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The pandemic potential of the Middle East Respiratory Syndrome Coronavirus

(MERS-CoV) highlights the critical need for effective vaccines due to its high

fatality rate of around 36%. In this review, we identified a variety of

immunotherapeutic molecules and diagnostic biomarkers that could be used

in MERS vaccine development as human-derived adjuvants. We identified

immune molecules that have been incorporated into standard clinical

diagnostics such as CXCL10/IP10, CXCL8/IL-8, CCL5/RANTES, IL-6, and the

complement proteins Ca3 and Ca5. Utilization of different human monoclonal

antibodies in the treatment of MERS-CoV patients demonstrates promising

outcomes in combatting MERS-CoV infections in vivo, such as hMS-1, 4C2H,

3B11-N, NBMS10-FC, HR2P-M2, SAB-301, M336, LCA60, REGN3051,

REGN3048, MCA1, MERs-4, MERs-27, MERs-gd27, and MERs-gd33. Host-

derived adjuvants such as CCL28, CCL27, RANTES, TCA3, and GM-CSF have

shown significant improvements in immune responses, underscoring their

potential to bolster both systemic and mucosal immunity. In conclusion, we

believe that host-derived adjuvants like HBD-2, CD40L, and LL-37 offer

significant advantages over synthetic options in vaccine development,

underscoring the need for clinical trials to validate their efficacy.
KEYWORDS
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1538301/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1538301/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1538301/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1538301/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1538301/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1538301&domain=pdf&date_stamp=2025-03-13
mailto:balosaimi@kfmc.med.sa
https://doi.org/10.3389/fimmu.2025.1538301
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1538301
https://www.frontiersin.org/journals/immunology


Alrasheed et al. 10.3389/fimmu.2025.1538301
GRAPHICAL ABSTRACT
Introduction

Middle East respiratory syndrome (MERS), a zoonotic disease

caused by a member of the Coronaviridae family, was discovered in

2012 in Jeddah, Saudi Arabia (1, 2). This disease primarily targets

the lower respiratory tract, eliciting host responses ranging from

asymptomatic to severe acute respiratory syndrome, and may also

impair other tissues, such as the kidneys (3, 4). Camels serve as the

main reservoir for the virus and bats are considered the initial

reservoir (5). Transmission to humans occurs through direct

contact with infected camels or the consumption of their

products (6). Between April 2012 and April 2024, the World

Health Organization (WHO) recorded 2613 laboratory-confirmed

cases from 27 countries, with approximately 36% (943 cases)

resulting in mortality. Most of these cases - approximately 2204

occurrences with 862 deaths, representing a mortality rate of 39% -

were documented in Saudi Arabia (7). Adults aged 50–59 exhibited

the highest vulnerability to initial infection, whereas those aged 30–

39 had the greatest risk for secondary infection (7). The case fatality

rate (CFR) is highest among individuals aged 70–79 years,

regardless of whether the infection was new or recurring (7).

The mean incubation period for MERS-CoV is approximately

five days - although variations from 2–14 days occur (8, 9) - during

which the host exhibits no symptoms of infection (9). Clinical

manifestations of the illness vary widely, from mild symptoms such
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as cough, fever, and muscular discomfort, to severe conditions

including pneumonitis, acute respiratory distress syndrome

(ARDS), and respiratory failure (10). ARDS can result from

cytokine release syndrome (CRS), which is characterized by an

uncontrolled release of multiple proinflammatory cytokines due to

an excessive immunological response by the host (11). To effectively

understand the immunopathology of MERS-CoV, particularly

MERS-CoV-induced CRS, acknowledgment of the potential

overlap in the presentation and progression of severe MERS-CoV

infections, as well as the lack of effective treatment options,

is crucial.

COVID-19 pandemic has fast-forward the development of next

generation vaccines. mRNA vaccines, like those developed by

Pfizer-BioNTech and Moderna for COVID-19, use lipid

nanoparticles to deliver genetic instructions for viral proteins,

allowing for swift production and potent immune stimulation

(12). Viral vector platforms, exemplified by AstraZeneca’s

adenovirus-based vaccine, introduce genetic material to trigger

immunity. Progress in structural vaccinology and nanoparticle

engineering, as seen in Novavax’s SARS-CoV-2 vaccine, improves

antigen presentation and durability (13). These innovations offer

the potential for faster development, wider pathogen coverage, and

enhanced thermostability, although expanding production and

ensuring fair global distribution remain significant challenges. In

contrast to SARS-CoV-2, MERS-CoV lacks approved preventive or
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therapeutic interventions, leaving supportive care as the only

option. A vaccine could potentially curb transmission in high-risk

regions, protect healthcare personnel, and mitigate pandemic risks

associated with viral evolution or increased human-animal

interactions. Moreover, lessons from COVID-19 emphasize the

importance of proactive vaccine platforms against coronaviruses,

which could be adapted for emerging variants.

This review aimed to explore the inflammatory biomarkers

associated with MERS-CoV to ascertain whether MERS-CoV is

linked to a unique inflammatory profi le. A variety of

immunotherapeutic molecules and diagnostic biomarkers that

could be used in MERS vaccine development as human-derived

adjuvants have been identified. The review also explores the

possibility of identifying therapeutic agents and diagnostic

markers targeting MERS-CoV, and contributes significantly to the

fields of vaccinology and immunology by discussing the role of

host-derived adjuvants in vaccine formulation.
Diagnostic biomarkers

Addressing clinical MERS-CoV infections poses significant

challenges, given the severity of the symptoms (14). Identifying a
Frontiers in Immunology 03
biomarker indicative of disease progression is crucial for diagnostic

kit development. Cytokines and chemokine molecules can help to

predict disease severity. The most prevalent cytokines and

chemokines that could be diagnostic biomarkers for MERS

(Table 1) are reviewed.

Interferon gamma-induced protein 10 (IP10/CXCL10) has been

suggested as a biomarker for severe MERS-CoV infection. Kim et al.

reported that CXCL10 levels were highest in patients during the

second and third weeks of onset with severe MERS (13), compared

with those with mild disease. Hong et al. indicated that CXCL10/

IP10 concentrations were significantly elevated in patients who did

not survive compared with those in surviving patients with MERS

(15). Min et al. observed that patients who developed pneumonia

during MERS infection exhibited high IP10/CXCL10 levels, which

often decreased during the therapy phase in individuals who

successfully recovered from pneumonia (16). The main role of

CXCL10 are to mediate chemotaxis, and to inhibit cell migration

and proliferation (17). CXCL10 plays a crucial function in

stimulating migration, and infiltrating certain subsets of T

lymphocytes at the infection sites during a viral infection (18).

Elevated CXCL10 concentration has been associated with lung

injury, as it promotes neutrophil infiltration into the lungs,

leading to increased CXCL10 production and the release of
TABLE 1 Molecules that could be used as diagnostic markers.

Molecule Function Molecule role during infection Treatment Reference

IP10/CXCL10 Induces chemotaxis, proliferation, and
inhibition of cell migration

and proliferation

• Stimulating neutrophils in the lungs
• Increases CXCL10 production

• Releases oxidative burst via TLR4
•Induces lung inflammation, leading to ARDS

Antibodies
targeting CXCL10

(17)

MCP-1/CCL2 Modulates monocyte circulation and
infiltration enhances the production of

memory T-cells and NK cells

• Th1 cells produce GM-CSF, stimulating monocyte and
macrophage activation

• Stimulation leads to maturation of CD14+ CD16+
monocytes

• Monocytes migrate to the lungs, causing cytokine storm

Inhibiting
MCP-1 activity

(23, 24)

CXCL8/IL-8 Influences neutrophil recruitment,
activation, gathering, and NET initiation

• Leads to increased numbers of neutrophils in BAL fluid.
• Releases myeloperoxidase and elastase

• Potentially causes acute lung injury, pneumonia,
and ARDS

Humanized
anti-CXCL8
antibody

(30, 31)

CCL5 Attracts monocytes, T-cells, eosinophils,
and is crucial for platelet activation and

the coagulation cascade

• Increased neutrophil infiltration and production of
MIP-2, IP10, and MCP-1

• Leads to lung damage and ARDS development

Met-RANTES
therapy

(36–38)

IL-6 Induces monocyte regulation and
macrophage development, modulates

antigen-dependent B-cell differentiation,
enhances B-cell IgG synthesis, and

stimulates Th2 response by inhibiting
Th1 polarization

• TNF, IL-1b, and IL-6 increase trypsin production
breaking down matrix metalloproteinases and increasing

tissue permeability
• IFNg production by Th1 cells is essential for antiviral

immunity
• IL-6 can reduce Th1 polarization by initiating CD4+ cell
differentiation into Th2 cells or reducing IFNg production
• IL-6 promotes Th17 cell growth and IL-17A release,

activating Bcl-XL
• IL-17 increases neutrophil movement and viability,

causing ARDS

Tocilizumab
(IL-6

receptor inhibitor)

(55–59)

C5a and C3a chemotactic for neutrophils, monocytes,
eosinophils, and T-lymphocytes

• Promote phagocytic cell stimulation and synthesis of
TNF-a, IL-1b, IL-6, and IL-8

• Enhance microvascular thrombosis, fibrinolysis, and
vascular dysfunction

• Elevated levels of C5a and C3a in the lung are linked to
immune damage, disease severity, and ARDS development

eculizumab (29, 74, 75, 79)
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oxidative bursts by neutrophils through Toll-like receptor 4 (TLR4)

activation, resulting in ARDS (17). The role of this chemokine in

viral infection can be protective or pathogenic, depending on host

immunity and the type of virus (17). Considering its increased

expression in previous research, CXCL10 appears to play a

pathogenic role in MERS infection. Consequently, the

development of antibodies targeting CXCL10 might offer a

promising therapeutic strategy for treating ARDS, as

demonstrated in the H1N1 mouse model of influenza A virus (19).

Monocyte chemoattractant protein-1 (MCP-1/CCL2) has been

identified as a diagnostic marker for MERS-CoV progression.

Alhetheel et al. reported that patients with symptomatic MERS

who did not survive exhibited higher MCP-1 levels than those who

recovered (2139 ± 548.2 vs. 776.5 ± 165.3 pg/mL; p < 0.004) (20).

Furthermore, Hong et al. found that MCP-1 levels were significantly

upregulated in patients with MERS who did not survive compared

with levels in those who survived (15). Shin et al. demonstrated that

plasma MCP-1 concentration was elevated fourfold in patients with

severe and moderate disease (21). CCL2/MCP-1 modulates the

circulation and infiltration of monocytes, memory T-lymphocytes,

and natural killer (NK) cells, promoting inflammatory activities in

tissues, particularly in the lungs (22). The upregulation of MCP-1

may activate T helper-1 (Th1) cell responses (23). Th1 cells produce

granulocyte-macrophage colony-stimulating factor (GM-CSF),

which may stimulate monocyte and macrophage activation. In

individuals with coronavirus disease of 2019 (COVID-19), this

stimulation leads to the maturation of CD14+ CD16+ monocytes,

which release interleukin 6 (IL-6) (24). After migrating to the lungs,

these monocytes exacerbate the cytokine storm, damaging the lungs

(25). Therefore, inhibiting MCP-1 activity could be a therapeutic

approach for treating MERS severity. Chirathaworn et al.

demonstrated that MCP-1 is a potential biomarker implicated in

immunopathological processes induced by Chikungunya virus, and

is viewed as a possible therapeutic target (26). The severity of

COVID-19 and potential mortality risk in patients can be predicted

by biomarkers IP-10 and MCP-1, which serve as indicators of

disease progression (22, 27). In addition, Tsaur et al. found that

during the development of prostate cancer, chemokines undergo

substantial alterations, with CCL2 emerging as a potential

diagnostic indicator (28).

Chemokines such as CXCL8/IL-8 have been proposed as

biomarkers for the severity of MERS infection. Patients with

MERS-CoV who did not survive exhibited significantly higher

levels of CXCL8 compared with those who survived (29).

Alosaimi et al. demonstrated a significant correlation between the

mortality rate of individuals with MERS-CoV and elevated levels of

CXCL8 expression, compared to healthy controls (30). The

chemokine CXCL8 influences key mechanisms, including

neutrophil recruitment, activation, and aggregation, as well as the

initiation of neutrophil extracellular traps (NETs) (30). Increased

levels of CXCL8 leads to a higher concentration of neutrophils in

the bronchoalveolar lavage (BAL) fluid, resulting in the release of

myeloperoxidase and elastase. These compounds have the potential

to cause acute lung injury, potentially progressing to pneumonia

and ARDS (31). Additionally, CXCL8 enhances the production of

CD4+ molecules and the activity of T helper cells during MERS
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infection (32). Consequently, humanized anti-CXCL8 antibody

treatment has been shown to prevent lung neutrophil infiltration

and alleviate acute lung injury syndrome, as demonstrated in rabbit

models (33).

RANTES (CCL5) is another chemokine suggested as a

diagnostic marker of the severity of MERS-CoV infection.

Patients with MERS-CoV exhibited upregulated expression of

CCL5, associated with disease severity (29). CCL5 effectively

attracts monocytes, T-cells, and eosinophils (34). It is pivotal in

activating platelets and initiating coagulation cascade (35).

However, two different studies reported that CCL5 levels were

significantly higher in recovered patients with MERS than in

those with mild or severe disease (16, 21). The elevated RANTES

levels may be linked to the release of this chemokine by activated

virus-responsive T-cells (21). Elevated CCL5 levels in the lungs have

been associated with increased neutrophil infiltration and the

production of MIP-2, IP10, and MCP-1 in transgenic mice,

leading to lung damage and ARDS development (36, 37).

Additionally, CCL5 was elevated in RSV-infected and eosinophilic

disease-sensitized mice. Met-RANTES therapy reduced

inflammatory cell recruitment and local cytokine production (38).

CXCL10 and CXCL8 and CCL-5 are proinflammatory

chemokines that play critical roles in the pathogenesis of

infection, and function as prognostic indicators of coronaviruses

severity (30, 39–43). CXCL10 is secreted by various cells, including

monocytes, endothelial cells, and fibroblasts, in response to IFN-g
(44). CXCL8 is also secreted by numerous cell types in response to

IL-6 and TNF-mediated cytokines, while antigen-presenting cells

and activated T lymphocytes produce and release CCL5 (45–47).

The concentration of CXCL10 in blood serum could serve as a

potential indicator for identifying severe cases of Mycoplasma

pneumoniae pneumonia in pediatric patients (48). CXCL10 has

been found to be the most promising indicator for detecting acute

Zika virus infection in potential clinical applications (49). CXCL10

and CXCL8 may serve as serum biomarkers for predicting liver

injury induced by hepatitis B virus (HBV) infection (50). Gastric

cancer progression can be predicted by using CXCL8 as a potential

biological marker (51). Hu et al. found that concentrations of CCL5

in blood serum proved effective in distinguishing cirrhosis from

chronic hepatitis B (CHB), with CCL5 emerging as the most

dependable indicator (52). Moreover, CCL5 was initially

recognized as an immunological and prognostic biomarker for

cancer patients (53).

Interleukin-6 (IL-6) could help to predict disease progression in

MERS-CoV-infected patients. Kim et al. revealed a significant

increase in IL-6 levels in patients with severe MERS up to the

third week after symptom onset (54). In another study, plasma IL-6

concentration was considerably elevated and was correlated with

MERS infection severity (21). Hong et al. showed that IL-6 levels

were highly upregulated in patients who did not survive compared

to those who survived (15). IL-6 regulates multiple immune-

stimulating pathways, which in turn influence the host defense.

These pathways include: the regulation of monocytes and their

development into macrophages, modulation of antigen-dependent

B-cell differentiation, enhanced IgG synthesis by B-cells, and

stimulation of Th2 response via Th1 polarization inhibition (55).
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IL-6 levels have been shown to be associated with the severity of

lung inflammation in a study of influenza virus (56). IFNg produced
by Th1 cells is crucial for a successful antiviral immune response.

IL-6 hinders Th1 polarization via the stimulation of CD4+ cells to

transform into Th2 cells or by decreasing IFNg production (57). IL-

6 also enhances Th17 development and stimulates the release of IL-

17A, which in turn activates antiapoptotic molecules such as Bcl-

XL. This supports the survival of cells that have been infected by a

virus (58). Simultaneously, IL-17 enhances the movement and

viability of neutrophils, which are involved in the development of

ARDS in patients with COVID-19 (55, 59). Hence, treating patients

who have increased IL-6 levels with tocilizumab, an IL-6 receptor

inhibitor, could be effective against severe MERS cases, and has also

provided therapeutic advantages in treating COVID-19 (60, 61).

This treatment is now considered one of the most promising

options available (62).

IL-6, a proinflammatory cytokine, has been found to have

increased expression in various conditions, including respiratory

ailments, cancer and viral infections, such as HIV and HCV.

Significantly elevated levels of IL-6 have been observed in patients

with severe cases of severe acute respiratory syndrome (SARS),

MERS, and COVID-19 compared to milder cases (15, 54, 63–71)

and is considered as an indicator for MERS progression. Santa Cruz

A et al. demonstrated that IL-6 serves as a valuable instrument for

assessing prognosis, particularly in predicting patient outcomes

(72). In addition, IL-6 has been recommended to be a diagnostic

biomarker for gastric cancer (73).

Complement anaphylatoxins, such as C5a and C3a, can be used

as markers for predicting the progression of MERS-CoV infection.

Hamed et al. revealed that MERS-CoV-infected patients had

elevated levels of C5a and C3a, which were positively associated

with severity and mortality rates (29). C5a is a chemotactic agent for

neutrophils, monocytes, eosinophils, and T-lymphocytes (74).

Complement anaphylatoxins C3a and C5a are formed, following

the overactivation of the pulmonary and systemic complement

systems, in turn causing inflammation, endothelial cell damage,

thrombus formation, intravascular coagulation, and, ultimately,

death due to multiple organ failure (74–76). Following infection,

complement anaphylatoxins promote the stimulation of phagocytic

cells and the synthesis of TNF-a, IL‐1b, IL‐6, IL‐8, granular
enzymes, and free radicals. These substances enhance the

development of microvascular thrombosis, fibrinolysis, and

vascular dysfunction (75–78). Elevated levels of C5a and C3a in

the lung have been suggested in contributing to immune-related

damage, disease severity, ARDS development, and higher mortality

rates in MERS-CoV-infected patients (29). Patients with high levels

of complement anaphylatoxins could be treated therefore with

eculizumab, which is a human monoclonal antibody (hmAb) with

a significant affinity for the complement protein C5 (79). This

antibody blocks the separation of C5a and C5b and stops the

production of the cell-destroying C5b-9 complement complex

(80). Inhibiting the C5a-C5aR pathway in MERS-CoV infected

hDPP4 transgenic mice led to a decrease in the extent of infection-

induced tissue damage (81). Patients with COVID-19 demonstrated

a rapid, significant, and evident response to eculizumab, resulting in

complete recovery, despite severe lung injury (79).
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Complement proteins C3a and C5a have been found to be

biomarkers of MERS and COVID-19 severity. C5a serves as a

potent chemoattractant, facilitating the recruitment of

inflammatory cells (neutrophils, eosinophils, monocytes, and T

lymphocytes), induces the activation of phagocytic cells, and

elicits the release of granule enzymes and oxidants (82). C3a

effectively activates eosinophils, inducing granule release, reactive

oxygen intermediate generation, and chemotaxis in in-vitro assays

(83). A study by Alosaimi et al. demonstrated that C5a and C3a can

be prognostic biomarkers of COVID 19 severity (84). In addition,

C5a has been considered to be a potential marker of severity in

patients with myasthenia gravis (85). C3a could serve as an

indicator for early identification of hepatitis C virus-associated

hepatocellular carcinoma (86).
Human immunotherapeutic molecules

Currently, MERS is the most fatal human coronavirus-related

disease, with a mortality rate exceeding 35% (14, 62), with no

verified antiviral treatments available. Identifying markers that

enhance the effectiveness of treatment is crucial. Our study

investigates the most common human derived molecules that

could aid in treating MERS (Table 2).

Interferon (IFN) has been used for viral treatment. Type I

interferon (IFN-I) is the first cytokine upregulated after infection,

activating approximately 300 genes involved in immunomodulation

and antiviral defense (87, 88). Falzarano et al. demonstrated that

administering IFN-a2b and ribavirin within 8 hours of viral

exposure effectively reduced lung damage and decreased viral load

in the lungs (89). However, this combination treatment provided no

benefit when administered to severely ill patients with multiple

comorbidities (90). A retrospective study involving 32 patients

revealed no efficacy in treating MERS with IFN-a2a or IFN-b1a
combined with ribavirin (91). In another retrospective cohort study,

20 patients with severe MERS-CoV infection were treated with IFN-

a2a and ribavirin; this resulted in an increased survival rate within

14 days but not within 28 days (92). Arabi et al. conducted a

retrospective cohort study involving 144 critical patients with

MERS and treated with recombinant IFN-a2a, IFN-b1a, or IFN-
a2b and ribavirin; however, no reduction was observed in the 90-

day mortality rate (93). These combinations may be more effective

in the early stages of the disease. Additionally, marmosets infected

with MERS and treated with IFN-b1b exhibited less severe illness

and lower than average viral loads in the lungs and extrapulmonary

organs during necropsy compared with those in untreated animals

(94). INF-I used on SARS patients showed no effective results. A

study by Wu et al. demonstrated that INF-a could potentially help

reduce the duration of the clinical course (95). Loutfy et al. revealed

that the combination of interferon alfacon-1 and corticosteroids

was linked to several positive outcomes: a decrease in oxygen

saturation impairment caused by the disease, faster improvement

of lung abnormalities visible on radiographs, and reduced levels of

creatine kinase (96). However, Zhao et al. found that administering

both interferon and high doses of immunoglobulins yielded no

significant results in combatting SARS infection (97).
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Human immunotherapeutic agents have been tested against

MERS-CoV infection. Mersmab-1 (hMS-1) is a neutralizing

monoclonal antibody that specifically targets the MERS-CoV

receptor-binding domain (RBD) with strong affinity. A study by

Qiu et al. concluded that a single administration of hMS-1

effectively impeded MERS-CoV RBD from binding to its viral

receptor. This intervention offered complete protection against

lethal MERS-CoV infection in genetically modified mice that

expressed human dipeptidyl peptidase 4 (hDPP4-Tg) (98).

A neutralizing monoclonal antibody named 4C2h was

developed to target the receptor binding domain of MERS spike

protein and inhibit viral entry. In their study, Li et al. showed that

4C2h effectively lowered MERS-CoV viral concentrations in the

lung tissue of mice that were genetically modified with Ad5-hCD26

and later infected (99).

3B11-N, a human anti-MERS monoclonal antibody, has been

tested against MERS-CoV infection in vivo. 3B11-N did not show

any escape mutants during the initial characterization,

demonstrated the highest virus neutralization ability, and was

determined to be suitable for mass production, potentially
Frontiers in Immunology 06
providing significant therapeutic advantages (100). Johnson et al.

illustrated that MERS-infected rhesus monkeys treated with 3B11-

N exhibited markedly decreased pulmonary damage compared to

infected individuals who received no treatment, suggesting that this

antibody could be an effective therapy for MERS-CoV

infection (100).

NbMS10-Fc, a neutralizing nanobody and its human-Fc-fused

version, is a protective treatment against MERS-CoV. NbMS10

exhibited strong binding affinity to the MERS-CoV RBD and

inhibited interaction between RBD and DPP4 (101). A study by

Zhao, et al. showed that administering a single dose of NbMS10-Fc

exhibited exceptional prophylactic and therapeutic efficacy,

completely protecting humanized mice from lethal MERS-CoV

infection (101).

The peptide MERS-CoV fusion inhibitor HR2P-M2, which

specifically targets the S protein HR1 domain, demonstrates

significant efficacy in suppressing both in vitro and in vivo

infections caused by various strains of MERS-CoV (102).

Intranasal administration of HR2P-M2 protected mice expressing

human dipeptidyl peptidase 4 via adenovirus serotype-5 from
TABLE 2 Molecules that could be used for treatment.

Molecule
Number of patients/

Animal model
Type of study Result Reference

IFN-a2a or IFN-
b1a and ribavirin

32 Retrospective study No efficacy of these combinations (91)

IFN-a2a
and ribavirin

20 Retrospective cohort study
An increased survival rate within 14 d but not within

28 d
(92)

Recombinant IFN-
a2a, IFN-b1a, or

IFN-a2b
and ribavirin

144 Retrospective cohort study Did not reduce the mortality rate within 90 d (93)

Mersmab-1
(hMS-1)

hDPP4-Tg mice In vivo Complete protection against lethal MERS-CoV infection (98)

4C2h Ad5-hCD26-transduced mice In vivo
Lowered MERS-CoV viral concentrations in the

lung tissue
(99)

3B11-N Rhesus monkey In vivo Markedly decreased pulmonary damage (100)

NbMS10-Fc hDPP-4 Tg mice In vivo
completely protecting humanized mice from lethal

MERS-CoV infection
(101)

HR2P-M2
Ad5-hCD26-transduced mice In vivo

A reduction in viral titer
(102)

HR2P-M2 + INF-b An additional reduction in infection.

SAB-301 Ad5-hDPP4-transduced mice In vivo Rapidly reduced viral lung titers (103)

M336

Rabbit In vivo Decreased MERS-CoV levels in rabbit lungs (106)

hDPP4-Tg mice In vivo Complete preventive and curative protection (107)

Common marmoset In vivo
Mitigated the disease’s intensity and failed to provide

total protection against MERS-CoV
(108)

LCA60 Ad5-hDPP4 mice In vivo Reduction of MERS-CoV titer in the lungs (109)

REGN3051
and REGN3048

huDPP4 mice In vivo Exhibited efficacy in reducing MERS-CoV replication (111)

MCA1 common marmosets In vivo Effectively suppressed the replication of MERS-CoV (113)

MERS-GD27 hDPP4-Tg mice In vivo
Decreased viral loads (both infectious virus and viral

RNA) within the pulmonary tissue
(116)
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MERS-CoV infection, and was effective against viral strains with

and without HR1 region mutations in the S protein (102). The

protective effect was enhanced when combined with INF-b, which
indicates promising prospects for its advancement as a preventive

measure, and highlights its potential application as a treatment

option for patients infected with MERS-CoV (102).

SAB-301 is a trans-chromosomic human IgG immunoglobulin

(Tc hIgG), derived from purified Al-Hasa strain MERS-CoV spike

protein nanoparticles. Single doses of SAB-301 administered to

Ad5-hDPP4 receptor–transduced mice before or after MERS-CoV

infection rapidly reduced viral lung titers (103). A clinical trial,

registered with ClinicalTrials.gov (number NCT02788188), was

conducted to evaluate SAB-301 safety and tolerability. It indicated

that SAB-301 exhibits safety and tolerability at 50 mg/kg, which

may be therapeutically effective (104).

M336 are human monoclonal antibodies that target the RBD of

the MERS-CoV spike glycoprotein and interact with CD26/DPP4

(105). Research conducted in vivo revealed that preventive

treatment with m336 decreased MERS-CoV levels in rabbit lungs

(106). M336 also offered complete preventive and curative

protection against MERS-CoV in genetically modified mice

expressing human DPP4 (107). However, A separate investigation

involving a non-human primate - the common marmoset -

indicated that m336 only mitigated the disease’s intensity and

failed to provide total protection against MERS-CoV (108).

LCA60 is an additional human neutralizing monoclonal

antibody developed to combat MERS-CoV. This antibody was

generated by isolating IgG memory B cells from an individual

infected with MERS and then immortalizing these cells through the

use of the Epstein-Barr virus (109). The antibody LCA60

demonstrates efficacy in neutralizing MERS-CoV infection in

cellular models and offers both preventive and therapeutic

protection in BALB/c mice that have been modified with

adenoviral vectors to express hDPP4 (110). In a more challenging

model using IFN-a/b receptor-deficient mice expressing hDPP4,

LCA60 treatment led to a substantial decrease in viral load within

the lungs (109). This reduction occurred more rapidly compared to

BALB/c mice, with a three-log decrease observed in just one day, as

opposed to the three days required in BALB/c mice (109).

Other human neutralizing monoclonal antibodies were

developed to protect and treat MERS-CoV infection: REGN3051

and REGN3048. REGN3051 and REGN3048 were produced by

immunizing humanized transgenic mice (VelocImmune mice) with

DNA encoding the MERS-CoV S protein to engineer hybridoma B

cells that produce neutralizing monoclonal antibodies (111). A

study by Pascal et al. conducted in vivo revealed that REGN3051

and REGN3048 inhibited MERS-CoV multiplication in mice with

humanized DPP4, both as a preventive measure and as a treatment

(111). However, when tested in common marmosets, these

monoclonal antibodies appeared to be more efficient in

preventing MERS-CoV infection, rather than treating it once

established (112).

A human monoclonal antibody, MCA1, was identified by

isolating B cells from a patient who had previously overcome

MERS, targeting the receptor-binding domain of the MERS-CoV

S glycoprotein (113). MCA1 demonstrated strong neutralizing
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activity against MERS-CoV in cell entry assessments. In vivo,

MCA1 effectively suppressed the replication of MERS-CoV in

common marmosets when given as a preventive or therapeutic

treatment (113).

Two strong human neutralizing monoclonal antibodies, MERS-

4 and MERS-27, were tested against MERS-CoV infection. MERS-4

and MERS-27 were derived from a non-immune human yeast

display antibody library generated using polyadenylated RNA

sourced from the spleen and lymph nodes of regular individuals

(114). Both MERS-4 and MERS-27 effectively inhibited pseudovirus

and live MERS-CoV from entering cells. The combined use of

MERS-4 and MERS-27 demonstrated a synergistic effect on

pseudotyped MERS-CoV. The primary approach to neutralizing

MERS-4 and MERS-27 is by inhibiting the attachment of the RBD

to DPP4 (114).

MERS-GD27 and MERS-GD33 are human neutralizing

monoclonal antibodies that are produced from the whole blood of

a MERS patient (115). MERS-GD27 and MERS-GD33

demonstrated the most potent neutralizing activity against

pseudotyped and live MERS-CoV in vitro . Analysis of

mutagenesis showed that MERS-GD27 and MERS-GD33 focused

on distinct areas in the S glycoproteins. The synergy of the two

monoclonal antibodies effectively neutralized pseudotyped MERS-

CoV (115). A study conducted in vivo highlighted the prophylactic

and therapeutic advantages of MERS-GD27 in protecting HDPP4-

transgenic mice against MERS-CoV infection (116).

The neutralizing monoclonal antibody S309, isolated from the

peripheral blood mononuclear cells of a patient infected with SARS-

CoV in 2003, was tested against MERS-CoV infection. S309

demonstrated strong binding affinity for both SARS-CoV and

SARS-CoV-2 (117). In vivo, the monoclonal antibody CR9114

exhibits neutralizing capabilities against both influenza A and B

types, and CR6261 has shown the ability to lower mortality rates

in mice infected with H1N1 and H5N1 influenza A subtypes

(118, 119). Additionally, monoclonal antibodies 70-1F02 and 9-

3A01 have demonstrated the capacity to inhibit infections caused by

two H1N1/H1N5 influenza A subtypes (120, 121).
Host-derived adjuvants in
vaccine development

Inducing a robust memory response from T- and B-cells

targeted toward the specific pathogen, along with the presence of

durable plasma cells, is the primary objective of an effective

immunization strategy against infectious diseases. The

unavailability of vaccines specifically targeting MERS-CoV

highlights the urgent need for targeted immune responses against

the virus. Various strategies have been employed to develop a

MERS-CoV vaccine. This study reviews the strategies used to

generate human-derived vaccine adjuvants (Table 3).

Human b-defensin-2 (HBD-2) has been used as a vaccine

adjuvant against MERS-CoV. Human b-defensins (HBDs) are

short host defense peptides produced by epithelial cells to create

mucosal barriers that protect against different types of infectious

agents (122). HBDs play a crucial role in connecting the activation
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of pathogen-specific innate and adaptive immunity by recruiting

and activating different types of leukocytes such as macrophages,

dendritic cells (DCs), and T cells (123–125). Kim et al.

demonstrated that immunization of hDPP4-Tg with a fusion of

spike protein receptor-binding domain S RBD and HBD 2 (S RBD-

HBD 2) induced robust antigen-specific adaptive immune

responses and conferred protection against MERS-CoV infection.

Additionally, S RBD-HBD 2 immunization reduced the progression

of pulmonary fibrosis in the lungs of MERS-CoV-infected hDPP4-

Tg mice and suppressed the activation of endoplasmic reticulum

stress signaling following viral infection (122).

Another human derived molecule that can be utilized as vaccine

adjuvant for MERS-CoV is CD40L. CD40L, a membrane protein of

type II, serves a critical function as a co-stimulatory molecule and

essential regulator of immune function (126). The primary

expression occurs temporarily on activated CD4+ T cells (127).

The interaction between CD40L and its receptor CD40, found on all

antigen-presenting cells (APCs), plays a crucial role in connecting

innate and adaptive immune responses (128, 129). Research

conducted by Hashem et al. demonstrated that hDPP4-Tg mice

inoculated with a combination of non-replicating recombinant

adenovirus 5 (rAd5), MERS-CoV S1 protein, and murine CD40L

(rAd5-S1/F/CD40L), provided complete protection against MERS-

CoV, as demonstrated by the significantly decreased pulmonary

viral load (130).

LL-37, a human antimicrobial peptide, exhibits chemotactic

properties and modulate the activities of various immune cells,

including dendritic cells (131). During infection, LL-37 functions as

an alarm signal, linking the innate and adaptive immune systems by

attracting immune cells to the infection site (132). LL-37 has the

potential to exhibit antiviral activity and regulate the delicate

balance between pro- and anti-inflammatory responses by

modulating inflammatory cytokine expression; therefore, these

peptides may serve as effective vaccine adjuvants (133, 134). In

their study, Kim et al. found that immunized mice with a

combination of S-RBD and LL-37 (S-RBD-LL-37) stimulated the

production of mucosal IgA and systemic IgG antibodies, which

demonstrated virus-neutralizing capabilities (135).

Chemokines enhance the recruitment of antigen-presenting

cells (APCs) to vaccination sites, improving antigen uptake and T

cell presentation, which is vital for a strong adaptive immune
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response (136–138). Cytokines directly boost immune cell

activation and proliferation, aiding the differentiation of naive T

cells into effector T cells necessary for infection clearance. They also

help to develop memory T and B cells for lasting immunity post-

vaccination (139) (see Figure 1). Host-derived cytokines and

chemokines are generally better tolerated than synthetic

adjuvants, which can trigger adverse immune reactions. Using the

body’s own signaling molecules can optimize immune responses,

and these substances are versatile for various vaccine types,

including protein subunit, DNA, and viral vector vaccines (138).

Host-derived cytokines and chemokines are being explored as

vaccine adjuvants to enhance immune responses by utilizing the

body’s own signaling molecules. These proteins can modulate

immune responses, potentially offering a safer and more effective

alternative to synthetic adjuvants. Various cytokines, including

interleukins and interferons, have shown promise in promoting

antigen-specific immune responses when used with vaccines.

Notable examples include CXCL10, CXCL12, CCL19, CCL5,

CCL3, CX3CL1, IL-1, and INF-a, which have been tested in both

murine and human studies. The selection of these adjuvants can

either be homeostatic or inflammatory, influencing their effects on

immunity (136, 139).

Previous studies have highlighted the effectiveness of cytokines

like CCL28, GM-CSF, IL-2, IL-12, IL-15, IL-21, and IL-33 in

enhancing immune responses to various vaccines (140, 141).

Innovative approaches using host-derived cytokines have

demonstrated improved systemic and mucosal immunity post-

vaccination. For instance, the mucosal chemokine pCTACK

(CCL27) has been shown to enhance vaccine responses to SARS-

CoV-2, while GM-CSF (pGM-CSF) has been effective in DNA

vaccinations against the virus by promoting antigen expression and

immune cell recruitment (140–143).
Human derived adjuvants used in
clinical and pre-clinical studies

Adjuvants derived from human sources such as immune cells,

cytokines, and proteins improve the efficacy of viral vaccines by

boosting innate immunity, increasing antigen presentation, and

enhancing overall immune responses. These adjuvants are primarily
TABLE 3 Molecules that could be used as vaccine adjuvants.

Molecule
Targeted

betacoronavirus
Vaccine

Substances
Animal Model Adjuvant Effects Reference

Human
b-defensin 2

MERS
spike protein receptor-
binding domain (S RBD)

and HBD 2
hDPP4-Tg mice

Triggered strong adaptive immune responses targeting
the specific antigen (Ag) and provided protection

against MERS-CoV infection
(122)

CD40L MERS rAd5-S1/F/CD40L hDPP4-Tg mice Decreased pulmonary viral load (130)

LL-37 MERS S-RBD and LL-37
hDPP4-Tg mice and

C57BL/6
Production of mucosal IgA and systemic

IgG antibodies
(135)

CCL27 SARS-CoV-2 pCTACK; CCL27 Mice
Increased frequencies of interferon gamma (IFNg)+

CD8+ T cells
(142)

GM-CSF SARS-CoV-2 RBD plus pGM-CSF Mice induced CD4+ and CD8+ (141)
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being evaluated for safety, efficiency and widespread applicability in

clinical and preclinical research. Current research on notable

human-derived adjuvants includes immuno-stimulating

complexes (ISCOMs), aluminium salts, granulocyte-macrophage

colony-stimulating factor (GM-CSF), interleukins (IL-12, IL-15),

exosomes, dendritic cells (DCs), and monoclonal antibodies (mAb).

Furthermore, Toll-like receptor (TLR) agonists (e.g., Imiquimod,

CpG 7909) and MF59 (an oil-in-water emulsion) exhibit the

potential to augment responses to vaccines (Table 4).

ISCOMs, consisting of saponin, phospholipids, cholesterol, and

antigens such as Quil A (144), serve as strong adjuvants for

hydrophobic antigens, particularly those derived from enveloped

viruses (145). The saponin-cholesterol matrix reduces toxicity and

hemolytic activity (144), demonstrating robust cellular and humoral

responses in both animal and human trials (144, 146). ISCOMs also

induce strong mucosal and systemic immunity (147), rendering

them interesting candidates for nasal vaccinations, including those

for influenza (148).

Monophosphoryl lipid A (MPL), derived from salmonella

minnesota in detoxified form, stimulates TLR4 on DCs, thereby

augmenting innate immunity (149) and priming CD4+ and CD8+

T-cell responses to establish adaptive immunity (150) and

immunological memory (151). MPL is utilized in Adjuvant System

4 (AS04) with aluminium salt, in HPV (Cervarix™) (152, 153) and

HBV (Fendrix) vaccinations (154, 155). Published clinical trials

indicate that DC immunotherapy in HIV-1 infection can provoke

HIV-specific immune responses (156).

Type I interferons (IFNs) facilitate the maturation of DCs,

hence augmenting the formation of antigen-specific CD8+ T

lymphocytes for tumor suppression. Employing IFNs as adjuvants

to vaccination may represent a promising strategy. IFNs possess a

brief half-life but albumin conjugated to a protein will extend the

half-life of the associated protein (157).
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Cytokine adjuvants like IL-12 and IL-15 (158–160) boost

immune responses. IL-12, produced by DCs and monocytes, is

crucial for cellular immunity (161), where defects increase

susceptibility to intracellular pathogens (162, 163). IL-15,

produced by DCs, monocytes and epithelial cells, supports

proliferation of B and T cells, activation of NK cells, and long-

term memory cell responses (164, 165). Early clinical trials

combining IL-12 or IL-15 with an HIV DNA vaccine show their

potential as adjuvants (166).

GM-CSF improves vaccine effectiveness by stimulating DCs.

GM-CSF genes (codon optimized) enhance protein expression and

immunological responses, particularly against HIV-1 Gag (167).

GM-CSF produces enhanced antibody responses to influenza

vaccines (168) and demonstrates potential as an effective adjuvant

in clinical trials (169–171).

Exosomes originating from infected cells can transmit viral

components to adjacent cells, thereby eliciting antiviral immunity

(172). The evolutionary parallels between viruses and exosomes

indicate that exosomes may serve as viable vaccine platforms (173).

Exosome-based HIV vaccines, such as Gag-Texo and Gp120-Texo,

have demonstrated robust, tailored immune responses (174).

Moreover, modified Nefmut-exosomes proficiently stimulate CTL

responses against HIV and other viruses, including Ebola, HBV,

and influenza (175, 176). Preliminary research indicates that

exosomes may serve as adjuvants for influenza and HBV

vaccines, augmenting immune responses and protection, hence

reinforcing their potential as effective vaccine adjuvants (177).

TLR7 agonist Imiquimod augments vaccine immunogenicity by

facilitating DC maturation and eliciting a Th1 response (178).

Research in humans and animals demonstrates that it enhances

and extends immune responses, especially in influenza and HSV

vaccinations, affirming its efficacy as an adjuvant (179, 180).

Similarly, TLR9 agonist CpG oligodeoxynucleotides (ODNs)
FIGURE 1

The mechanism of enhancing vaccine efficacy using host-derived adjuvants.
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stimulate plasmacytoid DCs and B cells, promoting Th1 and

proinflammatory responses. As adjuvants, they augment antigen-

presenting cell function, thereby fortifying humoral and cellular

immunity. Preclinical and clinical experiments demonstrate

that CpG ODNs enhance the efficiency of HIV and HBV vaccines

(181, 182), with CpG 7909 being effective for immunocompromised

patients (182, 183).

Creating HBV-specific neutralizing mAbs may facilitate the

elimination of surplus viral proteins, perhaps reinstating adaptive

immunity and augmenting the efficacy of antiviral medications.

Fully human mAbs from individuals vaccinated against HBV and

those who have recovered demonstrate potential as adjunctive

therapies to diminish viral protein levels and enhance

immunological recovery, hence improving the results of antiviral

treatments (184). Immunosenescence results in diminished

antibody responses to inactivated influenza vaccine (IIV) in

elderly persons. To resolve this, adjuvants such as MF59, an oil-

in-water emulsion, have been included to improve vaccine efficacy.

Since 1997, MF59-adjuvanted IIV3 (FLUAD) has been authorized

for older patients in Europe and exhibits superior immunogenicity
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compared to nonadjuvanted IIV, underscoring its significance in

enhancing vaccine responses in the elderly (185).
Conclusion

The Middle East Respiratory Syndrome Coronavirus (MERS-

CoV) remains a significant global health threat. This review

emphasized critical biomarkers linked to MERS-CoV infection.

These biomarkers could improve clinical diagnostics, therapeutic

interventions and vaccine development for MERS-CoV. The

benefits of using host-derived adjuvants in vaccine development

were also highlighted, focusing on their safety and effectiveness in

enhancing immune responses. Disease progression of MERS-CoV

can be estimated by assessing the levels of certain molecules,

including CXCL10/IP10, CXCL8/IL-8, CCL5/RANTES, IL-6, and

the complement proteins Ca3 and Ca5. However, further studies

must be conducted to measure the level of cytokines and

chemokines at different time points during the infection. Despite

investigations into several therapeutic agents, such as interferons,
TABLE 4 Human derived adjuvants used in clinical and pre-clinical studies.

Adjuvant Vaccine Viral Target Study Stage Reference

ASO4 (Aluminium salt and MPL) Cervarix HPV types 16 and 18
Phase

III clinical trials
(152, 186)

ASO4C (Aluminium phosphate
and MPL)

Fendrix HBV Complete (154)

ISCOMs Influenza vaccine Influenza virus Pre-clinical (187, 188)

ISCOMs HSV vaccine HSV Pre-clinical (189)

ISCOMs RSV vaccine RSV Pre-clinical (148, 190)

ISCOMs Hepatitis B vaccine HBV Pre-clinical (191)

IL-12 HIV Mag DNA vaccine HIV
Phase

I clinical trials
(166)

IL-15 DNA vaccine HIV Phase I clinical trials (166)

Exosomes Gp120-Texo/Gag-Texo HIV Preclinical (177)

Exosomes Hepatitis B vaccine HBV Preclinical (177)

Exosomes influenza vaccine Influenza virus Preclinical (177, 192)

TLR7 Agonist (Imiquimod) influenza vaccine Influenza virus Phase I clinical trials (179)

TLR7 Agonist (Imiquimod) HSV vaccine HSV Preclinical (180)

GM-CSF
DNA vaccine against HIV-

1 Gag
HIV Preclinical (193)

GM-CSF Influenza vaccine Influenza virus Preclinical (169–171)

TLR9 agonist CpG 7909 Engerix-B Vaccine HBV Phase I/II clinical trials (181, 183)

TLR9 agonist CpG 7909
HEPLISAV™ hepatitis

B vaccine
HBV Phase III clinical trials (182)

TLR9 agonist CpG 7909 HIV vaccine HIV Complete (182, 183)

Dendritic cells HIV Vaccine HIV Phase II clinical trials (156)

Monoclonal antibodies HBV Vaccine HBV Phase I clinical trials (184)

MF59 FLUAD Influenza virus Clinical (185)
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their efficacy has proven inadequate. In vivo studies, various human

monoclonal antibodies showed substantial benefits in fighting

MERS-CoV infection. The antibodies tested include hMS-1,

4C2h, 3B11-N, NbMS10-Fc, HR2P-M2, SAB-301, M336, LCA60,

REGN3051, REGN3048, MCA1, MERS-4, MERS-27, MERS-GD27,

and MERS-GD33. This highlights the urgent need for ongoing

clinical trials to discover more effective treatment options.

Additionally, exploring vaccine adjuvants is crucial for advancing

immunization strategies against MERS-CoV. MERS infections may

be prevented by designing a vaccine containing human-derived

molecules that includes one or more adjuvants, such as HBD-2,

CD40L and LL-37. The potential of host-derived adjuvants,

particularly cytokines and chemokines, offers a promising

direction for enhancing vaccine effectiveness. These natural

signaling molecules not only improve the recruitment of antigen-

presenting cells (APCs) to vaccination sites but also promote robust

activation and differentiation of T cells. By harnessing the body’s

own immune mediators, adaptive immune responses can be

optimized while minimizing the adverse effects commonly

associated with synthetic adjuvants.

Evidence from both murine and human studies supports the use

of various cytokines, including interleukins and interferons, as

effective adjuvants that enhance antigen-specific immunity across

diverse vaccine platforms, including protein subunit, DNA, and

viral vector vaccines. Host-derived adjuvants such as CCL28,
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CCL27, RANTES, TCA3, and GM-CSF have shown significant

improvements in immune responses, highlighting their potential

to bolster both systemic and mucosal immunity. This underscores

the importance of host-derived adjuvants in vaccine development

and their advantages over traditional synthetic options. In addition,

while these adjuvants offer numerous advantages, including

improved compatibility, precise immune activation, and the

ability to mimic natural immune responses, the study emphasizes

that diagnostic biomarker molecules may not be suitable as

adjuvants due to their proinflammatory activity during MERS-

CoV infection.

As research progresses, the integration of host-derived

adjuvants into vaccine formulations could lead to safer and more

effective immunization strategies, ultimately enhancing protection

against infectious diseases. Future studies should prioritize

optimizing the delivery and combination of these adjuvants to

maximize their immunological benefits, paving the way for

innovative vaccine development.
Future perspectives

A structured framework has been implemented to categorize

biomarkers by molecular type, function, and supporting evidence

(Table 5), providing a clear hierarchy for MERS-CoV therapeutic
TABLE 5 Host-derived adjuvants for vaccine development.

Category Molecule Function Rationale as a Target
Available/In-
Development

Products

Level
of evidence

Ref

Chemokines

CXCL10/IP-10
Angiogenic chemoattractant,
enhances immune recruitment

Adjuvant: Highly expressed in
response to viral infections;
potential for enhancing
vaccine efficacy

Not specific to MERS;
tested in other
viral models

Strong (136, 139)

CX3CL1
Immune function, enhances
leukocyte adhesion

Therapy: Multifunctional role
in immunity and homeostasis

Not known for
MERS-CoV

Moderate (136, 139)

CCL28
Mucosal immunity,
T-cell recruitment

Adjuvant: Potential role in
enhancing mucosal
vaccine responses

Some experimental
studies in flu vaccines

Moderate (140, 141)

CCL2/MCP-1
Regulating
monocyte infiltration.

Diagnosis: Linked to severe
disease; blockade could
mitigate inflammation

Some experimental
studies in renal disease

Moderate (194)

CXCL8/IL-8
Involved in
neutrophil recruitment

Diagnosis: Linked to severe
disease; blockade could
mitigate inflammation

Anti- CXCL8
(preclinical data in
viral infections)

Moderate (33)

CCL5/RANTES
Involved in monocyte and
T-cell recruitment

Diagnosis: Linked to severe
disease; blockade could
mitigate inflammation

Met-RANTES
(Have been tested in
vivo against RSV)

Moderate (38)

CCL3
Involved in monocyte and
T-cell recruitment

Adjuvant: Improved systemic
and mucosal immunity

Some preclinical data in
viral infections
and cancer

Moderate (136, 139)

CCL7
Chemoattractant for
leukocytes, and activated
T lymphocytes

Adjuvant: Improved systemic
and mucosal immunity

Some preclinical used
in cancer

Moderate (139)

(Continued)
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development. Molecules are classified into diagnostic, therapeutic,

and immunomodulatory roles, while host-derived adjuvants are

grouped based on functional properties such as chemokines

and cytokines.

Host-derived adjuvants is an area with much potential impact on

vaccine development. The identified high-priority therapeutic targets

including CXCL10/IP10 and IL-6 warrant monoclonal antibody

development and clinical trials to reduce immunopathology and

improve clinical outcomes. Chemokines such as CCL5, CCL27 and

CXCL8 can be used as prognostic biomarkers. High-priority

adjuvants such as CD40L, CXCL1, HBD-2, LL-37 and GM-CSF

have higher criteria as immune adjuvants which can be a precise

implementation of clinical trials. HBD-2 possesses multiple functions

involved in determining innate and adaptive immunity: it has a direct

antimicrobial function and can act against a broad range of pathogens

by disrupting membrane integrity, acts as a chemotactic factor for

neutrophils and T lymphocytes, promotes the maturation of

dendritic cells for enhancing the presentation of antigens,
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modulates signaling pathways and inflammatory response, and also

stimulates the production of pro-inflammatory cytokines for

amplifying immune responses. On the other hand, CD40L

(CD154) is a co-stimulatory protein expressed on activated T cells,

and its interaction with CD40 receptors on antigen-presenting cells

(APCs) stimulates them and increases their ability to present

antigens. This interaction induces B cell proliferation and antibody

production, dendritic cell maturation and secretions of cytokines IL-

12, which is essential for T helper cell differentiation. Taken together,

the unique mechanisms of HBD-2 and CD40L make them useful and

excellent candidates as adjuvants in the design of safer and more

effective MERS-CoV vaccine. Future studies should focus on clinical

trials with adjuvants of human origin, and exploration of new

biomarkers of disease progression that may help to elucidate the

precise mechanisms of MERS-CoV immunity which can inform the

rational development of vaccines utilizing human-derived adjuvants.

These studies should focus on their ability to enhance both systemic

and mucosal immunity.
TABLE 5 Continued

Category Molecule Function Rationale as a Target
Available/In-
Development

Products

Level
of evidence

Ref

CCL27
Mucosal immunity,
T-cell recruitment

Adjuvant: Improved systemic
and mucosal immunity

preclinical data in
SARS-CoV-2

Moderate (140–143)

CCL19 Involved in T cell recruitment
Adjuvant: Potent inducer of T
cell proliferation

Some preclinical data in
viral infections
and cancer

Moderate (136, 139)

CCL20
Attraction of immune cells
including DC, T and
B-lymphocytes

Adjuvant: Improved systemic
and mucosal immunity

Some preclinical data in
viral infections

Moderate (195)

CCL21 Involved in T cell recruitment
Adjuvant: Potent inducer of T
cell proliferation

Some preclinical data in
viral infections
and cancer

Moderate (196)

XCL1 Attracting T cell and NK cell

Adjuvant: Enhanced effects of
CTL and NK cell activation
and increased production of
IL-2 and INF-g

Some experimental
studies in flu vaccines

Moderate (136, 139)

CXCL12

Migration and activation of
hematopoietic progenitor cells,
endothelial cells,
and leukocytes

Adjuvant: Improved systemic
and mucosal immunity

preclinical adjuvants
used in cancer vaccines

Moderate (197)

Cytokines

GM-CSF
Pro-inflammatory, enhances
antigen presentation

Adjuvant: Enhances vaccine-
induced immune responses

GM-CSF adjuvants used
in cancer vaccines

Moderate (168)

IL-6 Pro-inflammatory cytokine
Diagnosis: Linked to severe
disease; blockade could
mitigate inflammation

Tocilizumab (approved
for
inflammatory diseases)

Strong (60, 61)

Defensins Human b-defensin 2
Antimicrobial,
immune modulation

Adjuvant: Enhances vaccine
responses, antiviral properties

Some preclinical data in
viral infections

Strong (122)

Co-
stimulatory
Molecules

CD40L
Enhances antigen-presenting
cell activation

Adjuvant: Improves adaptive
immune responses

CD40 agonists in
cancer immunotherapy

Strong (130)

Human
antimicrobial

LL-37
Modulate the activities of
various immune cells, including
dendritic cells

Adjuvant: Induces mucosal
and systemic
immune responses.

preclinical data in
MERS-CoV infections

Moderate (135)
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