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Tissue-resident memory T (TRM) cells are a specialized subset of memory T cells

that permanently reside in non-lymphoid tissues, providing localized and long-

lasting immune protection. In the urinary tract, TRM cells play critical roles in

defending against infections, mediating tumor immunity, and influencing the

pathogenesis of chronic inflammatory diseases. Their therapeutic potential is

immense, with promising avenues for vaccine development, enhanced cancer

immunotherapy, and targeted treatments for chronic inflammation. However,

challenges remain in harnessing their protective roles while minimizing their

pathological effects, particularly in immunosuppressive or inflammatory

microenvironments. This review explores the diverse roles of TRM cells in

urinary tract diseases, including infections, cancer, and chronic inflammation,

and discusses therapeutic strategies and future directions for leveraging TRM cells

to improve clinical outcomes. By advancing our understanding of TRM cell

biology, we can develop innovative interventions that balance their immune-

protective and regulatory functions.
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1 Introduction

Tissue-resident memory T (TRM) cells represent a unique subset of memory T cells that

reside permanently within non-lymphoid tissues without recirculating through the blood

or lymphatic systems (1). Unlike central or effector memory T cells, TRM cells are

characterized by the expression of markers such as CD69, which prevents egress from

tissues, and CD103, which promotes adhesion to epithelial cells (2–4). These cells serve as

sentinels of localized immunity, poised to rapidly respond to reinfection by previously

encountered pathogens (5, 6). This unique population comprises two main subsets: CD4+

and CD8+ TRM cells, each with distinct characteristics, developmental pathways, and

functional roles (7). CD8+ TRM cells act as the first line of defense against viral re-infections,

rapidly eliminating infected cells upon pathogen re-encounter (8). In contrast, CD4+ TRM

cells play a critical role in coordinating broader immune responses, including the support of
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B cell activity and the maintenance of local immunity at various

tissue sites, such as skin and mucosal surfaces (9). Recent studies

have shown that TRM cells comprise approximately 10-30% of the

total T cell population in non-lymphoid tissues, with variations

depending on tissue type and disease state (10). For example, in

inflamed tissues, TRM cells can account for up to 60% of the T cell

population, while in cancer tissues, their proportion typically ranges

from 5% to 20%, depending on the tumor microenvironment

(11–13). This variability in TRM cells frequency underscores their

dynamic roles in immune responses across different conditions.

Furthermore, TRM cells have been shown to persist in non-

lymphoid tissues for extended periods, with some studies

reporting survival times ranging from several months to years.

This long-term presence highlights their critical role in maintaining

tissue immunity (14, 15). These distinct functions underscore the

importance of understanding the heterogeneity of TRM cells in the

context of urinary tract diseases, setting the stage for a more detailed

exploration of their roles in infections, tumors, and chronic

inflammation that follows.

The urinary tract is a critical site for immune responses,

balancing pathogen defense with tolerance of non-harmful

antigens. It comprises the urinary and reproductive systems,

including the kidneys, bladder, and genital organs. TRM cells,

identified in bladder, ovarian, vaginal, kidney, uterine, prostate,

and penile tissues, are vital for local immunity against infections

and tumors and may modulate autoimmune responses (16–21).

Beyond the urinary tract, TRM cells have also been implicated in

other cancer types, such as melanoma, lung cancer, and breast

cancer, where they contribute to tumor surveillance and immune

control (22–24). For instance, in melanoma, high densities of CD8+

TRM cells are associated with improved patient survival and

response to immunotherapy (25). Similarly, in lung cancer, TRM

cells have been shown to enhance anti-tumor immunity and predict

favorable clinical outcomes (26). These findings highlight the

broader relevance of TRM cells in cancer immunity and

underscore the need for further research into their roles across

different tissue types and disease contexts. Their strategic

localization within the epithelial barriers and ability to interact

with other immune and stromal cells underline their importance as

both defenders and regulators of tissue health. Understanding the

unique biology of TRM cells in this context is vital for developing

targeted therapeutic strategies.
Abbreviations: CD4, Cluster of differentiation 4; CD8, Cluster of differentiation

8; CD69, Cluster of differentiation 69; CD103, Cluster of differentiation 103;

CXCR3, C-X-C chemokine receptor 3; P2RX7, Purinergic receptor P2X7;

CXCR6, C-X-C chemokine receptor 6; CD49a, Cluster of differentiation 49a;

MHC, Major histocompatibility complex; IL-15, Interleukin 15; PD-1,

Programmed cell death protein 1; TIM-3, T-cell immunoglobulin and mucin-

domain containing-3; LAG-3, Lymphocyte-activation gene 3; IL-1b, Interleukin

1beta; IL-6, Interleukin 6; IL-23, Interleukin 23; JAK-STAT, Janus kinase-signal

transducer and activator of transcription; S1PR1, Sphingosine-1-phosphate

receptor 1; CCL20, C-C motif chemokine ligand 20; PD-L1, Programmed cell

death ligand 1.
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2 The role of TRM cells in urinary
tract infection

TRM cells in the urinary tract share features with those in other

parts of the body, such as the expression of CD69 and CD103, as

well as the characteristic of tissue residency. They also display

unique adaptations to their local microenvironments, including

their positioning in specific tissues-like the lamina propria and basal

epithelial lining in vaginal and penile tissues-and the expression of

molecular markers such as CXCR3, P2RX7, CXCR6, and CD49a

(27–31). Immediately upon entry, these adaptations indicate their

strategic positioning in barrier tissues to intercept pathogens,

including bacteria, viruses, and fungi.

Urinary tract infections (UTIs) are among the most common

infections globally, characterized by frequent recurrence despite

antibiotic treatment (32, 33). TRM cells play a pivotal role in the

immune defense against these infections by establishing localized,

long-term immunity in the urinary tract. In response to primary

infection, pathogen-specific TRM cells are generated and retained in

the bladder mucosa, where they can rapidly detect and respond to

reinfection. However, TRM cells, including CD4+ and CD8+ subsets,

do not directly recognize pathogens but instead rely on interactions

with antigen-presenting cells (APCs) to initiate their immune

responses. Upon reinfection, dendritic cells (DCs) and

macrophages in the urinary tract rapidly process and present

pathogen-derived antigens via MHC class II and class I

molecules, respectively. CD4+ TRM cells recognize antigens

presented on MHC class II by APCs, leading to their activation

and subsequent secretion of cytokines, such as interferon-gamma

(IFN-g) and tumor necrosis factor-alpha (TNF-a), which recruit

and activate additional immune cells like neutrophils and

macrophages (34). Similarly, CD8+ TRM cells are activated

through the recognition of antigens presented on MHC class I by

APCs, enabling them to exert cytotoxic effects via the release of

granzymes and perforin (35). This interaction between TRM cells

and APCs ensures a rapid and localized immune response that is

essential for the effective clearance of pathogens during secondary

infections. These cells express markers such as CD69, which

anchors them within tissues, and secrete cytokines like IFN-g
upon activation, initiating a cascade of immune responses that

recruit neutrophils and other effector cells to the site of infection

(18). TRM cells are particularly effective in combating uropathogenic

Escherichia coli (UPEC), the most common causative agent of UTIs.

CD4+ and CD8+ TRM cells play complementary roles in the immune

defense against UTIs. CD4+ TRM cells primarily facilitate immune

responses by secreting cytokines that help activate other immune

cells, such as macrophages and B cells, promoting antibody

production and maintaining immune homeostasis (36). These

cells also contribute to tissue repair and inflammation regulation

in the urinary tract. In contrast, CD8+ TRM cells exert direct

cytotoxic effects by killing infected epithelial cells through the

release of granzymes and perforin, limiting pathogen replication

(37). Both CD4+ and CD8+ TRM cells provide long-term immunity

by persisting in the bladder mucosa, enabling rapid and effective

responses to reinfection. However, the activation and persistence of

TRM cells, especially during recurrent UTIs, can also lead to chronic
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inflammation and tissue damage, emphasizing the need for

therapeutic strategies that balance immune protection with the

prevention of excessive tissue injury.

In the context of secondary infections, TRM cells are poised to

rapidly exert their effector functions. They produce granzyme B and

pro-inflammatory cytokines that serve to recruit and activate

additional immune cells. This swift response is essential for

controlling viral reactivation and combating bacterial infections.

Studies have shown that UPEC-specific TRM cells remain in the

bladder mucosa long after the initial infection has resolved,

providing a robust immunological memory that reduces the

severity of subsequent infections (18). However, the persistence

and activation of TRM cells can also contribute to tissue damage and

inflammation in the bladder, especially in recurrent infections,

potentially exacerbating symptoms. Moreover, their interactions

with other immune cells, including macrophages and DCs, further

shape the local immune microenvironment (38, 39).

When TRM cells function is impaired-due to factors such as

immunosuppressive environments, chronic inflammation, or aging-

the immune response becomes less effective (40–42). In such

scenarios, pathogen clearance is delayed, leading to prolonged

infection, increased pathogen load, and heightened risk of tissue

damage. The absence of immediate effector responses also results in a

heavier reliance on systemic adaptive immunity, which takes more

time to activate and may not effectively localize to the infection site.
3 TRM cells in urinary tract tumors

TRM cells are emerging as critical players in the immune

response to urinary tract tumors, including bladder, prostate, and

kidney cancers (Figure 1). These cells reside within tumor tissues,

where they exert localized anti-tumor effects by recognizing and

responding to tumor-specific antigens. TRM cells contribute to

immune surveillance, influence the tumor microenvironment

(TME), and enhance responses to immune checkpoint inhibitors

(ICIs). In urinary tract tumors, T cell exhaustion is a well-known

feature of the tumor immune microenvironment, characterized by

the upregulation of inhibitory receptors such as PD-1, TIM-3, and

LAG-3 (43). Interestingly, while TRM cells are generally associated

with robust immune responses, they are not immune to the effects

of exhaustion in tumor settings. TRM cells within the TME can

become exhausted over time due to chronic antigen stimulation and

the immunosuppressive signals present in the tumor. This

exhaustion is associated with a reduced capacity for cytokine

production, cytotoxic activity, and overall immune surveillance

(44). However, unlike recirculating T cells, TRM cells may

maintain some degree of function due to their unique tissue-

residency markers, such as CD69 and CD103. These markers help

anchor TRM cells in the tissue, potentially allowing them to persist

in the TME even when other T cells become exhausted. Recent

studies suggest that enhancing the functionality of exhausted TRM

cells in tumors could improve responses to immunotherapies, such

as ICIs, by restoring their effector functions (45).

In urinary cancers, tumor-infiltrating T cells display a

heterogeneous phenotype. The majority of these cells express CD69
Frontiers in Immunology 03
in prostate and kidney cancers, while in bladder cancers, they also

commonly express CD103. Understanding the role of TRM cells in

these cancers offers valuable insights into novel immunotherapeutic

strategies and their potential to improve clinical outcomes.
3.1 TRM cells in bladder cancer

In bladder cancer, TRM cells play a pivotal role in shaping anti-

tumor immunity within the TME (46). TRM cells are localized in the

bladder epithelium and tumor tissues, where they exhibit hallmark

features such as CD69 and CD103 expression, enabling them to

remain anchored in the tissue and maintain prolonged immune

surveillance (47). These cells respond to tumor-specific antigens by

producing effector cytokines like IFN-g and tumor necrosis factor-

alpha (TNF-a), which stimulate cytotoxic activity and enhance the

recruitment of other immune cells, such as CD8+ T cells and natural

killer cells, to the tumor site.

Recently, an in-depth analysis of CD103+CD8+ TRM cells within

muscle-invasive bladder cancer (MIBC) tissues has unveiled a

significant correlation with improved overall survival outcomes.

The study demonstrated that patients with a high infiltration of

CD103+CD8+ TRM cells, rather than CD8+ T cells alone, are more

likely to benefit from both immunotherapy and adjuvant

chemotherapy (ACT). These TRM cells are associated with an

enhanced IFNg-enriched and T cell-inflamed antitumor

microenvironment (47). The findings underscore the pivotal role

of CD103+CD8+ TRM cells in antitumor immunity and their

potential as an optimal prognostic biomarker, serving as a

superior companion predictor for treatment responses to PD-L1

inhibitors and ACT in MIBC patients. TRM cells may also act as a

biomarker for predicting immunotherapy efficacy (48).

CD103+CD8+ TRM cells despite frequently exhibiting elevated

levels of immune checkpoint molecules such as PD-1, TIM-3, and

LAG-3, retain their capacity to produce cytotoxic molecules and

effector cytokines, which is notably different from their CD103-

negative counterparts (49, 50). This characteristic is particularly

relevant in the context of renal cell carcinoma, bladder, and ovarian

cancer, where the high expression of PD-1 on CD103+ TRM cells is

thought to be a key factor in the efficacy of anti-PD-1 therapies

(51–53). Evidence from murine tumor models indicates that the

depletion of CD103+ cells results in reduced effectiveness of

checkpoint inhibitor treatments, highlighting the importance of

these TRM cells in the response to cancer immunotherapy (54).
3.2 TRM cells in prostate cancer

In prostate cancer, the role of TRM cells is less well-characterized

compared to other urinary tract tumors, but emerging evidence

suggests they contribute to both tumor suppression and immune

modulation within the prostate microenvironment (20). However,

p ro s t a t e c ance r i s o f t en a s soc i a t ed wi th a h i gh l y

immunosuppressive microenvironment that limits TRM cells

functionality (55). Elevated levels of regulatory T cells, myeloid-

derived suppressor cells, and inhibitory cytokines, such as
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transforming growth factor-beta (TGF-b), suppress TRM cells

activation and reduce their anti-tumor efficacy (56). Clinical

studies have confirmed that autologous active cellular

immunotherapy resulted in a modest improvement in survival in

prostate cancer patients, extending it by approximately 4 months

(57). Additionally, androgen deprivation therapy (ADT), a

common treatment for prostate cancer, has been shown to alter

the immune landscape of the prostate, potentially affecting the

generation and activity of TRM cells (58).
3.3 TRM cells in kidney cancers

In kidney cancers, particularly renal cell carcinoma (RCC), TRM

cells play a critical role in tumor immune surveillance. RCC is

recognized as an immunogenic tumor, marked by significant

immune cell infiltration into tumor tissues compared to adjacent
Frontiers in Immunology 04
normal tissues (59). Among these immune cells, CD8+ TRM cells,

characterized by the expression of CD69 and CD103, are commonly

found and are essential for maintaining long-term immune

surveillance within the TME have shown that a high density of

CD103+ TRM cells is associated with better prognostic outcomes in

RCC (60). These cells retain their cytotoxic potential and can

quickly respond to tumor antigens by producing effector

cytokines such as IFN-g and granzyme B. Depletion of CD103+

TRM cells in murine RCCmodels leads to accelerated tumor growth,

highlighting their vital role in controlling tumor progression.

However, the functionality of TRM cells in RCC is often

compromised by the expression of immune checkpoint molecules

such as PD-1 (61). These inhibitory signals can suppress the effector

functions of TRM cells. ICIs, such as anti-PD-1 therapies, can reverse

this suppression, rejuvenating TRM cells activity and enhancing

anti-tumor immunity. Murine studies have shown that depletion of

CD103+ cells abrogates the effectiveness of ICIs, emphasizing that
FIGURE 1

Phenotypic and functional variations of TRM cells in urinary tract tumors. (A) Bladder Cancer: TRM cells exhibit high expression of CD103 and CD69,
alongside PD-1, indicating a tumor-resident yet partially exhausted state. These cells produce cytokines such as IFN-g and TNF-a, which enhance
anti-tumor immunity by recruiting CD8+ T cells and NK cells. Higher densities of CD103+CD8+ TRM cells correlate with improved prognosis and
better responses to immune checkpoint inhibitors targeting PD-1/PD-L1. However, persistent antigen exposure may lead to progressive exhaustion,
reducing their cytotoxic potential. (B) Prostate Cancer: TRM cells show reduced CD103 and limited effector functions due to an immunosuppressive
tumor microenvironment. Elevated levels of TGF-b and myeloid-derived suppressor cells contribute to TRM cells dysfunction, reducing their ability to
mount effective anti-tumor responses. As a result, TRM cells in prostate cancer are often associated with poor immune control and tumor
progression. Moreover, their diminished cytotoxic potential limits the effectiveness of PD-1 blockade therapy in prostate cancer compared to other
tumors. (C) Kidney Cancer: TRM cells in renal cell carcinoma express high levels of CD103 and CD69, often accompanied by PD-1, suggesting a dual
role in tumor surveillance and immune suppression. Despite retaining the capacity to produce IFN-g, TNF-a, and Granzyme B, TRM cells frequently
become functionally exhausted in the TME, reducing their ability to control tumor growth. However, high TRM cells infiltration is associated with
better prognosis and enhanced responses to ICIs, particularly PD-1 inhibitors. Depletion studies in murine models suggest that TRM cells play a
crucial role in mediating the efficacy of immunotherapies in RCC.
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TRM cells are crucial mediators of therapeutic responses to

checkpoint blockade in RCC.

Emerging therapies, including cancer vaccines, aim to boost the

presence and activity of TRM cells within kidney tumors. By

inducing tumor-specific TRM cells, these vaccines could enhance

immune responses and work synergistically with ICIs to improve

treatment efficacy (62). Ongoing clinical trials investigating the

combination of ICIs and TRM-enhancing strategies offer promising

avenues for improving RCC patient outcomes.
4 TRM cells in chronic inflammatory
diseases of the urinary tract

The roles of TRM cells in various urinary tract diseases differ

significantly. As summarized in Table 1, their functions range from

immune surveillance in bladder cancer to fibrosis promotion in

chronic pyelonephritis. The heterogeneity of TRM cells populations,

evidenced by their varied phenotypic and functional profiles within

the urinary tract, offers a range of benefits. This diversity is crucial

for the immune response to infections and cancers, as well as for the

complex dynamics of autoimmune and inflammatory diseases

affecting the urinary system. TRM cells infiltration in the kidney

positively correlates with disease activity, as indicated by increased

serum creatinine, proteinuria, hematuria, and histological scores in

patients with lupus nephritis (LN) and antineutrophil cytoplasmic

antibody (ANCA) associated glomerulonephritis (GN), as well as in

murine systemic lupus erythematosus (SLE) models (61, 63–65). In

murine GN models, the number of CD4+ T cells predominates over

CD8+ T cells, whereas in humans, nearly equal numbers of CD4+

and CD8+ T cells are reported in many studies (66–68). Similarly, in

the kidneys of patients and mice with LN, the abundance of CD8+

TRM cells was significantly increased (69). Under inflammatory

conditions, renal T cells exhibit a tissue-resident phenotype, with

CD69 widely expressed on both CD4+ and CD8+ T cells, indicating

their significant role in local immune responses. Additionally,

CD103 expression is observed on renal T cells, particularly on

CD8+ T cells in patients with SLE and in SLE-prone mice (63–65).

Mice studies show that both commensal and pathogenic bacteria

can trigger kidney inflammation. Infection with S. aureus, and C.

albicans leads to kidney CD4+ TRM cells adopting an inflammatory

TH17 phenotype, exacerbating disease (64). Activation of kidney

TRM cells by cytokines like IL-1b, IL-6, and IL-23 through the JAK-

STAT pathway amplifies the inflammatory response. Microbiota

may activate T cells with kidney-homing potential in the intestine,
Frontiers in Immunology 05
and fate-mapping suggests T cells migrate from the intestine to the

kidney post-nephritis induction. This migration is driven by

S1PR1-dependent egress from the intestine and CCL20-

dependent entry into the kidney. The role of these newly

infiltrated T cells in disease progression is unclear, but their

presence suggests a role for microbiota-driven inflammation in

promoting autoimmunity in the kidney.

In cases of chronic infections, such as chronic pyelonephritis,

the formation and role of TRM cells may differ from acute infections.

While TRM cells are typically associated with rapid immune

responses to reinfection, their role in chronic infections is more

complex. In chronic pyelonephritis, the persistent presence of

pathogens and ongoing inflammation may affect the dynamics of

TRM cells formation. It is possible that TRM cells are generated and

persist in the kidneys during chronic infection, but their function

may be impaired or dysregulated due to the prolonged

inflammatory environment (70). In such conditions, TRM cells

may contribute to the chronic inflammation by promoting tissue

damage and fibrosis, potentially leading to a maladaptive immune

response. Further research is needed to fully understand the

mechanisms underlying TRM cells persistence in chronic

infections and their dual role in both protective immunity and

tissue pathology.
5 Therapeutic implications and
future directions

The therapeutic potential of TRM cells in urinary tract diseases,

including infections, cancers, and chronic inflammatory conditions,

is an area of growing interest (Table 2). Harnessing the localized

immune response of TRM cells offers several promising strategies for

improving treatment outcomes. In the context of infections like UTIs,

vaccines designed to generate pathogen-specific TRM cells in mucosal

tissues could provide long-lasting protection and reduce recurrence

(71, 82). Enhancing TRM cells responses through adjuvants or

immune modulators could also improve the efficacy of current

vaccines and reduce the burden of recurrent infections (83). By

deepening our understanding of TRM cells biology in the context of

UTIs, novel interventions can be designed to improve long-term

immune protection while minimizing immune-mediated pathology.

In urinary tract cancers, TRM cells have demonstrated a

significant role in immune surveillance and anti-tumor immunity.

Strategies that aim to boost the function of TRM cells, such as ICIs

targeting PD-1/PD-L1 or enhancing their local activation, hold
TABLE 1 Roles of TRM cells in urinary tract diseases.

Disease type TRM phenotype Core functions Regulatory mechanisms

Bladder Cancer CD103+CD8+, PD-1+ Cytotoxicity, immune cell recruitment PD-1/PD-L1 inhibition, CXCR3-mediated homing

Prostate Cancer CD69+, low CD103 expression Limited functionality, immunosuppression TGF-b suppression, MDSC enrichment

Kidney Cancer CD103+CD8+, PD-1+ Immune surveillance, cytokine secretion PD-1-mediated exhaustion

Lupus Nephritis CD69+CD8+, CD103+ TH17 polarization, pro-inflammatory JAK-STAT activation, gut-kidney migration

Chronic Pyelonephritis CD4+ dominant, inflammatory phenotype Fibrosis, tissue damage Persistent antigen stimulation, IL-6/IL-23
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promise for improving response rates to immunotherapy (84, 85).

In addition to PD-1/PD-L1 inhibitors, recent studies have also

highlighted the importance of other immune checkpoints, such as

CXCR3 and IL-15, in regulating the immune response to urinary

tract tumors (86). CXCR3, a chemokine receptor, plays a crucial

role in the trafficking and retention of effector T cells, including

TRM cells, to tumor sites. Its expression on tumor-infiltrating

lymphocytes is associated with improved immune surveillance

and better responses to immunotherapy (87). Targeting CXCR3

may enhance T cell infiltration into tumors, especially in cancers

such as bladder and prostate cancer, where TRM cells are critical for

anti-tumor immunity. IL-15 is another key molecule involved in the

activation and maintenance of TRM cells. It promotes the survival

and function of memory T cells, including both CD4+ and CD8+

subsets. IL-15-based therapies are being explored as a way to boost

TRM cells responses in tumors by enhancing their persistence and

effector function. Recent preclinical and clinical studies suggest that

IL-15 can be used to improve the efficacy of immunotherapies,

particularly in cancers where TRM cells play a central role in local

immunity (88). Together with PD-1 blockade, targeting these

additional immune checkpoints could lead to more effective

immune responses by not only reinvigorating exhausted T cells

but also enhancing the recruitment and function of TRM cells within

tumors. Additionally, combining these approaches with

conventional therapies like chemotherapy or radiation could

optimize anti-tumor responses (89).

For chronic inflammatory diseases, targeting TRM cells presents

a unique challenge, as their persistent activation can contribute to

tissue damage and pain. Therapies that modulate TRM cell activity,

such as cytokine blockers or interventions that restore immune

homeostasis (e.g. Sparsentan, the dual angiotensin II receptor and

endothelin type A receptor antagonist), could reduce TRM cell

responses, alleviate symptoms and reduce inflammation without

compromising immune protection (69).
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Looking forward, research into the specific signaling pathways that

regulate TRM cell differentiation, retention, and activation will be crucial

for developing targeted therapeutic approaches. While TRM cells are

well recognized for their role in defending against acute reinfections,

their role in chronic infections, such as tuberculosis, HIV, and chronic

pyelonephritis, remains less explored. Future studies should focus on

understanding how TRM cells are generated and maintained in chronic

infection settings, and how their function may be altered over time in

the face of persistent antigen exposure and inflammation. Targeting the

modulation of TRM cells in chronic infections could lead to novel

therapeutic strategies to enhance long-term immunity without causing

excessive tissue damage. Immunotherapies targeting TRM cells in

tumors: TRM cells have emerged as critical players in anti-tumor

immunity, yet their full potential in cancer immunotherapy is still

not fully realized. Future research should explore how to enhance the

recruitment, persistence, and functionality of TRM cells in tumors,

particularly through combination therapies that target immune

checkpoints like PD-1, CXCR3, and IL-15. Investigating how TRM

cells interact with the TME and their potential exhaustion during long-

term antigen exposure could provide valuable insights into how to

prevent or reverse TRM cells exhaustion in cancers. TRM in vaccine

development: There is growing interest in developing vaccines that aim

to generate long-lasting TRM cells populations at mucosal surfaces, such

as the urinary tracts. These vaccines could be crucial for preventing

infections like UTIs. Future research should focus on identifying the

best strategies for inducing robust TRM cells responses throughmucosal

vaccination, as well as understanding how TRM cells contribute to

vaccine-mediated immunity in both infectious and cancer settings.
6 Conclusion

In conclusion, TRM cells play a crucial role in the immune

defense of the urinary tract, offering protection against infections,
TABLE 2 TRM cells as therapeutic targets in urinary tract diseases.

Disease
Potential
targets

Therapeutic strategy Challenges & prospects Reference

Urinary Tract
Infections

IL-15, CD103+

TRM cells
Vaccines promoting TRM

cells development
Balancing protective immunity and avoiding
chronic inflammation

(71, 72)

Bladder Cancer
PD-1/PD-L1,
CXCR3

PD-1/PD-L1 inhibitors, local TRM

cells enhancement
Preventing immune exhaustion in TRM cells; improving
delivery to the tumor microenvironment

(30, 73)

Interstitial Cystitis
Pro-inflammatory
cytokines

TRM cells inhibitors Identifying specific TRM cells populations driving pathology (74)

Kidney
Transplant
Rejection

Alloreactive TRM

cells, IL-2
TRM cells-specific immunosuppressants

Minimizing systemic side effects; avoiding suppression of
protective TRM cells

(75–77)

Renal Cell
Carcinoma

PD-1, CD103, IL-15
Checkpoint inhibitors, TRM cells-
promoting vaccines

Restoring TRM cells functionality in immunosuppressive
tumor environments

(61, 78, 79)

Pelvic
Inflammatory
Disease

CXCR6,
inflammatory
TRM cells

Local TRM cells modulation through
anti-inflammatory agents

Ensuring effective targeting while preserving necessary
immune responses

(80, 81)
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modulating tumor immunity, and influencing chronic

inflammatory diseases. While their ability to provide long-lasting,

localized immunity is promising, their dysregulation can contribute

to chronic inflammation and tissue damage, especially in conditions

like interstitial cystitis or chronic prostatitis. The therapeutic

potential of TRM cells is immense, particularly in developing

vaccines, enhancing cancer immunotherapy, and targeting

chronic inflammation. Beyond urinary tract cancers, TRM cells

have also been implicated in other malignancies, including lung

cancer, breast cancer, and colorectal cancer. In non-small cell lung

cancer, TRM cells enriched in tumor tissues have been associated

with improved responses to ICIs, particularly PD-1/PD-L1

blockade. Similarly, in breast cancer, TRM cells contribute to local

immune surveillance, though their exact role varies across

molecular subtypes. In colorectal cancer, TRM cells have been

linked to enhanced tumor control and better prognosis, especially

in microsatellite instability-high tumors. Future research should

explore how TRM cells contribute to tumor immunity across

different cancer types and how their functional states may vary

depending on the tumor microenvironment. Understanding the

mechanisms regulating TRM cells exhaustion and activation in

diverse cancers could provide insights into optimizing TRM-

targeted immunotherapies. Expanding research beyond urinary

tract cancers will be crucial for fully harnessing the therapeutic

potential of TRM cells in oncology. Future research should focus on

understanding the complex interactions of TRM cells in different

disease contexts and exploring strategies to harness their protective

functions while mitigating their pathological effects. By doing so, we

can develop more effective and personalized treatments for urinary

tract diseases.
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