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Introduction

Among the many clinical experiments, human beings subjected to spaceflight travel

stand apart because of their complexity owing to their microgravity environment. Before

considering any pathological implications due to changes in the gravitational force, the

fundamental physiological processes aided by Earth’s gravity are disrupted and need to be

evaluated. Therefore, maintaining physiological stability despite altered gravity is the

utmost priority, followed by addressing pathological implications and their management.

Spaceflight, characterized bymicrogravity, circadianmisalignment, isolation, confinement,

stress, a semi-closed food system, and increased exposure to space radiation, has been shown to

have detrimental effects on the human immune system (1, 2). The immune system

dysregulation reported in astronauts includes altered leukocyte distribution, changes in

plasma cytokines, reduced T-cell function, and reactivation of latent herpesviruses.

Persistent low-grade systemic inflammation characterized by increased TNF-a and IL-1RA

levels, which can lead to various diseases, has been documented (3). The clinical implications of

such immune dysfunction include rashes, hypersensitivity, atopic dermatitis, and accelerated

physiological aging, as evidenced by muscle wasting and loss of bone density (1, 2).
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Ongoing research has focused on identifying safe and easily

evaluable in-flight biomarkers for monitoring the immune system

of astronauts. The neutrophil-to-lymphocyte ratio (NLR) has been

identified as a potential biomarker candidate to evaluate immune

status (1, 3) because (i) leukocyte counts have been reported to be

altered during spaceflight, and (ii) on Earth, elevated NLR is an

extremely useful biomarker of chronic persistent subclinical

inflammation, which can be a major pre-existing factor for

disease development. Furthermore, an elevated NLR has been

shown to predict poor prognosis in cancers and chronic

conditions, such as coronary heart disease, stroke, diabetes,

obesity, psychiatric diagnosis, anemia, and stress. A gradual

increase in NLR, apart from having a positive correlation with

age, also serves as a biomarker for predicting the overall mortality of

a specific population (4).
Significance of NLR

Recent reports (1, 3) have documented a gradual increase in

NLR in astronauts, which has been suggested to be an indicator of

hastened inflammation. Moreover, compared to other biomarkers

of inflammation and immune status, NLR is easy to measure and

has been proven to be altered under simulated spaceflight

conditions on Earth, as well as in spaceflight experiments,

suggesting that it is a critical biomarker for monitoring the

immune system and health of astronauts (3).

NLR can be considered a critical biomarker because it acts as a

bridge between innate and adaptive immune systems (5). NLR in

the peripheral blood serves as a biomarker linking two key

components of the immune system: innate immunity mediated by

neutrophils and adaptive immunity mediated by lymphocytes.

Neutrophils constitute the frontline defense of the host immune

system against pathogens via mechanisms such as chemotaxis,

phagocytosis, reactive oxygen species (ROS) generation, granular

protein release, and cytokine production. Beyond these functions,

neutrophils considerably influence adaptive immunity and are

pivotal effector cells in systemic inflammatory response

syndromes. As regulators of innate immunity, neutrophils recruit,

activate, and modulate other immune cells by secreting diverse pro-

inflammatory and immunomodulatory cytokines and chemokines,

thereby enhancing the activity and recruitment of immune cells

such as dendritic, B, natural killer (NK), CD4+, CD8+, gd T, and

mesenchymal stem cells (5).

However, although NLR has been identified as a critical

biomarker for monitoring the immune system and prognosis of

diseases both in routine clinical settings and in astronauts, safe,

easily administrable dietary or nutritional interventions are still

needed to beneficially modulate NLR for maintaining health in

astronauts. Even in a head-down tilt bed rest experiment,

considered as the best and most integrated Earth-based analog of

microgravity in spaceflight, NLR was identified as a critical

biomarker for astronauts and was found to increase in the study

participants. However, dietary supplementation, which was part of

the experiment, did not produce any changes in NLR values (3).
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Interventions to modulate NLR

Some interventions have decreased NLR in routine clinical

settings. One such example is Vitamin D, wherein high-dose

vitamin D supplementation reduced NLR distribution in a clinical

study in adolescent girls (6). Vitamin D supplementation has been

suggested as a means to beneficially modulate NLR in astronauts,

and despite daily vitamin D supplementation, crew members at the

Russian space station Mir had serum 25(OH)-D3 concentrations

that were 32%–36% lower during and after long-duration (3- to 4-

mo) missions than before the missions (7). In another study, an oral

food supplement containing Echinacea angustifolia, rosehip,

propolis, royal jelly, and zinc was shown to decrease NLR

inpatients with COVID (8). Other nutritional supplements

reported to influence the NLR include omega-3 fatty acids (9)

and symbiotic supplements (10). However, the search continues for

a dietary intervention that is safe, easy to administer, and can work

on immunity, as well as other aspects contributing to optimal

health, including the gut microbiome.
Gut microbiome and NLR

Regarding the relevance of the gut microbiome to NLR and

health, it is well established that 70% of immune cells in the body

are found in the gastrointestinal (GI) tract, where their development

and maturation are influenced by their interactions with the gut

microbiota. When gut dysbiosis occurs, a clinically “maladaptive”

immune response can arise (11). Changes in NLR have already been

found to be directly correlated with gut dysbiosis, and gut

microbiome abundance has been reported to differ considerably

between patients with normal and increased NLR (12). Thus, NLR

can be considered a critical indicator, along with the correlation of

the gut microbiome, for monitoring health status and disease

prognosis (12–14). During spaceflight and in the gut microbiome,

notable changes in 44 microbiome species, including relative

reductions in bile acid- and butyrate-metabolizing bacteria such

as Extibacter muris and Dysosmobacter welbionis, have been

reported (15). Increases in the genera Clostridium, Romboutsia,

Ruminiclostridium, and Shuttleworthia, along with a decrease in

Hungatella and significant enrichment of Dorea sp. and

Lactobacillus murinus, have also been reported (16).
Beta-glucans beneficially
modulate NLR

Given the above background of several known and unknown

factors that affect the health of astronauts and the critical nature of

maintaining NLR and gut homeostasis, a major challenge is the

result of our work on the safe and beneficial modulation of NLR in

preclinical and clinical studies using the biological response

modifier (BRM) Beta-1,3-1,6-glucans produced as an

exopolysaccharide by the AFO-202 and N-163 strains of a black

polyextremotolerant yeast, Aureobasidium pullulans.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1538147
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ikewaki et al. 10.3389/fimmu.2025.1538147
Beta-Glucans are naturally occurring polysaccharides found in the

cell walls of yeast, fungi (including mushrooms), certain bacteria,

seaweed, and cereals such as oats and barley. These bioactive

compounds possess multiple functional properties including

hypocholesterolemic, hypoglycemic, immunomodulatory, antitumor,

antioxidant, and anti-inflammatory activities. The structural and

functional properties of beta-glucans vary depending on their

sources. Among the various types, yeast-derived beta-1,3-1,6-glucans

have demonstrated superior BRM effects compared to those derived

from cereal sources, such as oats or barley. Clinical applications of

beta-glucans have gained prominence worldwide, with Japan being the

leader in their therapeutic utilization (17). Since 1983, beta-glucans

derived from Lentinula edodes (lentinan) and Coriolus versicolor

(polysaccharide-K) have been approved as pharmaceutical agents. As

of 2019, more than 177 clinical trials have been registered in the United

States, evaluating the potential of beta-glucans in cancer therapy,

cholesterol regulation, and immune modulation (18). The

immunomodulatory properties of beta-glucans stem from their

ability to interact with a range of immune receptors, including

Dectin-1, complement receptor 3, lactosylceramide, natural

cytotoxicity receptor p30, and scavenger receptors. These receptors

are expressed on key immune cells such as macrophages, neutrophils,

and NK cells, enabling beta-glucans to modulate immune responses

effectively. Owing to their capacity to either enhance or regulate

immune functions, beta-glucans have been extensively explored as

potential therapeutic adjuvants, particularly in immunotherapy.

Extensive research has established that beta-glucans produced as

exopolysaccharides by two novel strains of black yeast (A. pullulans),

AFO-202 and N-163, exhibit unique immunomodulatory and

metabolic-immune-enhancing benefits (17).

AFO-202 beta-glucan has been shown to reduce NLR in

Sprague–Dawley rats (19). In a 30-day study involving patients

with COVID-19, a 70% reduction from baseline was observed in

the group administered AFO-202 beta-glucan. In the group receiving

a combination of AFO-202 and N-163 beta-glucan, a 66% reduction

was observed from baseline (20). Apart from NLR reduction, a

decrease in other inflammatory markers, such as IL-6 and D-

dimer, and an increase in the lymphocyte-to-C-reactive and

leukocyte-to-C-reactive protein ratios were observed (20). In

patients with pancreatic cancer undergoing surgery, perioperative

administration of AFO-202 led to a 40% reduction in NLR (21). The

clinical outcomes were decreased serum amyloid A, sCD44, and

CA19-9 levels and increased mean survival time (21). AFO-202 beta-

glucan has been shown to have anti-infective properties against

Leishmania amazonensis and malaria through an increase in NK

cell activity and cellular immunity (22) and has also shown potential

as a vaccine adjuvant, enhancing the immune response to avian

influenza A H5N1 and H5N2 vaccines (23). N-163 produced beta-

glucan has been reported to attenuate lipotoxicity, as evidenced by a

decrease in non-esterified fatty acids (24), with anti-inflammatory

and anti-fibrotic effects in animal and human clinical studies of

metabolic dysfunction-associated diseases such as nonalcoholic

steatohepatosis (NASH) (25) and Duchenne muscular dystrophy

(DMD) (26, 27).
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In the gut microbiome, AFO-202 beta-glucan in children with

autism spectrum disorder has been shown to decrease the

abundance of harmful Enterobacteriaceae, including Escherichia

coli , Akkermansia muciniphila CAG:154, Blautia spp.,

Coprobacillus sp., and Clostridium bolteae CAG:59, with an

increase in butyrate producers, such as Faecalibacterium

prausnitzii and Roseburia (28). In the NASH model (29), gut

microbial diversity increased greatly in the AFO-202 + N-163

group. In the AFO-202 + N-163 group, the abundance of

Firmicutes decreased, whereas those of Bacteroides and

Lactobacillus increased. In NASH mice fed AFO-202 beta-glucan

alone, there was a decrease in the abundance of Enterobacteriaceae

and other Firmicutes, whereas in the N-163 group, there was a

decrease in the abundance of harmful bacteria, such as Turicibacter

and Bilophila. In the same study, an increase in the abundance of

butyrate precursors and amino acids, such as tryptophan, has also

been reported (29, 30). The administration of N-163 produced beta-

glucan, resulting in an increase in butyrate-producing species, such

as Roseburia and F. prausnitzii, and a decrease in harmful bacteria

associated with inflammation, such as Enterobacteria and Alistipes,

in patients with DMD. In patients with multiple sclerosis, there is an

increase in the abundance of beneficial genera such as

Bifidobacterium, Collinsela, Prevotella, and Lactobacillus, as well

as species such as Prevotella copri, Bifidobacterium longum, F.

prausnitzii, and Siphoviridae, whereas there is a decrease in

inflammation-associated genera such as Blautia, Ruminococcus,

and Dorea (31).
Discussion

These findings on the novel beta-1,3-1,6–glucan-based BRMs

produced from the AFO-202 and N-163 strains of A. pullulans align

with astronaut requirements. As mentioned earlier in this manuscript,

studies have documented increases in the NLR and imbalances in

microbial species during space missions (1, 3, 15, 16), which have been

reported to be beneficial in studies using these beta-glucans (17–31).

The beneficial effects of lowering the NLR are primarily mediated

through the suppression of excessive neutrophil activity and

restoration of balanced lymphocyte function (32). The mechanisms

underlying the improvement in disease outcomes include (1)

Neutrophilia reduction because elevated neutrophil counts, which

are common in chronic inflammatory conditions, are linked to

excessive ROS production, prolonged inflammation, and tissue

damage. Lowering NLR reduces neutrophil-driven inflammation

and oxidative stress. (2) NETosis regulation, where excessive

neutrophil extracellular trap (NET) formation, which is implicated

in microvascular complications in diabetes mellitus, atherosclerosis in

coronary artery disease, and airway damage in chronic obstructive

pulmonary disease (COPD), is attenuated with decreased NLR,

reducing endothelial and tissue injury (32). (3) Decreased pro-

inflammatory cytokine secretion: Decreased neutrophil burden

limits the release of TNF-a, IL-6, and other pro-inflammatory

mediators, thereby curbing chronic systemic inflammation.
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(4) Enhanced lymphocyte recruitment to inflamed sites: A balanced

NLR ensures optimal lymphocyte trafficking, aiding in effective

immune surveillance and resolution of inflammation (32). (5) Treg

and Th17 balance restoration: Decreased NLR is associated with

increased regulatory T cell (Treg) activity, which suppresses

excessive inflammation and reduces Th17-driven autoimmunity,

contributing to chronic inflammatory pathology. (6) Improved

adaptive immune response: Lymphocytopenia, which is linked to

immune dysfunction, is mitigated by lowering NLR, enhancing

antigen-specific immune responses, and reducing infection

susceptibility. Thus, lowering NLR contributes to immune

homeostasis by regulating neutrophil overactivation and enhancing

lymphocyte function (32). This balance is critical for mitigating

chronic inflammation, improving disease prognosis, and reducing

complications of various inflammatory conditions. Thus, A. pullulans

AFO-202 and N-163 produce beta-glucans, with a long safety track

record as a food supplement, which are water soluble and produced

with any ingredient in the commonly notified list of allergens and are

promising candidates for consideration in nutrition studies for

astronauts and in space flight experiments because of their

beneficial NLR-modulating effects in a safe manner (17, 19–31).

Figure 1 summarizes the potential of NLR-modifying beta-glucans

in astronaut diets during space missions. It also illustrates the possible
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mechanisms through which NLR modulation occurs, highlighting the

effects of these beta-glucans on the immune system and

gut microbiome.

These novel NLR-modifying beta-glucans’ ability to exert

beneficial immune modulation, as observed in studies involving

healthy human volunteers (33), further supports their potential,

after necessary validation for inclusion in astronaut diets as a

routine intervention. Despite experiencing physiological stressors,

such as microgravity, circadian misalignment, and space radiation

exposure, astronauts differ considerably from patients with chronic

diseases and healthy terrestrial subjects. Unlike individuals with

preexisting inflammatory or metabolic conditions, astronauts are

highly trained and undergo rigorous physical and psychological

preparation, which may influence their immune adaptability and

inflammatory responses. Therefore, although the observed effects of

A. pullulans AFO-202 and N-163 beta-glucans on immune

regulation, particularly in modulating NLR and systemic

inflammation, align with the physiological challenges encountered

during spaceflight, further research is warranted to validate these

findings, specifically in the astronaut population. Controlled studies

of spaceflight-relevant models and actual space missions are

required to establish the extent of their benefits in the unique

physiological environment of space.
FIGURE 1

Overview of the potential role of NLR-modifying beta-glucans in astronaut diets during space missions. The figure illustrates the mechanisms
through which these beta-glucans influence NLR modulation by impacting the immune system and gut microbiome; NLR, neutrophil-to-
lymphocyte ratio; SCFA, short-chain fatty acids; NET, neutrophil extracellular trap.
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