitumor immunity and supports tumor

survival and growth. The m6A reader protein YTHDF1 further

exacerbates this effect by enhancing the translation of EZH2

mRNA, which in turn amplifies IL-6 secretion and impairs T cell

function (47). These findings suggest that m6A regulators, such as

METTL3 and YTHDF1, represent potential therapeutic targets that

could help restore immune surveillance and enhance the immune

system’s ability to fight tumors.
TABLE 2 m6A-related risk model for predicting immunotherapy efficacy.

m6A-related
risk model

Signature Prediction
of immunotherapy

Ref.

m6A-related genes IGFBP3, TCP1, CFHR5, HDAC2, INTS8, UQCRH, PABPC4, GYS1, MARCKSL1, MAPRE1,
GYS2, NAP1L1, XPNPEP1, STX6, BLMH, YBX1, RDH16, HDDC2, MASP2, HMGN1

High-risk group benefits
from immunotherapy.

(86)

m6A regulators genes 9 harmful regulators (IGF2BP3, IGF2BP2, METTL4, HNRNPC, HNRNPA1, YTHDF1,
IGF2BP1, HNRNPG, METTL16 and 4 beneficial regulators (FMR1, METTL14,
ZC3H13, YTHDC2)

Low m6A.ES.harm subgroup shows better
PD-1/CTLA4 response. High
m6A.ES.benefit subgroup responds well to
CTLA4 blocker.

(87)

m6A-related miRNAs let-7b-5p, miR-148a-3p, miR-17-5p, miR-182-5p, miR-212-3p, miR-22-3p, miR-652-3p,
miR-9-5p, miR-99b-3p

Elevated PD-1/PD-L1 expression links to
higher risk score.

(88)

m6A-related lncRNAs GABPB1-AS1, AC025580.1, LINC01358, AC026356.1, AC009005.1, HCG15,
and AC026368.1

High-risk group responds better. (89)

m6A-
associated snRNAs

RNU1-70P, RNU1-75P, RNU6-2, RNU6-94P, RNU11, RNU6-247P, RNU6-1011,
RNU6-510P

High-risk group benefits more
from immunotherapy.

(90)

m1A-, m5C-, m6A-,
m7G-, and DNA
methylation-
related regulators

BMT2, NEIL3, TRMT6, WDR4, and ZC3H13 Low-risk group shows sensitivity
to immunotherapy.

(91)

Combined hypoxia
and m6A/m5C/m1A
regulated genes

CSTF2, NUP93, MAP4, RUVBL1, CEP55, DPH2, DNAJC5, SMS, GNPDA1, ATG5, GFL1,
GPD1L, ATP1B3

High-risk group shows better
immunotherapy response.

(92)

m6A/m5C/m1A-
related genes

METTL3, YTHDF1, NSUN4, and TRMT6 High-risk group overexpresses HAVCR2,
PDCD1, CTLA4, CD274, and TIGIT.

(93)

m6A/m5C/m1A
regulator genes

YTHDF1, YBX1, TRMT10C and TRMT61A High-risk group exhibits elevated
expression of PD-L1, PD-1, CTLA4,
HAVCR2, PDCD1LG2, and TIGIT.

(94)

m6A regulators “readers”: ELAVL1, FMR1, HNRNPA2B1, HNRNPC, IGF2BP1, IGF2BP2, IGF2BP3,
LRPPRC, YTHDC1, YTHDC2, YTHDF1, YTHDF2, and YTHDF3; “writers”: CBLL1,
KIAA1429, METTL14, METTL3, RBM15, RBM15B, WTAP, and ZC3H13; and “erasers”:
ALKBH5 and FTO

Low-m6A score subtype indicates
immunosuppression, limited
immunotherapy benefits.

(95)

m6A Modification-
Related Genes

YTHDF2, YTHDF1, METTL3, KIAA1429, and ZC3H13 Lower risk score predicts better response
and survival outcomes of anti-PD-
1 immunotherapy.

(96)

m6A
methyltransferase-
related lncRNA

LINC01093, LINC02362, SNHG20, SNHG17, ZFAS1, SNHG6, SNHG7 and GAS5 Low risk predicts better
immunotherapy response.

(97)

SNRPC expression SNRPC Low-SNRPC group responds better
to immunotherapy.

(98)
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In addition to cytokine regulation, m6A also influences

immune checkpoint expression, which is central to the success

of immunotherapy. PD-1/PD-L1 interactions dampen T cell

activity and promote immune evasion in many cancers,

including HCC. m6A modification is involved in regulating PD-

L1 expression, thus influencing its interaction with immune cells.

In intrahepatic cholangiocarcinoma, the demethylase ALKBH5

stabilizes PD-L1 mRNA through demethylation, maintaining its

expression and suppressing T cell activation (81). Moreover,

circRNAs stabilized by m6A enhance PD-L1 expression in HCC,

leading to T cell dysfunction and contributing to resistance to ICIs

(48, 82). These findings highlight the therapeutic potential of

targeting m6A pathways to sensitize tumors to ICIs and improve

immunotherapy responses.

Given the pivotal role of m6A in modulating the TIME and

regulating immune checkpoints, it holds significant promise as a

therapeutic target for enhancing immunotherapy. Preclinical

studies have demonstrated that inhibiting METTL3 or YTHDF1

can synergize with anti-PD-1 therapy, significantly improving

antitumor response and overall treatment efficacy (47, 100, 101).

Furthermore, modulating m6A levels in inflammatory pathways,

particularly those involving IL-6/STAT3 signaling, could reduce

chronic inflammation and inhibit tumorigenesis, addressing

fundamental drivers of HCC progression. This suggests that

targeting m6A may not only enhance immune responses but also

improve the TME, providing a more comprehensive approach for

cancer treatment.

In conclusion, the intricate involvement of m6A in shaping the

immune landscape and regulating immune checkpoints

underscores its potential as a powerful therapeutic target in HCC.

By strategically targeting m6A pathways, it may be possible to

reprogram the TIME, enhance the effectiveness of ICIs, and provide

novel strategies for treating HCC. Future research should focus on

refining the specificity of m6A-targeting drugs, exploring their

integration into combination therapies, and identifying

biomarkers that can predict patient responses. These efforts could

pave the way for more personalized and effective treatment options,

offering new hope for patients with HCC.
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