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Sepsis is often accompanied by liver injury and is associated with an increase in

the number of circulating and hepatic neutrophils. In sepsis-associated liver

injury, neutrophils exhibit phenotypic heterogeneity and perform both pro- and

anti-inflammatory functions. Moreover, neutrophil dysfunction and neutrophil-

associated immunosuppression are also involved in the pathogenesis of sepsis.

Given the complex functionality of this cell type, the aim of this review was to

describe the possible mechanistic role of neutrophils in sepsis-associated liver

injury, with a brief introduction to neutrophil recruitment and subsequent

discussion of the potential contributions of neutrophils to different subtypes of

sepsis-associated liver injury.
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1 Introduction

Sepsis is the main cause of death in intensive care units (ICU). It is accompanied by

multi-organ dysfunction, with sepsis-associated liver injury occurring in 34–46% of

patients with sepsis (1). Sepsis-associated liver injury (SALI) can generally be classified

as either hypoxic hepatitis, cholestatic, hepatocellular, or severe cholangitis (2, 3), although

the precise pathogenesis remains to be elucidated. Neutrophils are first-responder cells

recruited to protect host organisms from infection or sterile tissue injury, and their

accumulation has been observed in the livers of model animals with sepsis (4).

Neutrophils clear pathogens through a variety of processes, including phagocytosis,

degranulation, reactive oxygen species (ROS) production, and neutrophil extracellular

traps (NETs), which consist of nuclear DNA, histones, and proteases. However, there is

evidence that neutrophils are an independent predictor of SALI (5), and excessive

accumulation or dysfunction of neutrophils may induce SALI (4). Therefore, the role of

neutrophils is a double-edged sword. This mini-review aimed to discuss the role of

circulating neutrophils as a component of innate immunity in sepsis, with a focus on

possible mechanisms through which neutrophils induce liver injury in patients with

the disease.
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2 Recruitment of neutrophils in sepsis

2.1 Sepsis-induced release of large
numbers of neutrophils into the circulation

In infectious states, cytokines such as granulocyte colony-

stimulating factor (G-CSF) and granulocyte-macrophage colony-

stimulating factor are released and subsequently activate multiple

transcriptional mechanisms that promote granulopoiesis. Ioannou

et al. discovered that G-CSF exposure shortens the lifespan of mature

neutrophils, causing a disproportionate shift in neutrophil

populations toward an immature phenotype in septic patient

plasma; these changes primarily occur in the late granulocyte or

maturation phase, with potential enhancement by extracellular

histones (6). The same group also reported high G-CSF levels were

associated with a poor prognosis, whereas the onset of sepsis was

delayed when mice were pre-treated with G-CSF 24 hours before

infection. In addition, G-CSF promotes neutrophil egress from bone

marrow, primarily by promoting the activation of the C-X-C motif

chemokine receptor (CXCR) 4/CXCR2 axis, skewing the balance

towards CXCR2 (7, 8). Given the increased proportion of immature

neutrophils in the general circulation, their cell counts could be useful

biomarkers of sepsis, helping rule in and rule out the possibility of the

disease with a certain specificity (9). One study demonstrated a

differential enrichment of neutrophil subsets in patients with sepsis

(10). Using flow cytometry, they roughly grouped neutrophil subsets

into mature, immature, and others based on the expression of cluster

of differentiation 10 (CD10). They further identified that

CD10−CD177+ immature neutrophil subset showed reduced of

oxidative burst capabilities as well as phagocytosis, and CD10+

mature subset with high level of programmed death ligand 1 (PD-

L1) exhibited inhibition of T-cell proliferation. Meghraoui et al.

reported that CD10- CD64+CD16low/- CD123+ neutrophils and

CD10-CD64+PD-L1+neutrophils could facilitate the early diagnosis

of sepsis (11). Moreover, Chen et al. discovered that

Ly6G+Lta4h+Sort1+ neutrophil (Neu-3) levels are closely correlated

with the occurrence of SALI in a mouse model (12). In recent years,

research methods such as single-cell RNA sequencing (scRNA-seq)

transcriptomics and proteomics have been used to analyze neutrophil

heterogeneity, enriching our understanding of these cells and

facilitating the exploration of their unique characteristics in sepsis.
2.2 Neutrophil migration in circulation

The ability of neutrophils to combat infection is dependent on

their ability to first undergo migration to the infectious site. The

phases of migration include release from the bone marrow, migration

and rolling, adherence, and transmigration (13). Neutrophil

migration is influenced by the concentration gradient of

chemoattractant signals, and the cells respond to these signals

hierarchically, mainly through the activation of G-protein-coupled

receptors (GPCRs) (14). However, neutrophil chemotaxis becomes

impaired and migration may even be reversed in sepsis (15). Ciupe

et al. utilized mathematical models to demonstrate that the tightly

regulated migratory behavior of neutrophils toward an infectious site
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can be altered with different concentrations of lipopolysaccharide

(LPS) (16). More specifically, neutrophils treated with ultra-low doses

of LPS or those exposed to LPS for extended periods might lose their

ability to move up the chemotactic gradient, whereas high-dose LPS

treatment enhanced their directional migration. Bao et al. reported

that priming of neutrophils with LPS somewhat prevented the onset

and progression of LPS-induced sepsis in a murine model (17).

Impaired neutrophil chemotaxis is also associated with the

internalization or desensitization of GPCRs (18). In a clinical study

investigating neutrophil surface receptors, Seree-Aphinan et al. found

that only the levels of CXCR2 correlated with sepsis, that a decrease in

CXCR2 expression occurred in parallel with the peak of infectious

activity and that this change could be used to differentiate sepsis from

systemic inflammatory responses (19). In addition to neutrophil

surface receptors, a large proportion of immotile neutrophils and

high neutrophil mobility could each serve as an independent

predictor of sepsis in patients with cirrhosis (20).
2.3 Neutrophil recruitment to the liver

The mechanisms underlying neutrophil recruitment to liver

sinusoids differ from the classical recruitment cascade and appear

independent of processes involving integrins and rolling, which

have been extensively reviewed elsewhere (21). Neutrophils with

high CXCR2 expression levels are recruited to the liver and guided

along the concentration gradient of chemoattractant signals later in

sepsis. In cases of endothelial barrier damage, immature neutrophils

with low CXCR2 expression move to the liver for disposal through

diapedesis (22). However, in comparison to septic mice who are fed

high-fat and normal diets, neutrophil accumulation in the liver was

shown to be unaffected by CXCR2, and obese mice exhibited a

higher survival rate (23). Infections caused by different pathogens

may induce differential neutrophil recruitment to the liver (24). For

example, formyl peptide receptor signaling may act as an initial

chemotactic signal during Listeria monocytogenes infection (25). In

a septic model involving Staphylococcus aureus infection, heparan

sulfate (HS) binding proteins were shown to be significantly

enriched on the surface of the hepatic vasculature and were

involved in modulating neutrophil recruitment (26). Reducing

endothelial HS sulfation can selectively attenuate hepatic

neutrophil infiltration and tissue damage. Pioneering neutrophils

in the liver lead to swarming behavior via self-amplifying

chemotactic signals, resulting in tissue damage (27, 28), with

leukotriene B4 (LTB4) playing an important role in this process.

Yu et al. demonstrated, in a cecal ligation and puncture (CLP)-

induced murine model, that SALI and neutrophil infiltration could

be ameliorated by inhibiting 5-lipoxygenase/LTB4 through caffeic

acid administration (29). Neutrophil transmigration to the liver

parenchyma occurs more rapidly compared to the migration rates

toward other organs due to discontinuities in the hepatic sinusoidal

capillaries (30), and neutrophil recruitment to the liver sinusoids is

dependent on organ-specific adhesion mechanisms. Neutrophils

adhere to the sinusoidal endothelium in the liver predominantly

through interactions between a cluster of differentiation 44 (CD44)

and hyaluronan (HA) as well as between dipeptidyl peptidase 1
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(DPEP-1) and its ligands (31). Notably, the CD44–HA interaction

is weak (32), although it is enhanced by the modification of heavy

chains during sepsis, with the levels of heavy chain Itih3 in hepatic

tissue samples increasing significantly (33). Furthermore, toll-like

receptor 4 (TLR4) signaling affects serum-derived HA-associated

protein, promoting the direct adherence of neutrophils to the

sinusoidal endothelium of the liver partially through HA–CD44

interactions (34). McDonald et al. discovered that blocking HA–

CD44 interactions using an anti-CD44 antibody significantly

ameliorated LPS-induced hepatic injury (32). In addition,

neutrophils promote their own extravasation through the

endothelium into inflamed tissue by expressing macrophage-1

antigen (MAC-1) and very late antigen 4, which binds to

intercellular adhesion molecule 1 (ICAM-1) and vascular cell

adhesion molecule 1, respectively, on hepatic sinusoidal

endothelial cells (21). It has been shown that LPS induces

neutrophil priming, as reflected by increased ICAM-1 expression;

this change is associated with enhanced neutrophil infiltration into

the liver and tissue injury (35). Xiao et al. found that reducing

hepatic neutrophil transmigration and hepatocyte injury through

the administration of neutrophil membrane-mimicking

nanodecoys in an endotoxemia mouse model may be linked to

decreased endothelial ICAM-1 expression (36).
3 Effects of neutrophils on the liver
during sepsis

3.1 Protective functions of neutrophils

Neutrophils act as a first line of defense against infections; once

they enter the liver, they initiate various antimicrobial activities by

secreting protein hydrolases and ROS. In the liver, neutrophils have

a weak ability to entrap circulating bacteria; however, this ability is

enhanced by the release of NETs (37). GPCRs modulate ROS levels

to mediate the release of NETs in the early stages of disease (38).

Neutrophils might tune their response according to a microbe’s size,

as large pathogens promote the upregulated expression of

interleukin (IL)-1b and neutrophil recruitment by triggering

extracellular ROS release, while also inducing neutrophils to

selectively release NETs (39, 40). Shao et al. reported that

‘targeted nuclear degranulation’ that a portion of the CD44

expressed on the surface of neutrophils moved to the nucleus

after neutrophil activation was delayed to limit the rapid

formation of NETs in response to strong stimulation in mouse

models (41). Moreover, Oliveira-Costa et al. proposed the “innate

triad” model, which involves interactions between neutrophils,

platelets, and macrophages to enhance pathogen clearance (42).

Neutrophils are also associated with the resolution of liver

inflammation and tissue repair. The restorative effects of

neutrophils have been investigated in a murine model of toxic

liver injury (43). Neutrophils may help induce a phenotypic switch

in macrophages toward a pro-restorative profile through

microRNA-223 or ROS, thereby resolving inflammation (44, 45).

In addition, microRNA-223 is known to regulate neutrophil elastase

(NE) enrichment to protect the liver from LPS-induced injury (46).
Frontiers in Immunology 03
3.2 Neutrophil-driven hyperinflammation in
liver injury

Overexuberant recruitment or the uncontrolled activation of

neutrophils may lead to an overwhelming pro-inflammatory

condition that is associated with multi-organ injury. An abundant

neutrophil population has been observed in mouse livers during

sepsis (30); however, it remains uncertain whether their lifespan in

the liver can be extended or constantly replenished de novo from

bone marrow. In recent years, granulocyte–monocyte progenitors

have been identified to undergo release into the circulatory system

during sepsis, and cell division has been reported in neutrophils (47).

Therefore, further studies are required to investigate whether

numerous neutrophils in the liver partially originate from

peripheral neutrophil proliferation before altering their function.

Several studies have utilized scRNA-seq to analyze the phenotype

and function of hepatic neutrophils in SALI (12, 48). Chen et al.

identified three distinct hepatic neutrophil subsets in septic mouse

models (12) and demonstrated that the proportion of pro-

inflammatory subsets continued to increase in a time-dependent

manner. TLR plays an important role in the activation of neutrophils,

driving a shift toward pro-inflammatory responses. One study also

confirmed that microRNA-let-7b regulates neutrophil function by

inhibiting the TLR4/nuclear factor kappa-B (NF-kB) pathway while

also attenuating hepatic inflammation in septic mice, with the data

showing decreased gene expression of tumor necrosis factor (TNF)-a
and IL-8 in neutrophils (49). He et al. demonstrated that neutrophils

identify pathogen-associated molecular patterns (PAMPs) via TLR2,

which actives NF-kB signaling and the subsequent release of pro-

inflammatory factors (48), and that artesunate treatment could

reverse the increase in the proportion of pro-inflammatory subsets

by inhibiting TLR2 expression while alleviating sepsis-induced liver

injury in mouse models. Moreover, these proinflammatory

neutrophils may be associated with dysregulated cytoplasmic Ca2+

concentrations and enhanced membrane depolarization and

glycolytic metabolism (50, 51).

There is some evidence that the oxidative burst capacity of

neutrophils is altered in SALI. Sustained neutrophil activation

induces oxidative bursts by activating the GPCR/phospholipase C

(PLC)/Ca2+ signaling pathway (14). Wang et al. reported that

increased oxidative stress might result from activation of CXCR2

and its downstream target protein kinase C in neutrophils, with the

process being regulated by CXCL2 on macrophage extracellular

vesicles isolated from mouse (52). ROS activate the formation of

NOD-like receptor 3 (NLRP3) via thioredoxin-interacting protein

activation, subsequently resulting in IL-1b release into the

extracellular space, causing an excessive inflammatory response

(53). Moreover, NLRP3 triggers caspase-1-mediated endothelial

pyroptosis, increasing hepatic vascular permeability and the

likelihood of mortality (54). NETs exert a protective function by

limiting bacterial spread; however, NET production or imbalances

in clearance can also induce thrombosis, disseminated intravascular

coagulation, and tissue damage (55). NET expression in neutrophils

is upregulated in a time-dependent manner in septic liver tissues,

far surpassing the levels in other areas of the microcirculation (56,

57). Hsieh et al. reported that histone H4 might trigger a sustained
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elevation of intracellular Ca2+ levels in human neutrophils, thereby

inducing hydrogen peroxide production and degranulation through

the G protein/phosphoinositide 3-kinase (PI3K) pathway to

promote inflammatory responses (58). Levels of calgranulins

S100A8/S100A9 become elevated in the blood of patients with

sepsis and may be produced from neutrophil movement (59).

Hepatic neutrophils with a hyperactivated phenotype exhibit high

expression levels of S100A8/S100A9 in septic models (12), which

may damage the liver by binding to receptors of advanced glycation

endproducts (RAGE) and subsequently activating NF-kB signaling

to promote TNF-a expression, providing evidence of its role as a

damage-associated molecular pattern (DAMP) (4). Zhang et al.

reported that S100A9 can disrupt mitochondrial respiratory chain

functionality in the hepatic tissues of septic mice (60). S100A9

knockout ameliorated liver injury in these animals by inhibiting

protein kinase B (Akt) and 5′adenosine monophosphate-activated

protein kinase-activated mitochondrial metabolism.
3.3 Neutrophil-associated
immunosuppression in liver injury

Although hyperactivated neutrophil responses lead to SALI,

these cells exhibit impaired antimicrobial functions, and

neutrophil-associated immunosuppression is reduced, implying

an increased susceptibility to secondary infections. In a study

involving septic mice in which neutrophilic gasdermin D

(GSDMD) was specifically knocked out, no significant change in

the degree of neutrophilic NET formation was observed, and this

deletion led to more severe liver damage (61). This suggests that

neutrophil-specific GSDMD may regulate the bactericidal activity

of neutrophils and that impaired regulation is unrelated to NETs.

Taylor et al. demonstrated that neutrophils exhibit substantially

diminished functional capacity, including impairment of oxidative

burst capabilities and phagocytosis in patients with SALI (62). The

energetic state of neutrophils governs their function. In comparison

to patients with sepsis and healthy volunteers, the lactic acid levels

were lower in the septic patients, as evidenced by a study in which

sustained LPS stimulation inhibited neutrophil phagocytosis

through the decreased production of lactates and the inhibition of

glycolysis via the PI3K/Akt/hypoxia-inducible factor (HIF)-1a
pathway (63). A study identified an important role of monocyte

chemotactic protein-induced protein-1 (MCPIP-1) in reducing the

oxidative burst of neutrophils through degradation of cold-

inducible RNA in mice with infectious hepatic disease in which

neutrophilic MCPIP-1 expression becomes elevated (64).

Impaired antibacterial activity in neutrophils can also be

attributed to their hyporesponsiveness to pathogens. Neutrophilic

susceptibility to pathogens is also reduced by high levels of pro-

inflammatory cytokines, soluble receptors, and endotoxins (65). The

sustained inflammatory stimulation may be associated with tolerance

development that affects TLR signaling or the upregulation of

inhibitors of TLR signaling (66). Conversely, however, DAMP

expression levels remain persistently elevated in LPS-challenged

model piglets, which share similar pattern recognition receptors
Frontiers in Immunology 04
(PRRs) on neutrophils as well as microbial-associated molecular

patterns, leading to impaired pathogen recognition (67, 68). Recent

studies have identified a subset of low-density neutrophils (LDNs),

including immature neutrophils and myeloid-derived suppressor

cells with immunosuppressive characteristics, and there is evidence

that some LDNs are degranulated from high-density neutrophils

(HDNs) (69, 70). While these LDNs exhibit limited phagocytic

abilities in a CLP mouse model, they are more actively engaged in

the formation of NETs, which promote naïve CD4+ T cell

differentiation into regulatory T cells (Tregs) while enhancing their

immunosuppressive function (71). Neutrophil-derived

immunosuppressive cells have been reported to undergo expansion

in the liver of septic mice and are associated with T-cell dysfunction

(72). Human neutrophils produce MAC-1 and PD-L1, which exert

immunosuppressive effects that include T-lymphocyte apoptosis and

the inhibition of T-cell activation and proliferation (73, 74). In

addition, neutrophils in patients with sepsis produce large amounts

of immunosuppressive cytokines, such as IL-10 (10).
3.4 The role of neutrophils in the gut–
liver axis

Intestinal dysbiosis and disruption of the intestinal barrier induce

intestinal bacteria and their metabolites translocation that causes the

inflammatory response. Intestinal dysbiosis was associated with

severe liver injury in septic models (75). Generally, intestinal

pathogens and their products can go through the circulation,

portal, and biliary to the liver and are processed by the liver (76). A

review analyzing changes in neutrophil intracellular bacterial

communities at different stages of sepsis found that the alterations

in neutrophil-specific microbiomes were similar to intestinal

microbiome composition (77). Intestinal epithelial cells and

hepatocytes can produce LPS-binding protein, which enhances LPS

transfer, binds to the membrane CD14 on neutrophils, and

consequently promotes the inflammatory response (76). Liu et al.

discovered that gut-derived bacteria and LPS promote the formation

of NETs in the liver via TLR4 in a mice model (78). Recent studies

have discovered that the intestinal microbiome can also regulate

intrahepatic neutrophil infiltration Using in vivo imaging to track

neutrophil movement in mice with Staphylococcus aureus infection,

D-lactate-producing gut microbiota prime hepatic endothelial cells to

upregulate DPEP-1 expression (79). Collectively, these studies suggest

that targeted restoration of axis equilibrium to combat gut dysbiosis

in SALI may prevent excessive neutrophil recruitment.
4 The role of neutrophils in different
types of SALI

4.1 Neutrophils in sepsis-associated
cholestatic liver injury

Sepsis-associated cholestasis is a clinical phenotype of SALI. A

study that evaluated liver samples from patients with sepsis revealed
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that ductular cholestasis holds diagnostic value for identifying the

disease, with a sensitivity of 68% and a specificity of 45% (3).

Furthermore, hepatic neutrophilic infiltration has been observed,

although there was no significant difference in the rates of portal

and lobular neutrophilic inflammation in patients with and without

sepsis (3). Accumulation of neutrophils around the bile ducts has

been observed in an acute biliary epithelial cell mouse model (80).

However, impaired LPS excretion by hepatocytes has been observed

in bile salt efflux pump knockout mice; in these animals, LPS was

not excreted through bile acids and was a direct cause of further

infiltration of neutrophils and inflammatory mediators (81). Sepsis-

associated cholestasis may be associated with impaired bile

excretion rather than an increase in bile synthesis (82). Wu et al.

reported a reduction in the direct IL-1b/IL-18-mediated

neutrophilic damage to transporter proteins, which resulted in the

restoration of tubular transporter protein and sepsis-induced

hyper-bileacidaemia in NLPR3 knockout mice (83). In addition,

septic bile duct-associated neutrophil subsets exist in an exhausted

state, and the biological function is characterized by reduced

neutrophil migration and phagocytosis, making it difficult to

control infections and exacerbating septic shock development

(84). Finally, a recent study demonstrated that tuft cells are

negatively associated with biliary inflammation and microbiome-

dependent neutrophilic infiltration, and biliary inflammation

increased in tuft cell-deficient mice of cholestasis (85).
4.2 Neutrophils in sepsis-associated
hypoxic liver injury

In sepsis, the liver increases its capacity for oxygen extraction;

however, decreased hepatic perfusion and impaired oxygen

utilization can still result in hepatocyte death (86). In addition,

increased oxidative stress in septic livers is somewhat indicative of

oxygen depletion, which ultimately leads to hypoxic liver injury.

Neutrophils can work actively under hypoxic conditions and can

sense oxygen tension; a series of responses triggered by stimulation
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is succeeded by increased degranulation, reduced ROS production,

and prolonged survival (87, 88). However, continuous LPS

stimulation has been shown to reduce glycolysis in neutrophils

through the HIF-a pathway, thereby affecting their phagocytic and

migratory functions (63). Recruited neutrophils accumulate in the

sinusoids, blocking the lumen and exacerbating ischemia and

hypoxia (89). Boufenzer reported that hypoxic conditions activate

triggering receptors expressed on myeloid cell-1 (TREM-1), which

synergizes with TLR4 to induce intracellular calcium currents and

ROS production, thereby enhancing NET release by human and

murine neutrophils (90). NETs impair hepatic microcirculation and

further exacerbate hypoxia (91); in turn, ischemia and hypoxia lead

to neutrophil recruitment to the liver in large numbers. The

detrimental cycle of increased neutrophil accumulation and

hypoxia can continue and accelerate liver injury progression.
5 Discussion

Neutrophils can be regarded as either a blessing or a curse,

depending on their differential functionality in SALI. Proteases,

ROS, and NETs released from neutrophils are involved in

pathogens clearance and liver injury resolution, but they also act

as pro-inflammatory mediators leading to liver injury. This may be

influenced by time, concentration, and environment. This dual role

of neutrophils deepens the difficulty of exploring their therapeutic

role in SALI. By studying neutrophil heterogeneity, we have gained

insight into the functions of different neutrophil subsets (Table 1),

and helped develop targeted therapies against neutrophils and their

associated components. Animal studies found that pro-

inflammatory neutrophils are progressively increased during the

progression of SALI, but the mechanism remains unclear. Reversing

the proportion of pro-inflammatory neutrophils may be one of the

future research directions.

Neutrophils are first-responder cells recruited to infection. In

recent years, progress has been made in the use of neutrophils as

carriers in the development of drugs to treat SALI; however, because
TABLE 1 The characteristics of neutrophil subsets in sepsis.

Species Subset Phenotype Function/clinical relevance Reference

Human Mature neutrophil CD10+PD-L1+ facilitate diagnosis of sepsis (10)

Human Immature neutrophil CD10−CD177+ lower level of ROS and phagocytic capacity (10)

CD10-

CD64+CD16low/- CD123+
facilitate the early diagnosis of sepsis (11)

Human/
Mouse

Inhibitory neutrophil PD-L1+ inhibition of T-cell activation and proliferation (10, 11, 74)

Mouse Low-
Density Neutrophil

limited phagocytic abilities; promote Tregs and enhance their
immunosuppressive function

(71)

Mouse Neu-3 Ly6G+Lta4h+Sort1+ closely correlated with the occurrence of SALI (12)
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of the difficulty of obtaining liver specimens from septic patients,

this research is still in the laboratory stage. Developing animal

models that more simulate patients with SALI could help study

potential treatments of SALI.
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