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Introduction: The functional programs of CD4+ T helper (Th) cell clones play a

central role in shaping immune responses to different challenges. While advances

in single-cell RNA sequencing (scRNA-Seq) have significantly improved our

understanding of the diversity of Th cells, the relationship between scRNA-Seq

clusters and the traditionally characterized Th subsets remains ambiguous.

Methods: In this study, we introduce TCR-Track, a method leveraging immune

repertoire data to map phenotypically sorted Th subsets onto scRNA-

Seq profiles.

Results and discussion: This approach accurately positions the Th1, Th1-17,

Th17, Th22, Th2a, Th2, T follicular helper (Tfh), and regulatory T-cell (Treg)

subsets, outperformingmapping based on CITE-Seq. Remarkably, themapping is

tightly focused on specific scRNA-Seq clusters, despite 4-year interval between

subset sorting and the effector CD4+ scRNA-Seq experiment. These findings

highlight the intrinsic program stability of Th clones circulating in peripheral

blood. Repertoire overlap analysis at the scRNA-Seq level confirms that the

circulating Th1, Th2, Th2a, Th17, Th22, and Treg subsets are clonally

independent. However, a significant clonal overlap between the Th1 and

cytotoxic CD4+ T-cell clusters suggests that cytotoxic CD4+ T cells

differentiate from Th1 clones. In addition, this study resolves a longstanding

ambiguity: we demonstrate that, while CCR10+ Th cells align with a specific Th22

scRNA-Seq cluster, CCR10−CCR6+CXCR3−CCR4+ cells, typically classified as

Th17, represent a mixture of bona fide Th17 cells and clonally unrelated CCR10low

Th22 cells. The clear distinction between the Th17 and Th22 subsets should

influence the development of vaccine- and T-cell-based therapies. Furthermore,

we show that severe acute SARS-CoV-2 infection induces systemic type 1
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interferon (IFN) activation of naive Th cells. An increased proportion of effector

IFN-induced Th cells is associated with a moderate course of the disease but

remains low in critical COVID-19 cases. Using integrated scRNA-Seq, TCR-Track,

and CITE-Seq data from 122 donors, we provide a comprehensive Th scRNA-Seq

reference that should facilitate further investigation of Th subsets in fundamental

and clinical studies.
KEYWORDS

helper T cell subsets, scRNA-Seq, scTCR-seq, immune repertoires, T cell memory, Th22,
Th17, cytotoxic CD4+ T cells
Introduction

Clonal populations of CD4+ T helper (Th) cells orchestrate the

course of an immune response via specific interactions with peptide

epitopes presented in complex with major histocompatibility class

II (MHCII) molecules. Their functional and antigen-specific

diversity allows them to guide both classical (i.e., B cells, dendritic

cells, and macrophages) and non-classical (i.e., endothelial cells,

epithelial cells, and granulocytes) antigen-presenting cells to

optimize effector functionality (1–3). Inappropriate Th responses

to certain antigens have been associated with an impaired pathogen

clearance (4–6); inefficient response to vaccination (7); acute and

chronic hypersensitivity, inflammation, and inflammaging (8–11);

autoimmunity (12–15); and cancer (16). Accordingly, when

investigating T-cell responses, it is critical not only to quantify

the magnitude of the antigen-specific T-cell clonal expansion but

also to understand the functional programs and related phenotypes

of the responding and memory Th cells.

Single-cell RNA sequencing (scRNA-Seq) techniques have shed

light on the diversity of Th cell programs (17–20), among which

classical subsets previously described on the basis of the cytokine

release profiles and the surface marker expression patterns have to

find their place. The expression of transcripts encoding characteristic

surface markers is often low in scRNA-Seq datasets, with indirect

correlations between mRNA abundance and protein density (21, 22).

This problem can be overcome to some extent through the

incorporation of protein-level expression data into single-cell

experiments, a task that is essentially implemented in CITE-Seq

technology (cellular indexing of transcriptomes and epitopes by

sequencing), which makes use of barcoded antibodies directed

against markers of interest expressed on the cell surface (23–25).

In this paper, we report on an approach to the mapping and clonal

tracking of sorted lymphocyte subsets within scRNA-Seq data, termed

TCR-Track. This approach makes use of immune repertoires from

sorted lymphocyte subsets, which are then mapped to scRNA-Seq

+TCR-Seq datasets obtained from the same donors, employing natural

barcodes in the form of sequence-defined T-cell receptors (TCRs). We

demonstrate that this method accurately maps phenotypically defined

Th subsets within the scRNA-Seq landscape. We further integrate the
02
scRNA-Seq, TCR-Track, and CITE-Seq outputs of 122 donors to

provide a comprehensive Th scRNA-Seq reference dataset.

TCR-Track also allowed us to trace the positioning of subset-

specific T-cell clones obtained from the deep bulk TCR profiling of

the sorted subsets after a 4-year interval. The latter approach,

complementing concepts that describe the plasticity of tissue-

resident T cells (26, 27), reveals the surprisingly high long-term

program stability of the CD4+ T-cell clones circulating in human

peripheral blood.

In general, based on the integrated reference, we expand upon

previous observations of the clonal independence of the circulating

Th1, Th2, Th2a, Th17, Th22, and regulatory T-cell (Treg) subsets

(28). We also disentangle the interrelations between the subsets

classically sorted as Th17 and Th22 and demonstrate a prominent

clonal overlap between the Th1 and cytotoxic Th subsets,

supporting their common lineage (29, 30).

Finally, we report on an association between severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and

the transient but global type 1 interferon (IFN) activation of naive

CD4+ T cells, as well as a link between an increased proportion of

IFN-induced Th cells and a moderate course of the disease.
Results

TCR-Track

Functional subtypes of human Th cells are classically

distinguished based on the surface markers, such as CD127,

CD25, CCR10, CXCR5, CXCR3, CCR6, CCR4, and CRTh2. In

this study, we conceptualized the annotation of Th cells in the

scRNA-Seq data powered by overlapping the scTCR-Seq repertoires

and the TCR repertoires of Th cell subsets sorted using

fluorescence-activated cell sorting (FACS), TCR-Track. We

hypothesized that, due to the relatively high phenotypic stability

of the Th cell subsets (28), this approach could map the sorted Th

subsets within the scRNA-Seq data (Figure 1).

We exploited the previously obtained TCRa and TCRb repertoires
of the Th1, Th17, Th1-17, Th22, Th2, Th2a, Treg, and T follicular
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helper (Tfh) CD4+ T-cell subsets sorted rigorously from the peripheral

blood of healthy donors (28). Three participants of the latter study were

available for repeated blood donation at the time of the current study.

We performed paired scRNA-Seq and scTCR-Seq profiling from their

sorted effector/memory CD4+ T cells (gated as CD4+, NOT

CCR7+CD45RA+ cells to deplete naive T cells). The obtained

scRNA-Seq data were then integrated with the CD4+ scRNA-Seq

reported in (31) in order to: 1) increase the power of the

downstream analysis such as clustering and uniform manifold

approximation and projection (UMAP) visualization on a larger

number of donors and 2) enable comparison/complementation of

the mapping with the CITE-Seq method employed in the latter work.

This resulted in a reference dataset composed of 147,677 cells

(Figure 2a), without notable donor-specific or study-specific batch

effects (Supplementary Figures S1-S3).

In order to link the scRNA-Seq clusters to the classic Th

phenotypes, the TCRb clonotypes of the sorted Th subsets were

mapped using single-cell T-cell receptors (scTCRs) as natural

barcodes. Remarkably, the T-cell clones from each of the sorted Th

subpopulations formed clearly defined spots on the scRNA-Seq UMAP

(Figures 2b, c). Nearly identical results were obtained for the TCRa
repertoire mapping (Supplementary Figure S1B). The mapping was
Frontiers in Immunology 03
also reproducible across the three donors (Figure 3a; Supplementary

Figure S1C).

This clear positioning of the Th subset clones allowed us to exploit

TCR-Track to build “correspondence between the nomenclatures” of

classic immunology (based on the surface molecules and flow

cytometry; these are the subsets that can be physically sorted and

investigated in vitro) and the scRNA-Seq landscape (based on gene

expression at the RNA level), filling the gaps of potential miscorrelation

between the surface proteins, the FACS sorting sensitivity, and the

mRNA expression levels, as discussed in more detail below.

Mapping of the top 100 and the top 101–500 largest clonotypes

from each Th subset produced similar results, indicating that there is

no prominent dependence of the TCR-Track performance on clonality

(Figures 3b, c). Most of the scRNA-Seq clusters showed low clonality

(32, 33) in the scTCR-Seq data, thus excluding strong clonal-driven

biases in the TCR-Track-based annotation (Figure 4a).

In addition, we annotated the same surface marker-defined Th

subsets within scRNA-Seq using CITE-Seq. To this end, we used the

CITE-Seq data from (31) and performed sequential in silico sorting-

like gating, as shown in Supplementary Figure S4. The CITE-Seq-

based mapping was generally consistent with the TCR-Track data

analysis, but with the latter resulting in much more accurate cluster
FIGURE 1

T-cell receptor (TCR)-based mapping of sorted T helper (Th) cell subsets in the single-cell RNA sequencing (scRNA-Seq) data. The Th cell subsets
were isolated using fluorescence-activated cell sorting (FACS) with the classic surface markers. RNA-based TCRa and TCRb repertoires were
obtained. After 4 years, scRNA-Seq and scTCR-Seq analysis was performed for the same donor CD4+ T cells. Th clones were localized within the
scRNA-Seq landscape using TCRs as natural barcodes. Compact positioning of each Th repertoire localized the corresponding T-cell scRNA-Seq
clusters and revealed the long-term stability of the circulating Th clonal programs.
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annotations (Figures 2b, c; Supplementary Figures S1B–D, S5, S6).

The higher accuracy of the TCR-Track approach was statistically

confirmed (Figure 3d). This suggests that TCR-Track represents a

more reliable method for the mapping of T-cell subsets, with many

additional options provided by the opportunity to track T-cell

clones in time and space and across different methods, employing

TCR as a natural barcode.

Based on the integrated data of the scRNA-Seq, TCR-Track,

and CITE-Seq outputs of the 122 donors, taking into account the

findings and considerations of Yasumizu et al. (18), a

comprehensive peripheral blood Th scRNA-Seq reference map

with 16 major Th clusters was proposed (Figures 2a, 5,

Supplementary Table S1, Supplementary Figure S6).
Correspondence between classic Th
subsets and scRNA-Seq clusters

TCR-Track positioned the TCRb clonotypes of the sorted Treg

(CD25h i g hCD127 l ow ) , Th22 (CXCR5−CCR10+ ) , Th2
Frontiers in Immunology 04
(CCR10−CXCR5−CCR6−CXCR3−CCR4+CRTh2−), and Th2a

(CCR10−CXCR5−CCR6−CXCR3−CCR4+CRTh2+) cells to the

corresponding unique scRNA-Seq clusters, clearly fixing their

localization in the peripheral blood scRNA-Seq landscape (Figure 2).

The sorted Th1 (CCR10−CXCR5−CCR6−CXCR3+CCR4−) cells

mapped well to both the Th1 and Temra (effector memory T cells

re-expressing CD45RA) cytotoxic clusters (34–36) (Figure 2),

coinciding with the plasticity/lineage origin observations, as

discussed below.

The sorted Th17 (CCR10−CXCR5−CCR6+CXCR3−CCR4+)

cells mapped to both the Th17 and Th22 clusters, creating

uncertainty that is successfully disentangled below.

The sorted Th1–17 (CCR10−CXCR5−CCR6+CXCR3+CCR4−)

cells mapped to tight and linked zones within the Th17 and Th1

clusters (Figure 2; Supplementary Figures S1B, C). Of note is that

these zones do not coincide with any of the scRNA-Seq clusters

obtained at any UMAP resolution (Supplementary Figure S7),

which warrants a more in-depth, focused investigation.

The sorted Tfh (CCR10−CXCR5+) subset was found in two

dissimilar scRNA-Seq clusters (designated as Tfh and Th1) that
FIGURE 2

Mapping of the classic T helper (Th) cell subsets with single-cell RNA sequencing (scRNA-Seq). (a) Uniform manifold approximation and projection
(UMAP) visualization of the reference scRNA-Seq dataset of peripheral blood Th cells. Dataset built via Seurat integration of publicly available data
and our scRNA-Seq data. The proposed classification is based on previous knowledge and the findings of the current work. (b) Dot plots
summarizing the positioning of the sorted (TCR-Track) and in silico gated (CITE-Seq) Th subsets within the scRNA-Seq clusters shown in (c). For
normalization, 20,000 randomly selected scRNA-Seq cells with matched CITE-Seq or TCR-Track data were used for each plot. Dot intensity
indicates the stained proportion of the scRNA-Seq cluster. Dot size denotes the proportion of the TCR-Track-identified or the in silico CITE-Seq-
based gated scRNA-Seq cells mapped to the scRNA-Seq cluster. Green dashed rectangles indicate the dominating scRNA-Seq cluster. (c) UMAP
plots showing the localization of the TCR-Track and CITE-Seq defined subsets. TCRb clonotypes were used to define the Th subsets in the TCR-
Track method. Expression of the surface markers was used to gate the Th subsets in the CITE-Seq-based annotation. The color intensity in TCR-
Track is proportional to the clonal frequencies in the original sorted Th bulk TCRb repertoires.
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FIGURE 3

TCR-Track reproducibility and clonality dependence. (a) Dot plots summarizing the clonal positioning of the sorted T helper (Th) cell subsets (TCR-
Track) within the single-cell RNA sequencing (scRNA-Seq) clusters, shown separately for each donor. (b) Dot plots summarizing the clonal
positioning of the top 100 and the top 101–500 largest clonotypes from the sorted Th subsets (TCR-Track) within the scRNA-Seq clusters.
(c) Uniform manifold approximation and projection (UMAP) plots showing the clonal positioning of the top 100 and the top 101–500 largest
clonotypes from the sorted Th subsets (TCR-Track) within the scRNA-Seq clusters. TCRb clonotypes were used to define the Th subsets in the TCR-
Track method. The color intensity in TCR-Track is proportional to the clonal frequencies in the original sorted Th bulk TCRb repertoires. (d) Relative
accuracy of subset mapping to the specific scRNA-Seq clusters measured as normalized Shannon index, which reflects the unevenness of the cell
distribution across clusters (Wilcoxon rank-sum test; see Methods). The lower the value, the more focused is the mapping.
Frontiers in Immunology frontiersin.org05

https://doi.org/10.3389/fimmu.2025.1536302
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lukyanov et al. 10.3389/fimmu.2025.1536302
differed in the expression of CXCR5 and CXCR3. This points to the

functional heterogeneity of the Tfh subset (37) and the potential

relations between the Tfh and Th1 subsets (17), which warrant a

more in-depth investigation.

The “Tnaive SOX4” cluster of Sakaguchi et al. (18) corresponds

to the cluster we designated as “Naive RTE” (recent thymic

emigrants) based on the expression of CD31 (PECAM1) (38, 39)

and on the expression label transfer from the umbilical cord blood

CD4+ T-cell scRNA-Seq (40). The “Tnaive act” cluster of Yasumizu

et al. (18) corresponds to the cluster we designated as “Naive” based

on the expression of BCL-2 involved in the homeostatic

proliferation of naive T cells (41). The “Tnaive” cluster of

Yasumizu et al. (18) corresponds to the cluster we designated as

“Central memory 1” based on the observed clonality (Figure 4a).

We also distinguished the “PD1high” cluster based on the

expression of PDCD1 and the “Cycling” cluster based on the

expression of MKI67 and other cell proliferation markers

(Figure 5; Supplementary Figure S5A).
Naive and effector IFN-induced clusters

Two of the peripheral Th scRNA-Seq clusters, designated as

“Naive IFN-induced” and “Effector-memory IFN-induced,” are

clearly associated with type 1 IFN response. The effector memory

IFN-induced cluster, described earlier (42, 43), was nearly absent in

the blood from healthy donors, but was well detectable in patients

with coronavirus disease 2019 (COVID-19) (Figures 6a, b),

probably representing the typical behavior of Th cells in acute

viral infection (43). Notably, this cluster was almost undetectable in
Frontiers in Immunology 06
most critical COVID-19 patients, which emphasizes the importance

of IFN response in acute viral infection (44). The “Naive IFN-

induced” cluster demonstrated a similar behavior and was inversely

correlated with the proportion of “Naive RTE” and “Naive” clusters,

suggesting systemic and transient IFN-induced activation of

conventional naive T cells in acute viral infection (Figures 6a–c;

Supplementary Figure S2). A similar observation of the “Naive IFN-

induced” cluster has been recently reported in COVID-19 and

systemic lupus erythematosus data (45).

The “Effector-memory IFN-induced” cluster, predominantly

observed in patients with COVID-19, likely represents the

activation of effector memory Th cells in response to IFN

signaling. This response is crucial for controlling viral replication

and coordinating the early antiviral immune response. The near

absence of this cluster in critical COVID-19 cases suggests a failure

or dysregulation of the IFN pathway, which has been previously

linked to severe disease progression.

The “Naive IFN-induced” cluster, which was inversely

correlated with the conventional naive T-cell populations, reflects

the systemic activation of naive T cells triggered by IFN signaling.

This activation might provide a foundation for the preferential

priming of new clonal expansions with antiviral programs,

potentially driving a shift toward a Th1 phenotype. This

hypothesis warrants further investigation.

The differential presence of the “Effector-memory IFN-

induced” and “Naive IFN-induced” clusters across disease

severities underscores their potential as biomarkers for

monitoring IFN pathway activity. Early detection of diminished

IFN responses could help identify patients at higher risk of severe

disease, enabling timely and targeted therapeutic interventions.
FIGURE 4

Clonality and clonal overlap between the T helper (Th) cell clusters. (a). Relative clonality of the single-cell RNA sequencing (scRNA-Seq) Th clusters
represented as unique TCRb CDR3/cell count ratio. Each dot represents one donor. (b) Heatmap visualization of the clonal (nucleotide-defined
TCRb CDR3) overlaps between the scRNA-Seq clusters measured as the number of shared clonotypes between the clusters of the same donor (122
donors used) divided by the number of clonotypes in each cluster (D metrics in VDJtools). The D metric is multiplied by a scale factor (106) and then
log2(1 + x) transformed for comprehensive values (32, 33).
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Phenotypic versus intrinsic program
plasticity of Th cells

To evaluate the relationships and cross-subset plasticity of the

T-cell clones, the cluster stability at different clustering resolution

levels (Supplementary Figure S7) and the clonal intersections

between the clusters were analyzed based on the scTCR-Seq data

(Figure 4b). We previously suggested the notable plasticity between

the Th22/Th17, Th17/Th2, and Th2/Th2a subsets based on the

corresponding intersections of the sorted Th cell subset repertoires

(28). However, the new data on clonal overlaps and cluster stability

at various resolutions in the current study prompted us to partially

reconsider these interpretations.

Indeed, the T-cell clones sorted as classic Th17 subset (gated as

NOT CD25highCD127low, CCR10−CXCR5−CCR6+CXCR3−CCR4+)

were found in both the Th17 and Th22 scRNA-Seq clusters

(Figure 2b). However, the clonal overlap between these two

clusters was low (Figure 4b), while the stability of both clusters

was high (Supplementary Figure S7). Furthermore, the clones

sorted as classic Th22 (gated as NOT CD25highCD127low,

CXCR5−CCR10+) were almost exclusively found in the Th22

scRNA-Seq cluster, indicating their self-standing nature. The
Frontiers in Immunology 07
independent origin of the human Th22 clones was initially

suggested (46) and reported in mouse models (47–49). Distinct

TCR repertoire features also supported the existence of the clonally

discrete Th22 subset (28).

We interpreted these observations as follows. The population

classically sorted by phenotypic markers and described as Th17

actually represents the mixture of bona fide Th17 and Th22 cells

(those of the latter that are stained as CCR10-negative). In contrast,

the classically sorted CCR10+ Th22 subsets mostly coincide with the

corresponding scRNA-Seq cluster, representing a relatively pure

population of uniformly programmed bona fide Th22 T

cells (Table 1).

To confirm this hypothesis, we plotted those TCRb clonotypes

that were found as shared between the sorted Th22 and Th17

subsets in (28), which showed that these clonotypes were almost

exclusively localized within the Th22 scRNA-Seq cluster,

confirming their bona fide Th22 program. In contrast, the sorted

Th17 clonotypes that did not overlap with the sorted Th22

predominantly mapped to the Th17 scRNA-Seq cluster,

confirming their bona fide Th17 program (Figure 7).

Altogether, these data clearly support the self-standing nature of

the Th17 and Th22 subsets. That being said, some clonal overlap
FIGURE 5

Top genes that distinguished peripheral T helper (Th) single-cell RNA sequencing (scRNA-Seq) clusters. The top 5 differentially expressed genes per
cluster are shown. For visualization, 500 cells were randomly selected from each cluster.
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between the Th2, Th2a, and Th22 scRNA-Seq clusters was observed

(Figure 4b), thus leaving room for the moderate long-term plasticity

between these three subpopulations (49).

The Th1 and Temra cytotoxic Th1 clusters demonstrated

notable clonal overlap (Figure 4b), indicating that the former

could convert into the latter, as some of the recent studies suggest

(29, 30). Correspondingly, the positioning of the sorted Th1 TCRb
clonotypes to the Th1 and Temra cytotoxic clusters may reflect

terminal maturation of the Th1 clones. The highest clonality was
Frontiers in Immunology 08
also observed for the cluster annotated as the Temra cytotoxic Th1

subset, which is in line with previous reports (35) (Figure 4a).

Table 1 summarizes the observed correspondence between the

sorted peripheral blood Th subsets and the scRNA-Seq clusters. In

the proposed scRNA-Seq classification shown in Figure 2a, we gave

priority to the cells partitioning into stable scRNA-Seq clusters

(Supplementary Figure S7), while the TCR-Track data were used to

match the classical surface phenotype-based sorted T-cell subsets

with those clusters.
FIGURE 6

Interferon (IFN) response clusters in healthy donors and coronavirus disease 2019 (COVID-19) patients. (a) Uniform manifold approximation and
projection (UMAP) plots grouped by disease severity. The “Eff-Mem IFN response” and “Naive IFN response” clusters are nearly absent in healthy
individuals. (b) Proportion of the samples occupied by the “Eff-Mem IFN response” or the “Naive IFN response” cluster (normalized cluster size).
Medians are shown as red lines. The p-values for ANOVA are shown on top. Post-hoc pairwise analysis was performed with Tukey’s honest
significant difference (HSD) test, and p < 0.05 are shown. (c) Inverse correlation between the proportions of Naive+Naive RTE versus Naive IFN-
induced subsets within T helper (Th) cells. Color indicates the patient status on the day of sample collection. r is Pearson’s correlation coefficient.
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Programs of peripherally circulating Th
clones are stable in time

Of note is that the T-cell repertoires of the sorted subsets were

obtained in 2018, while the scRNA-Seq experiment was performed

on samples derived in 2022. Despite the 4-year distance, TCR-Track

mapped the sorted clones to clearly defined positions, which was

generally limited to one or two neighboring scRNA-Seq clusters

(Figure 2; Supplementary Figure S1), indicating the long-term

program stability of the CD4+ T-cell clones circulating in human

peripheral blood.

The current behavior of T-cell programs in tissues, in the context of

the ongoing interaction with pathogens, microbiota, and the

environment, can be associated with much more plastic behavior,

forming a “continuum”where clear separation of the Th programsmay

be more problematic (26, 27, 50). However, our results suggest that

program imprinting may remain stable in most conditions, and when

returning to the challenge-free circulation, the “resting” T-cell memory

clones return to their major initial imprint.

This concept is supported by the generally low clonal overlap

between the scRNA-Seq clusters, with the exception of the Th1 and

Temra cytotoxic Th1 clusters, as well as the natural intersection of

“Cycling” Th cells with several differentiated Th clusters (Figure 4b).
Discussion

The architecture of T-cell memory essentially determines the

entire pattern of our interaction with the antigens of the

surrounding world, our microbiota, and our self-antigens (1, 2).

This architecture starts formation in the prenatal period (51–55), is

actively formed in the first years of life in the contact with

pathogens, airborne and food antigens, and microbiota

maturation (56, 57), and then continues to be actively shaped by
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vaccinations and further contacts with infectious and non-

infectious challenges and antigens.

Clonal populations of T cells that are instructively primed by

professional antigen-presenting cells (1–3) make decisions about

which reaction programs to choose to respond to each specific

antigen. They remember these programs as memory clones,

forming stable response patterns to familiar challenges, patterns

of regulation and cross-regulation of the immune responses to

friends and foes.

Mistakes made in such decisions cost us dearly: they lead to

autoimmune diseases, inefficient elimination of pathogens, chronic

inflammation, and cancer and may essentially underlie the entire

phenomenon of inflammaging. Presumably for this reason, some

mammalian species are likely to avoid forming such a long-term

clonal memory (11). In humans, however, the clonal memory of

both CD8+ and CD4+ T lymphocytes can persist for years and

decades (58, 59).

In the present work, TCR-Track allowed us to map the Th

subset repertoires on the very same T-cell clones of the scRNA-Seq

data obtained for the donor 4 years later, which emphasizes the

stability of the huge number of clones accumulated over previous

years (60). We also showed that these clones were mapped

predominantly or even exclusively within their corresponding and

independent scRNA-Seq clusters, highlighting the persistence of

program decisions once made by each CD4+ T-cell clone. That said,

both tissue plasticity (26, 27, 50) and the non-excluded opportunity

for the multiple programs acquired by the progeny of a naive T cell,

which could potentially be revealed with more in-depth analysis

(61), remain relevant.

Repertoire-based TCR-Track annotation also turned out to be a

powerful aid in matching the classical subsets of lymphocytes sorted

by surface markers with the stable scRNA-Seq clusters that more

comprehensively describe the diversity of functional lymphocyte

programs. This effort structures our understanding of the functional
TABLE 1 Correspondence between the classically sorted peripheral blood T helper (Th) cell subsets and the stable scRNA-Seq clusters according to
TCR-Track.

Classic name
FACS-sorted, gated as CD4+,

NOT CCR7+CD45RA+

(effector memory CD4+ T cells)

Correspondence to stable scRNA-Seq clusters
(bona fide Th programs)

Th1 NOT CD25highCD127low, CCR10−CXCR5−CCR6−CXCR3+CCR4− 5:1 mixture of the Temra cytotoxic Th1 and Th1 clusters

Th1-17 NOT CD25highCD127low, CCR10−CXCR5−CCR6+CXCR3+CCR4−
Independent subset located within linked and tight zones of the Th1
and Th17 scRNA-Seq clusters; requires more in-depth investigation

Th17 NOT CD25highCD127low, CCR10−CXCR5−CCR6+CXCR3−CCR4+ 3:2:2 mixture of the Th22, Th17, and Th2 clusters

Th22 NOT CD25highCD127low, CCR10+CXCR5− 7:2 mixture of the Th22 and Th2 clusters

Th2
NOT CD25highCD127low,

CCR10−CXCR5−CCR6−CXCR3−CCR4+CRTh2−
6:1 mixture of the Th2 and central memory clusters

Th2a
NOT CD25highCD127low,

CCR10−CXCR5−CCR6−CXCR3−CCR4+CRTh2+
3:1 mixture of the Th2a and Th2 clusters

Treg CD25highCD127low
Treg localized in the zone of “effector Tregs” according to the

classification by Yasumizu et al. (18)

Tfh NOT CD25highCD127low, CCR10−CXCR5+ Tfh, Th1 (presumably Tfh1); requires more in-depth investigation
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diversity of Th cells, which is critical for further progress in cancer

and autoimmunity immunotherapy and vaccine development.

In particular, focus on eliciting/supporting/exploiting

appropriate Th cell programs may qualitatively improve the

efficiency of immunotherapeutic interventions, e.g., chimeric
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antigen receptor T cell (CAR-T) and T-cell receptor T cell (TCR-

T) approaches, and cancer vaccines. In autoimmunity, where

tolerogenic vaccines (62, 63) and targeted immunotherapeutic

interventions (64, 65) are gaining momentum, the precise

selection and control of the Th response types is also crucial.
FIGURE 7

Positioning of the Th17/Th22 shared clonotypes. (a) Annotated single-cell RNA sequencing (scRNA-Seq) clusters and TCR-Track positioning of the
sorted Th17 and Th22 subsets. (b) Uniform manifold approximation and projection (UMAP) positioning of the sorted Th17 clonotypes that do not
overlap with the sorted Th22, the sorted Th22 clonotypes that do not overlap with the sorted Th17, and the overlapping clonotypes. Cytoscape
network plot adapted from (28).
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CITE-Seq can also be used to phenotype cell populations on a

single-cell level based on the surface markers, which has an

advantage of simultaneously measuring hundreds of those. Our

work shows that TCR-Track may outperform CITE-Seq in terms of

resolution capacity. At the same time, we should indicate that this

may be attributed to a technical instability in multiplex CITE-Seq,

where a successful CITE-Seq experiment may yield results

comparable to those of TCR-Track. In addition, some of the

CITE-Seq staining antibodies may affect the cell signaling and

transcriptomic profiles, introducing bias in the scRNA-Seq

landscape (66). In contrast, in the TCR-Track pipeline, cells

stained with surface antibodies for sorting and bulk TCR-Seq are

obtained and analyzed independently of the scRNA-Seq/scTCR-

Seq experiment.

We anticipate that, in future works, TCR-Track can be used to

match and classify the following: 1) CD4+ T-cell populations in the

peripheral blood, lymph nodes, tertiary lymphoid structures at the

sites of chronic inflammation and in the tumor environment, and

other tissues in health and disease; 2) diverse Tfh cells (37); 3)

known and unknown types of invariant and semi-invariant T cells,

such as invariant natural killer T (iNKT), natural killer T (NKT),

mucosal-associated invariant T (MAIT), and Crohn’s-associated

invariant T (CAIT) cells (67–69); 4) gamma delta T cells (70); 5)

central memory and stem cell memory T cells that would probably

require deeper scRNA-Seq coverage due to their relatively lower

clonality; 6) CD8+ T-cell subsets (71); 7) and B-cell functional

subsets (72). A limitation of our study is that the Th subset

repertoires and the scRNA-Seq data were obtained 4 years apart.

Supporting our findings with data collected at the same time point

and from the same and different tissues would greatly enhance our

understanding of T-cell immunity.

The TCR-Track logic that exploits TCR as a natural barcode

opens multiple options to track T-cell clones in time and space to

disentangle the complex puzzle of the clonal relations between the

subsets (as we did here for Th17 and Th22) and between tissues. For

example, one could identify the TCR repertoire of sorted Th subsets

from peripheral blood and track this functionality in scRNA-Seq

data obtained from the tumor-infiltrating T cells of the same

patient, informing on the program plasticity of the T-cell clones

in the tumor microenvironment.

The TCR-Track approach has certain limitations that must be

taken into account. Firstly, similar to CITE-Seq, the method relies

solely on surface markers to define the target cell subpopulations.

Secondly, the method is applicable only to T and B cells with

specific clonal receptors acting as living barcodes. Thirdly, TCR-

Track is based on lymphocyte clonality, where there is a need to

capture the same clone in the sorting and scRNA-Seq experiments.

Therefore, TCR-Track-based annotation of, e.g., central memory T-

cell subsets or peripheral blood Tfh cells, which are almost as

diverse as naive T cells (28, 37), may require substantially more in-

depth scRNA-Seq and bulk TCR profiling. For the naive T-cell

subsets, the application of TCR-Track would be probably limited to

innate-like, relatively clonal, naive T-cell subpopulations of fetal

origin (53).

In summary, our work:
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1. Offers TCR-Track as an approach for the classification of

phenotypically defined T- and B-lymphocyte subsets, their

exact positioning within the scRNA-Seq landscape, and

time tracking.

2. Clarifies the correspondence between the well-studied

human peripheral blood Th subsets and scRNA-

Seq clusters.

3. Proposes a more accurate, clonally informed CD4+ T-cell

classification within the scRNA-Seq landscape, delineating

the positioning of the Th2, Th2a, Th22, and Tfh clusters

and refining several other details. An integrated scRNA-Seq

reference dataset of peripheral Th lymphocytes is provided.

4. Shows the long-term program stability and low intrinsic

plasticity of the Th memory clones circulating in

peripheral blood.

5. Shows a high clonal overlap, suggesting that cytotoxic

CD4+ T cells differentiate from Th1 clones.

6. Shows that Th17 and Th22 represent clonally independent

subsets. The sorted Th17 subset represents a mixture of

bona fide Th17 and CCR10low Th22 cells.

7. Shows that SARS-CoV-2 infection is associated with

transient type 1 IFN activation of naive T cells, a

p h e n om e n o n w h i c h w a r r a n t s a m o r e i n -

depth investigation.

8. Shows that efficient response to SARS-CoV-2 infection is

associated with the appearance of prominent effector IFN-

induced Th cells, while critical COVID-19 is associated

with a low presence of the IFN-induced subset.
More generally, we hope that this work advances the study of

the role of programmed populations of memory T cells to a new

level, making it possible to clearly distinguish the functional nature

of each immune response and to investigate the plasticity between

T-cell subsets. This level of understanding serves as a necessary

stepping stone to the rational development of better

immunotherapeutic approaches in oncology and autoimmunity,

as well as in vaccine development, where the chosen T-cell

programs fundamentally determine the type of immune response

and are crucial to the outcome.
Methods

scRNA-Seq and scTCR-Seq library
preparation and sequencing

Fresh peripheral blood mononuclear cells (PBMCs) from D01,

D04, and D05 were stained with anti-CCR7–PE-Cy7 (clone 3D12;

BD Biosciences, Franklin Lakes, NJ, USA), anti-CD3–APC-Fire750

(clone SK7; BioLegend, San Diego, CA, USA), anti-CD4–PE-Cy5.5

(clone S3.5; Thermo Fisher Scientific, Waltham, MA, USA), anti-

CD14–V500 (clone M5E2; BD Biosciences), anti-CD19–V500

(clone HIB19; BD Biosciences), anti-CD45RA–PE-Cy5 (clone

HI100; BioLegend), and LIVE/DEAD Fixable Aqua (Thermo

Fisher Scientific). Viable effector/memory CD4+ T cells gated as
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CD3+CD4+CD14−CD19− after excluding CCR7+CD45RA+ events

were sorted into two replicates for D01 and without replicates for

D04 and D05 using a custom-modified FACSAria II (BD

Biosciences) and loaded onto a Chromium Controller (10x

Genomics, Pleasanton, CA, USA). The samples were prepared

using a Chromium Next GEM Single Cell 5′ Reagent Kit v2 (10x

Genomics). The pooled samples were sequenced with a coverage of

100,000 reads per input cell for scRNA-Seq and 25,000 reads per

input cell for scTCR-Seq on a NovaSeq 6000 System with an S4

Flow Cell (Illumina, San Diego, CA, USA).
scRNA-Seq, scTCR-Seq, and CITE-Seq
data analysis

Raw scRNA-Seq and scTCR-Seq fastq files were processed using

the count and vdj pipelines in cellranger (v6.1.2). For scTCRs, only

productive in-frame CDR3− and V/J-spanning contigs without the

stop codons in the V–J region were selected, and the most abundant

TCR chain was used for cells with two relevant transcripts (TRA or

TRB). Filtered gene expression matrices were uploaded into the

Seurat R package (v4.2.0) (73). The cells containing >10,000 unique

molecular identifiers (UMIs) and >10% mitochondrial reads were

removed. The data from each donor were paired with the

corresponding scTCR data , log-normalized with the

NormalizeData function, and clustered using the Louvain

algorithm. Publicly available processed multimodal scRNA-Seq/

scTCR-Seq/CITE-Seq data from PBMCs were downloaded from

the ArrayExpress database under accession number E-MTAB-

10026. These data were converted into Seurat object, applying the

same filtering criteria as those used for the newly generated data.

CD4+ T-cell clusters were selected based on the average cluster

expression of CD4 and CD3E and the cluster annotations provided

by the authors. The public dataset was then split by sample origin,

log-normalized, and clustered with the Louvain algorithm based on

sets of highly variable genes calculated individually for each batch

using Seurat functions. The CITE-Seq data, provided as the

antibody-derived tag (ADT) counts for 192 features in the

processed data, were normalized separately for each batch using

the centered log ratio (CLR) method as implemented in Seurat and

were used for further analysis. In addition to the filtering steps

originally performed by the authors, at this stage, outlier clusters

with both low UMI counts and high percentage of mitochondrial

genes were removed, as well as clusters expressing CD8A and CD8B

from all individual datasets. Differential expression was calculated

using the FindAllMarkers function individually on each dataset.

Clusters that either highly expressed or contained B-cell, dendritic

cell, macrophage, and other non-T-cell markers in the differential

expression as per single-cell RNA section of the Human Protein

Atlas (https://www.proteinatlas.org/humanproteome/tissue) were

removed from the analysis. Clusters that expressed the markers of

natural killer (NK) cells without the expression of CD3/TCR were

also removed. The stress score was calculated for each cell using the

AddModuleScore function in Seurat. This included the genes

upregulated as a consequence of the dissociation procedure
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(BTG1, BTG2, DDX5, DNAJA1, DUSP1, EEF1A1, HSPA8, JUN,

JUNB, JUND, KAP, KLF6, and PNRC1) (74).

The paired scRNA/scTCR-Seq dataset generated in this study

contained 23,257 cell barcodes, of which approximately 90%

contained the scTCR-Seq data in each of the three donors. The total

cell counts for the donors were 4,723, 9,430, and 9,104. For public data,

out of the 124,420 cell barcodes from the 119 donors selected for the

analysis, approximately 80% contained scTCR-Seq data. In public data,

20% of the cells came from 21 healthy donors, 77% came from 93

donors with COVID-19 infection across several disease severity groups

—asymptomatic (9,400 cells), mild (29,807 cells), moderate (24,774

cells), severe (14,303 cells), and critical (17,031 cells)—and 3% came

from five donors with non-COVID-19 infection.

Integration of the scRNA-Seq data was carried out using the Seurat

reference-based reciprocal PCA protocol with default parameters, with

the largest 3′ (Newcastle public data) and 5′ (D05) datasets chosen as

references to account for differences in the methodology (73). The

percentage of mitochondrial genes and the stress score were regressed

out of the integrated dataset as implemented in the ScaleData function.

The number of dimensions used for running the UMAP and the

Louvain clustering algorithm was 25 based on the ElbowPlot Seurat

function. All of the TCR and immunoglobulin (IG) genes were

removed from the variable features used in the principal component

analysis (PCA) and from the anchor features used for integration. To

identify cluster marker genes, the FindMarkers and FindAllMarkers

functions were used on the scRNA-Seq data slot.

For the label transfer from the UCB data, we used processed T-

cell scRNA-Seq data from figshare (https://figshare.com/projects/

S i n g l e - c e l l _ m a p p i n g _ o f _ p r o g r e s s i v e _ f e t a l - t o -

adult_transition_in_human_naive_T_cells/76143) and gated CD4

T-cell clusters from umbilical cord blood as described previously.

We projected the cluster identities of the integrated data onto this

dataset via the Seurat data transfer method (FindTransferAnchors

and TransferData functions). The distribution of the predicted IDs

with a confidence score >0.5 was used to support the annotation of

cluster 2 as “Naive RTE” (data not shown).

In silicoCITE-Seq gating was performed sequentially, following the

scheme in Supplementary Figure S4, and visualized using the R

packages “ggplot2” (v3.4.4) and “ggpointdensity” (v0.1.0). The

CCR10 marker expression was assessed using scRNA-Seq as CCR10

was not included in the CITE-Seq panel. To quantitatively evaluate the

accuracy of the TCR-Track and CITE-Seq cluster mapping, the

normalized Shannon–Wiener index, Sj = o16
i=1

  pj*log(pj)
log(N) , was calculated,

where j is the gated subset, as in Supplementary Figure S4 (e.g., Tfh,

Th1, or Th1–17); i is the scRNA-Seq cluster (e.g., 0, 1, or 2); pj is the

proportion of the gated subset j in cluster i; andN is the total number of

cluster i with non-zero hits for the gated subset j. This measures the

evenness of the cell distribution across clusters for each gated subset.

The gates for CITE-Seq gating were chosen to minimize the resulting

normalized Shannon–Wiener index for each gated subset. For

evaluation of the results, the index was separately calculated within

three donors in the TCR-Track data and within the five disease severity

groups in the public CITE-Seq data (the donors were grouped to make

the number of cells comparable in each of the analyses). Only the gated

subsets with more than seven cells were included in the analysis.
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Mapping of the FACS-sorted Th
subset clonotypes

From each bulk TCRb repertoire (Th1, Th2, Th17, Th1–17, Tregs,

Th2a, Tfh, and Th22) from Kasatskaya et al. (28), the top 500

nucleotide clonotypes were selected to make the analysis uniform and

also to exclude even minor cross-contaminations that could happen

during cell sorting or sequencing. In cases when replicates were

available for the bulk TCR repertoires, only one of the pairs was used

in the analysis. Subsequently, for each single cell from D01, D04, and

D05, the respective TCRb clonotype frequencies from the top 500 bulk

TCR-Seq Th datasets were added to the Seurat object metadata. These

frequencies were used as the transparency encoding variables (aesthetic

“alpha” in ggplot2) in Figures 2c, 3c and in Supplementary Figure S1B

to emphasize large clonotypes. In Supplementary Figures S1C, D and

Figure 7, all of the shown cells have identical transparency values.
Identification of clonotypes overlapping
between the sorted Th17 and Th22
subset repertoires

The overlapping TCRb nucleotide clonotypes were identified

between the sets of the top 2,000 TCR clonotypes from the sorted

Th17 and Th22 cell subsets (28). Subsequently, a standard deviation

was calculated for the frequencies of each overlapping clonotype in the

Th17 and Th22 subsets from the same donor. We selected only those

overlapping clonotypes for which this standard deviation was lower

than 0.001. In this way, from the list of overlapping clonotypes, we

excluded those that were highly abundant in the Th17 subset and were

low abundant, but still present, in the Th22 subset, or vice versa.
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