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Pathogenic and therapeutic roles
of extracellular vesicles in sepsis
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Sepsis is a systemic injury resulting in vascular dysfunction, which can lead to

multiple organ dysfunction, even shock and death. Extracellular vesicles (EVs)

released by mammalian cells and bacteria have been shown to play important

roles in intercellular communication and progression of various diseases. In past

decades, the functional role of EVs in sepsis and its complications has been well

explored. EVs are one of the paracrine components of cells. By delivering

bioactive materials, EVs can promote immune responses, particularly the

development of inflammation. In addition, EVs can serve as beneficial tools for

delivering therapeutic cargos. In this review, we discuss the dual role of EVs in the

progression and treatment of sepsis, exploring their intricate involvement in both

inflammation and tissue repair processes. Specifically, the remarkable role of

engineered strategies based on EVs in the treatment of sepsis is highlighted. The

engineering EVs-mediated drug delivery and release strategies offer broad

prospects for the effective treatment of sepsis. EVs-based approaches provide

a novel avenue for diagnosing sepsis and offer opportunities for more

precise intervention.
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1 Introduction

Sepsis is a medical emergency without a clearly defined treatment method. It is one of

the most common causes of death, closely associated with uncontrolled systemic

inflammation (1, 2). The first modern definition of sepsis, proposed in 1992, described it

as an excessive inflammatory response to infection, identified by the presence of the

systemic inflammatory response syndrome (SIRS) (3). SIRS is characterized by two or more

abnormalities in temperature, heart rate, respiratory rate, or white blood cell count. The

pathobiology of sepsis is characterized by simultaneous inflammation and impaired

immune function, along with significant microvascular damage (4). A pathogen is

identified in about 60 to 70% of cases (5). The most frequent cause is bacterial infection,

either gram-positive or gram-negative, followed by fungal or viral infections. In 2017, there

were reported 11 million sepsis-related deaths globally, accounting for 19.7% of all global

deaths (6). Over the years, sepsis has remained a highly fatal condition with suboptimal
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diagnostic accuracy and limited therapeutic decision-making

capabilities. The outcome of the pathobiological process of sepsis

is organ damage, frequently leading to multiorgan failure. Sepsis is

often accompanied by widespread acute lung injury (ALI), acute

kidney injury (AKI), liver injury and myocardial injury, among

other life-threatening complications, for which timely and effective

pharmacological interventions are still lacking (7–9). Therefore,

studying the pathogenesis and intervention methods of sepsis is of

great significance for improving the prognosis of sepsis.

Extracellular vesicles (EVs) are small vesicles secreted by

various cells, consisting of a double-layered membrane structure

(10). According to the recommendation of the International Society

for Extracellular Vesicles (ISEV), EVs could be defined into

subtypes based on physical characteristics (e.g., size and density),

biochemical composition, descriptions of conditions, or cell of

origin (11). In previous studies, EVs have been commonly

referred to as exosomes, microvesicles, and apoptotic bodies (12).

In recent years, new types of EVs, such as retractosomes and

migrasomes, have been identified (13, 14). However, their

biogenesis and physiological functions remain largely unknown.

In this manuscript, we use the names of EVs as they appear in their

original articles. The formation and release of different types of EVs

are illustrated in the Figure 1. They contain a variety of bioactive

components such as proteins, RNA, lipids, etc., and play significant

roles in intracellular and intercellular communication (15–17). The

research indicates that EVs primarily deliver their cargo to target

cells via ligand-receptor interactions, endocytosis, and direct fusion

with the plasma membrane (18). Recent studies have shown that

EVs are deeply involved in the occurrence and development of

sepsis (19). On one hand, EVs secreted between cells under disease

conditions promote sepsis-induced inflammatory storms and organ

damage by interacting with recipient cells. On the other hand,

exogenous EVs can deliver therapeutic molecules to inhibit

systemic inflammation and promote tissue function recovery,

thus alleviating disease progression.
Abbreviations: EVs, Extracellular vesicles; SIRS, Systemic inflammatory response

syndrome; AKI, Acute kidney injury; ALI, Acute lung injury; ISEV, International

Society for Extracellular Vesicles; MVBs, Multivesicular bodies; CLP, Cecal

ligation and puncture; TNF-a, tumor necrosis factor-a; IL-6, Interleukin-6; IL-

1b, Interleukin-1b; EC-EVs, Endothelial cell-derived EVs; TLR4, Toll-like

receptor 4; ROS, Reactive oxygen species; PMNs, Polymorphonuclear

neutrophils; NF-kB, Nuclear factor kB; RTECs, Renal tubular epithelial cells;

HMGB1, High mobility group box protein 1; DAMP, Damage-associated

molecular pattern; DGKK, Diacylglycerol kinase kappa; NET, Neutrophil

extracellular trap; MSC, Mesenchymal stem cells; HMVECs, Human

microvascular endothelial cells; HMGB1, High mobility group box 1; ADSC-

EVs, Adipose MSC-derived EVs; BMSC-EVs, Bone marrow MSC-derived EVs;

PGE2, Prostaglandin E2; apoVs, Apoptotic vesicles; DIC, Disseminated

intravascular coagulation; VCAM1, Vascular cell adhesion molecule 1; ITGA4,

Integrin subunit alpha 4; Gran-MVs, Granulocyte-derived microvesicles; PGC,

Platelet granule content; LPS, Lipopolysaccharide; ER, Endoplasmic reticulum;

HIF-1a, Hypoxia-inducible factor 1a; L-Exo, LPS-pretreated BMSC-derived

exosomes; srIkB, Super-repressor IkB; ATG2B, Autophagy-related protein 2

homolog B; RIPC, Remote ischemic preconditioning.
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In this review, we will focus on the role of EVs as messengers

and therapeutic tools in the context of sepsis, with particular

attention to the advancements in engineering modifications to

enhance the efficacy of EVs. A deeper understanding of the

potential of EVs in the pathogenesis and therapeutic interventions

of sepsis can contribute to the timely resolution of this

medical challenge.
2 EVs-mediated intercellular
communication in sepsis

EVs are rich in various bioactive components and play a

significant role in intercellular communication. Current research

indicates that EVs participate in the occurrence and progression of

sepsis through multiple pathways (20). Increased plasma EVs levels

correlate with the severity of organ failure and can serve as

predictors of mortality in patients with sepsis (21). EVs could

serve as an innovative mode of intercellular communication in

the process of sepsis. In this section, we focus on the changes in

cargo of EVs in sepsis and how EVs from different sources

participate in various pathological processes and organ

dysfunction in sepsis.

Circulating EVs in the body, which carry biomarkers and

mediators of sepsis, have garnered interest. EVs containing an

abundance of cytokines and chemokines play crucial roles in T cell

differentiation, proliferation, and chemotaxis throughout the course

of sepsis (22). EVs derived from individuals experiencing septic shock

carry miRNAs and mRNAs associated with pathogenic pathways,

such as inflammatory response, oxidative stress, and cell cycle

regulation (23). Circulating EVs notably exacerbate the

inflammatory response to sepsis in both serum and lung tissue by

enhancing the production of proinflammatory factors such as tumor

necrosis factor-a (TNF-a), interleukin-6 (IL-6), and interleukin-1b
(IL-1b) (24). Compared with healthy individuals, 354 proteins, 195

mRNAs, 82 lncRNAs, and 55 miRNAs were found to be differentially

expressed in serum exosomes from septic patients (25). Furthermore,

pretreating septic mice with serum exosomes obtained from mice

undergoing cecal ligation and puncture (CLP) notably suppressed the

expression of proinflammatory cytokines and mitigated tissue

damage. Caspase-1, a member of the cysteine protease family, is

essential for regulating inflammatory responses (26). miR-126 could

enhance the outcomes of acute lung injury induced by

lipopolysaccharide and sepsis induced by cecal ligation and

puncture (27). Increased caspase-1 activity and decreased levels of

miR-126 in circulating extracellular vesicles are correlated with organ

failure and mortality in sepsis (28). The combination of serum

exosomal miR-483-3p and let-7d-3p showed diagnostic value for

sepsis (29). The multi-omics analyses above indicate that EVs may

play a significant role in the progression of sepsis. During sepsis,

endothelial-derived microvesicles exacerbate endothelial

inflammation by enhancing the adhesion between neutrophils and

the endothelium and facilitating the release of neutrophil extracellular

traps that contain citrullinated histones and myeloperoxidase (30).

Endothelial EVs induce a pro-inflammatory phenotype in monocytes

through aberrant expression of miR-99a and miR-99b, thus
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1535427
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


You et al. 10.3389/fimmu.2025.1535427
inhibiting mTOR expression (31). Lipinski et al. demonstrated that

inflammasome-activated macrophages-derived EVs were able to

transmit a robust IL-1b-dependent inflammatory response in sepsis

mice (32). The shuttle of EVs is beneficial for the transmission of

inflammatory signals in sepsis, thereby accelerating the progression of

sepsis. The development of EVs-based detection technologies may

provide valuable diagnostic and therapeutic insights for the ongoing

battle against sepsis.

Sepsis-induced ALI stands as a critical complication and the

primary contributor to mortality (33). Recent findings suggest that

overactivation of macrophages could lead to detrimental lung

inflammation implicated in sepsis-induced ALI (34). During sepsis,

endothelial cell-derived EVs (EC-EVs) with heightened levels of

vascular cell adhesion molecule 1 (VCAM1) stimulate the NF-kB
pathway upon binding to integrin subunit alpha 4 (ITGA4) receptors

on monocytes (35). This interaction modulates monocyte

differentiation, shifting them toward a proinflammatory M1

macrophage phenotype, thereby promoting sepsis-related ALI. EVs

originating from CD4+ T cells delivered diacylglycerol kinase kappa

(DGKK) to induce apoptotic cell death, oxidative damage, and

inflammation in alveolar epithelial cells, exerting toxic effects (36).

The messenger role of EVs in mediating the crosstalk between

alveolar epithelial cells and alveolar macrophages is crucial for ALI

progression. Liu et al. showed alveolar epithelial cells-derived

exosomes could deliver miR-92a-3p to activate macrophages,

resulting in activation of the NF-kB pathway and downregulation

of PTEN expression along with pulmonary inflammation (37). Gong
Frontiers in Immunology 03
et al. demonstrated that alveolar epithelial cells derived exosomes

containing tenascin-C (TNC) bind to Toll-like receptor 4 (TLR4) on

macrophages, leading to increased production of reactive oxygen

species (ROS) and subsequent activation of the NF-kB pathway (38).

The processes ultimately result in macrophage pyroptosis, thus

exacerbating the release of inflammatory cytokines. On the other

hand, exosomal APN/CD13 derived from macrophages regulates

necroptosis in lung epithelial cells by interacting with the cell surface

receptor TLR4, thereby triggering ROS production, mitochondrial

dysfunction, and NF-kB activation (39). Polymorphonuclear

neutrophils (PMNs) are pivotal in sepsis-related ALI (40). Jiao

et al. revealed that exosomal miR-30d-5p from PMNs contributed

to sepsis-related ALI by inducing M1 macrophage polarization and

triggering macrophage pyroptosis through the activation of NF-kB
signaling (41). In another study, M2 macrophage-derived exosomes

(M2-Exos) were able to inhibit PMN migration and neutrophil

extracellular trap (NET) formation, thus alleviate lung injury and

reduce mortality in a sepsis mouse model (42). Mechanistically, the

secreted prostaglandin E2 (PGE2) contained within M2-Exos could

bind to the EP4 receptor expressed on PMNs, thereby upregulating

the expression of 15-LO in PMNs. In addition to EVs in the

pulmonary microenvironment, circulating EVs are also involved in

the progression of sepsis-induced ALI. Plasma extracellular vesicles

deliver miR-210-3p, targeting ATG7 to enhance sepsis-induced ALI

by modulating autophagy and triggering inflammation in

macrophages (43). In addition, serum exosomes could transfer

miR-155 to macrophages, triggering the activation of nuclear factor
FIGURE 1

Biosynthesis and function of EVs. The biosynthesis of exosomes involves several stages, including lipid raft-mediated endocytosis, the formation of
multivesicular bodies (MVBs), and exosome release. Microvesicles are formed through the direct budding of the cell membrane. Apoptotic bodies
are produced by apoptotic cells. Extracellular vesicles (EVs) deliver their cargos into target cells through mechanisms such as ligand-receptor
interaction, endocytosis, and direct fusion with the plasma membrane.
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kB (NF-kB) and prompting the secretion of TNF-a and IL-6 in ALI

(44). Sepsis plasma-derived exosomal miR-1-3p was able to induce

endothelial cell dysfunction by targeting SERP1 (45). This inhibition

results in decreased cell proliferation, increased apoptosis,

cytoskeleton contraction, heightened monolayer endothelial cell

permeability, and membrane injury. Together, these investigations

highlight the significance of circulating EVs released into the

bloodstream as crucial mediators of septic lung injury through the

transport of cargo via EVs (Figure 2).

Sepsis-induced AKI and cardiomyopathy are common

complications of sepsis. Sepsis-associated AKI is a critical

complication with high morbidity and mortality rates among

critically ill patients (46). Sepsis-induced cardiomyopathy is

prevalent among septic patients, and is distinguished by a

decreased ejection fraction (47). Studies have shown that EVs are

involved in kidney and myocardial damage during the progression

of sepsis. Renal tubular epithelial cells (RTECs) are the

predominant cell type in the kidney and have a vital role in

pathological renal injuries (48). Plasma EVs in circulation

primarily derive from platelets and can contribute to organ

dysfunction during sepsis. EVs loaded with ARF6 activate ERK/

Smad3/p53 signaling in RTECs, exacerbating sepsis-induced AKI

(49). M1 and M2 macrophages exosomal miR-93-5p could

regulate the TXNIP expression directly to influence the pyroptosis

in RTECs (50). During sepsis-induced cardiomyopathy,

endothelial HSPA12B participates in regulating macrophage pro-

inflammatory responses via EVs (51). miRNAs originating from

extracellular vesicles derived from neutrophils play a significant role

in the progression of septic disease severity towards
Frontiers in Immunology 04
cardiomyopathy. Ye et al. found that 38 miRNAs showed

differentially expression between the septic cardiomyopathy and

without cardiomyopathy patients, especially the independent

predictor potential of miR-150-5p (52). In septic myocardial

depression, circulating EVs promoted the pyroptosis of

cardiomyocyte through miR-885-5p via HMBOX1 (53). Septic

exosomes were found to be highly enriched with ROS, which can

be transferred to endothelial cells. This transfer leads to the

formation of podosome clusters in target endothelial cells,

resulting in the relocation of ZO-1, vascular leakage, and cardiac

dysfunction (54). Overall, these studies emphasize the crucial roles

of EVs in septic development towards cardiomyopathy.

In addition to the aforementioned complications, liver injury is

also a common organ dysfunction in sepsis, manifesting in around

50% of septic patients (55). EVs have been shown to be involved in

sepsis induced liver injury. High mobility group box protein 1

(HMGB1) serves as a prototypical damage-associated molecular

pattern (DAMP) molecule, exerting cytotoxic effects that result in

cell death and tissue injury (56). Utilizing transferrin-mediated

endocytosis, macrophage-derived EVs transport HMGB1 to target

cells, inducing hepatocyte pyroptosis through the activation of

NLRP3 inflammasomes (57). Platelet-derived exosomes deliver

HMGB1 and/or miR-15b-5p and miR-378a-3p to induce NET

formation and subsequent organ injury by the activation of Akt/

mTOR autophagy pathway (58). Yang and colleagues discovered

that macrophages possess the capability to absorb extracellular

lactate using monocarboxylate transporters (MCTs), thus

facilitating HMGB1 lactylation through a p300/CBP-dependent

pathway (59). The lactylated/acetylated HMGB1 is subsequently
FIGURE 2

The intercellular communication mediated by EVs in sepsis-induced acute lung injury. During the process of sepsis-induced acute lung injury, EVs-
mediated shuttling of miRNA and proteins regulates the signaling between endothelial cells, macrophages, monocytes, and neutrophils, promoting
inflammatory responses and thereby accelerating lung injury.
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discharged from macrophages through exosome secretion,

consequently enhancing endothelium permeability.
3 The beneficial effects of EVs in
sepsis treatment

Patients with severe sepsis often exhibit a heightened

inflammatory response, which is a key factor leading to multiple

organ dysfunction (60). Therefore, anti-inflammatory intervention

has been considered an effective approach in the treatment of sepsis.

Mesenchymal stem cells (MSC) are the most common source of

EVs used in the treatment of sepsis. MSC-derived exosomes could

mitigate the destructive effects of sepsis-induced inflammation by

reducing inflammatory factors and tissue damage, leading to

decreased levels of cytokines such as IL-6, IL-1b, and TNF-a
(61). miRNAs packaged within EVs have been implicated in the

pathophysiology of sepsis. Sun et al. revealed that MSC-derived

exosomes containing miR-27b suppressed sepsis progression by

reducing the production of pro-inflammatory cytokines (62). This

effect was achieved through the downregulation of JMJD3 and

inhibition of the NF-kB signaling pathway in bone marrow-derived

macrophages. Similarly, adipose MSC-derived EVs (ADSC-EVs)

were able to attenuate sepsis-induced inflammation by modulating

the Notch/miR-148a-3p signaling pathway, which also decreased

macrophage polarization to M1 (63). In addition to inflammation

response, oxidative stress also deeply participates in the progression

of sepsis. ADSC exosomes exerted protective effect in sepsis by

relieving inflammatory cytokines storm and oxidative stress (64).

Mechanistically, ADSC exosomes could regulate Nrf2/HO-1 axis in

macrophages, thus promoting the polarization of macrophages

from the M1 to M2 phenotype. Bone marrow MSC-derived EVs

(BMSC-EVs) therapy enhanced survival, decreased sepsis-induced

inflammation, reduced pulmonary capillary permeability, and

improved liver and kidney function via delivery of miR-21a-5p

(65). Therefore, the intervention effect of EVs on inflammatory

response is a key factor in the treatment of sepsis. MSC-derived

apoptotic vesicles (apoVs) could improve survival and alleviate

multiple organ dysfunction in septic mice (66). Mechanistically, it is

discovered that apoVs infused through the tail vein predominantly

gather in the bone marrow of septic mice through electrostatic

interactions with positively charged NET. Additionally, apoVs

induce a shift in neutrophils from NETosis to apoptosis via the

apoV-Fas ligand (FasL)-activated Fas pathway. Pyroptosis is an

inflammatory programmed cell death process (67). EVs derived

from pyroptotic MSC show promising benefits in the treatment of

sepsis. Huang et al. showed that pyroptotic EVs specifically express

pyroptotic maker ASC and bind to B cells to repress cell death by

repressing Toll-like receptor 4 (68). The pyroptotic EVs were found

to alleviate inflammatory responses and improve the survival rate of

mice with sepsis.

In addition to MSC, EVs derived from other cell sources have

also been shown to have anti-sepsis effects. Zhou and colleagues

demonstrated that endothelial progenitor cells derived exosomes

may prevent microvascular dysfunction and improve sepsis

outcomes potentially through the delivery of miR-126 (69).
Frontiers in Immunology 05
Mechanistically, miR-126-5p and 3p inhibited the levels of

lipopolysaccharide (LPS)-induced HMGB1 and VCAM1,

respectively, in human microvascular endothelial cells

(HMVECs). Endothelial progenitor cell-derived EVs transferred

lncRNA TUG1, facilitating M2 macrophage polarization by

disrupting miR-9-5p-mediated inhibition of SIRT1 (70). Septic

shock is marked by profound systemic inflammation, heightened

coagulation activation, and impaired fibrinolysis, culminating in

disseminated intravascular coagulation (DIC) (4). Cointe et al.

demonstrated that elevated levels of platelet granule content

(PGC) in granulocyte-derived microvesicles (Gran-MVs) reduce

thrombus formation and enhance survival, indicating a protective

function of Gran-MVs in sepsis (71). DIC is a common severe

complication of sepsis, currently lacking effective treatment

methods. In another study, Bao and colleagues demonstrated that

neutrophils mitigate sepsis-associated coagulopathy via EVs

containing superoxide dismutase 2 (72). Mechanist ic

investigations revealed that superoxide dismutase 2 is essential for

inducing neutrophil anti-thrombotic function by preventing

endothelial reactive oxygen species accumulation and relieving

endothelial dysfunction (Figure 3).

EVs derived from multiple sources have been used for the

intervention of sepsis-induced ALI. A study compared the

protective effects of exosomes derived from adipose tissue, bone

marrow, and umbilical cord on sepsis-induced ALI (73). The results

showed that all three types of exosomes effectively downregulated

sepsis-induced macrophage glycolysis and inflammation, improved

lung pathological damage, and enhanced the survival rate of septic

mice. Research has found that ADSC-derived exosomes deliver

miR-125b-5p to inhibit Keap1, thereby upregulating Nrf2/GPX4,

reducing ferroptosis in microvascular endothelial cells, ultimately

alleviating lung tissue damage and lowering mortality rates (74).

Additionally, ADSC-derived exosomes could suppress macrophage

aggregation and IL-27 secretion in lung tissues, leading to reduced

pulmonary edema and pulmonary vascular leakage (75). The

excessive expression of SAA1 in BMSC-derived exosomes

suppressed lung injury by reducing the levels of endotoxin, TNF-

a, and IL-6 induced by CLP or LPS (76). Exosomes from

endothelial progenitor cells were able to enhance the prognosis of

lipopolysaccharide-induced ALI by delivering miR-126 to the

injured alveoli (77). Endoplasmic reticulum (ER) stress

exacerbates sepsis-induced ALI. Chiang et al. showed that human

p l a c e n t a l MSC -d e r i v e d e x o s ome s c o u l d a l l e v i a t e

lipopolysaccharide-induced ER stress, inflammation, and lung

injury in mice (78).

Some studies have explored the beneficial effects of EVs in

sepsis-related AKI. The most common contributing factor for AKI

among ICU patients is septic shock, accounting for approximately

47.5%, and is associated with a high in-hospital mortality rate (79).

Traditional methods to address septic shock, such as fluid

administration, antibiotic use, and vasopressors, have not led to

improved outcomes in cases of sepsis-related AKI (80). Therefore,

EVs-based biologic therapy has significant clinical value in

improving sepsis-associated AKI. BMSC-derived exosomes could

alleviate inflammation and apoptosis in sepsis-associated AKI

through activating autophagy (81). ADSC-derived exosomes were
frontiersin.org
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able to protect against sepsis induced inflammation and apoptosis

in AKI via activation of SIRT1 signaling pathway (82). Zhang et al.

found that endothelial progenitor cells-derived exosomes could

release miR-21-5p and miR-93-5p to mitigate sepsis-induced AKI

by suppressing RUNX1 expression and KDM6B/H3K27me3/TNF-

a axis, thereby enhancing renal function and ameliorating renal

tissue pathology (83, 84). This intervention attenuated serum

inflammatory response and diminishes apoptosis and oxidative

stress in renal tissues.

EVs have also shown great potential for application in sepsis-

induced myocardial and liver injuries. In a study, Li et al. found that

MSC-derived exosomes prevented sepsis-induced myocardial

injury by delivering circRTN4 to inhibit miR-497-5p, thereby

upregulating MG53 in cardiomyocytes (85). In another research,

Zhou and colleagues demonstrated that umbilical cord MSC-

derived exosomes transported Pink1 mRNA to recipient

cardiomyocytes, enhancing PINK1 expression (86). This process

helped mitigate mitochondrial calcium overload in sepsis by

restoring mitochondrial calcium efflux through the PINK1-PKA-

NCLX axis. For acute liver injury, treatment with MSC-EVs led to a

notable decrease in the expression of multiple glycolysis-related

enzymes and suppressed glycolytic flux by inhibiting the expression

of hypoxia-inducible factor 1a (HIF-1a), thereby effectively

dampening macrophage inflammatory responses (87). MSC-
Frontiers in Immunology 06
derived exosomal miR-26a-5p could significantly protect against

hepatocyte death and liver injury caused by sepsis through targeting

lncRNA MALAT1 (88). LPS-pretreated BMSC-derived exosomes

(L-Exo) notably alleviated septic liver injury induced by cecal

ligation and puncture and suppressed macrophage STING

signaling (89). Mechanistically, L-Exo inhibited macrophage

STING signaling by delivering ATG2B to promote mitophagy

and prevent the release of mtDNA into the cytosol. In addition,

the combination of MSC and hepatocyte-derived exosomes with

imipenem was able to improve the inflammatory response and liver

damage in sepsis, thus increasing survival rates (90). Compared to

treating with a single drug, combination therapy offers an

alternative strategy (Figure 4).
4 Engineering methods for improving
treatment effect of EVs in sepsis

EVs hold promise in the treatment of sepsis, yet they suffer from

limitations such as low therapeutic cargos and weak targeting. To

overcome these shortcomings, various engineering strategies for

modifying EVs have been developed. In this section, we introduce

genetic and non-genetic methods for remodeling EVs and focus on

the enhanced role of engineered EVs in sepsis therapy.
FIGURE 3

The role of EVs in the therapeutic intervention of sepsis. EVs regulate multiple intracellular signaling pathways in target cells by delivering functional
cargoes such as miRNA, lncRNA, proteins, etc., thereby suppressing inflammatory responses, reducing thrombosis formation, and consequently
slowing down the progression of sepsis.
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To increase the functional cargos within EVs, exogenous

manipulation of donor cells or isolated EVs is employed. Li et al.

discovered that tumor cell-secreted exosomes produced after LPS

treatment are more effective in improving sepsis compared to

normal secretory exosomes due to the presence of protective

miRNAs (91). To mimic these exosomes, they developed exosome

mimics by incorporating the mentioned microRNAs into

hyaluronic acid-polyethylenimine nanoparticles. These exosome

mimics, with specific miRNA compositions, mitigate sepsis in

mice and cynomolgus monkeys, suggesting that biomimetic

simulation of tumor-suppressive exosomes may offer a promising

therapeutic approach for treating sepsis and cytokine-storm-related

conditions. MicroRNA-146a is a widely reported negative

immunoregulatory small noncoding RNA (92). In another study,

researchers developed an engineered macrophages-derived apoEVs

based multifunctional agents for sepsis treatment (93). ApoEVs,

engineered with mesoporous silica nanoparticles carrying miR-

146a, captured iron and neutralized a-toxin using their natural

membrane, and modulated inflammation by releasing miR-146a in

phagocytes. These engineered apoEVs exhibited a high capacity for

capturing toxins and iron, ultimately providing protection against

sepsis associated with high iron loads. Dysregulation of M1

macrophage polarization in sepsis leads to serious inflammation.

In a study, exosomes were modified through introduction of super-
Frontiers in Immunology 07
repressor IkB (srIkB) by an optogenetically engineered exosome

system (94). In septic mouse models, intraperitoneal administration

of purified srIkB-loaded exosomes alleviates mortality and systemic

inflammation, potentially by blocking the translocation of NF-kB
into the nucleus in neutrophils and monocytes. In another study,

EVs derived from immortalized bone marrow-derived

macrophages are loaded with siRNA targeting the chemokine

receptor CCR2 for targeted drug delivery (95). These EVs

containing siCCR2 not only inhibited the chemotaxis of

inflammatory monocytes/macrophages but also alleviated septic

symptoms in mice by reducing the mobilization of splenic

inflammatory monocytes and attenuating the subsequent serum

cytokine storm.

In addition to direct manipulation of isolated EVs, modifying

the cell culture environment or implementing exogenous

pretreatment is an effective strategy to enhance the therapeutic

efficacy of EVs. EVs derived from pretreated MSC have

demonstrated significant promise in addressing diverse

inflammatory conditions. Pre-treated with LPS, BMSC-EVs

significantly alleviated septic liver injury induced by cecal ligation

and puncture through the inhibition of macrophage STING

signaling (89). These BMSC-EVs delivered autophagy-related

protein 2 homolog B (ATG2B) for promoting mitophagy and

suppressing the release of mtDNA into the cytosol. Additionally,
FIGURE 4

The beneficial effects of EVs in sepsis-related complications. EVs modulate intracellular signaling in effector cells of target organs by delivering
bioactive components, thereby inhibiting inflammatory responses, reducing cell death and oxidative stress, and consequently alleviating
tissue damage.
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IL-1b-primedMSC-derived exosomes exhibited beneficial effects on

macrophage polarization and sepsis (96). These exosomes delivered

miR-21 to macrophages, targeting PDCD4 and inducing M2

polarization. These studies underscore a novel basis for inducing

immunomodulation for the therapeutic application of MSC-EVs in

sepsis. Hypoxia triggers the upregulation of genes associated with

proliferation and angiogenesis in MSC, enhancing their

differentiation capacity and altering the content of EVs (97–99).

Cao et al. showed that hypoxia-preconditioned exosomes derived

from ADSC exhibited greater suppression of renal vascular leakage

and reduced renal dysfunction compared to control exosomes,

thereby improving the survival rate of septic mice (100). These

protective effects could be partially attributed to the renal

microvascular protective role of exosome-derived circ_0001295.

Aside from the direct administration of exogenous EVs,

inc r ea s ed se rum EVs induced by remote i s chemic

preconditioning (RIPC) have been shown to be beneficial in

treating sepsis. Pan et al. demonstrated that RIPC, induced by

short periods of ischemia and reperfusion in femoral arteries,

confers protective benefits against sepsis-induced AKI through

the transportation of miR-21 via serum exosomes (101).

Mechanistically, exosomal miR-21 was assimilated into renal

tubular epithelial cells and subsequently aimed at the downstream

PDCD4/NF-kB and PTEN/AKT pathways, subsequently exerting

anti-inflammatory and anti-apoptotic effects. For sepsis induced

ALI, RIPC could attenuate pulmonary edema, and inflammatory

cell infiltration into lung tissues (102). The elevated expression miR-

142-5p in serum EVs could target PTEN to activate the PI3K/Akt

signaling pathway, thus alleviating ALI. These studies propose novel

approaches for intervening in sepsis and highlight the crucial role of

EVs in mediating therapeutic benefits.

The weak targeting ability of EVs is one of the main obstacles

hindering their application in vivo. Li and colleagues demonstrated

that exosomes derived from CD5L lentivirus infection and kidney

tubular cell targeting peptide LTH modified fibroblastic reticular

cells showed enhanced binding specificity to kidney tubular cell

(103). The CD5L-enriched exosomes selectively adhered to primary

kidney tubular cells, fostering kinase PINK-ubiquitin ligase Parkin-

mediated mitophagy. This process suppressed pyroptosis and

enhanced kidney function by impeding NLRP3 inflammasome

activation, ultimately ameliorating the sepsis survival rate.

Membrane fusion technology is also widely applied to improve

the therapeutic targeting of EVs. Neutrophils are the initial cells

recruited to the site of injury during an inflammatory response.

Neutrophil membrane was performed on panax ginseng root-

derived exosomes following by miR-182-5p electroporation to

obtain engineered exosomes (104). Compared with control

exosomes, engineered exosomes significantly improved sepsis-

induced ALI via target regulation of NOX4/Drp-1/NLRP3

signal pathway.

To target the activated macrophages in sepsis, Fan et al.

developed a method involving exosomes encapsulation with

circRNA mSCAR and electroporation with TPP-PDL, promoting

targeted delivery into mitochondria for macrophage polarization

towards the M2 subtype (105). This targeted delivery system

attenuates systemic inflammation and reduces mortality in septic
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mouse and cell models. In order to inhibit overactivated

macrophages, Zheng et al. developed folate-functionalized

exosomes to target inflammatory macrophages during sepsis in

the lungs (106). They found that folate-functionalized exosomes co-

loaded with resveratrol and celastrol demonstrated potent anti-

inflammatory and immunosuppressive effects against sepsis-

stimulated M1 macrophages, thus reducing acute lung injury.

These effects were mediated through the regulation of NF-kB and

ERK1/2 signaling pathways. Collectively, the strategy of engineered

EVs for targeting inflammatory macrophages during sepsis

development offers a new avenue for sepsis treatment (Figure 5).
5 Discussion

Sepsis results from a dysregulated host response to infection,

leading to life-threatening organ dysfunction. Despite progress in

treatment, the high mortality rate persists due to rising antibiotic

resistance and an aging population. Sepsis patients and normal

controls exhibit significant differential expression of molecules in

serum EVs, including proteins, mRNA, miRNAs, and lncRNAs. An

integrative multiomics analysis revealed that components of EVs

were linked to cytokine storm, complement and coagulation cascades

and endothelial barrier function (25). These studies suggest that EVs

could potentially serve as new markers for the diagnosis and

monitoring of sepsis. EVs, particularly those derived from MSC,

have been shown to promote the restoration of homeostasis in sepsis

and alleviate organ damage, facilitating functional recovery. However,

the mechanisms by which EVs promote tissue recovery during sepsis

have not been fully elucidated. Numerous studies have demonstrated

the effectiveness of administration of EVs in vivo, there is a lack of

detailed elucidation of specific signaling pathways, which introduces

many unknown and ambiguous areas for potential clinical

translation research.

To further enhance the therapeutic efficacy of EVs and overcome

the limitations of natural EVs, various engineering modifications are

employed to boost the therapeutic molecular activity, targeting

specificity, and biocompatibility of EVs. Collectively, strategies to

modify EVs could be a new avenue in developing therapeutics against

sepsis and its complications. Currently, the main methods employed

involve genetic or non-genetic modifications of parent cells or

isolated EVs. Manipulating donor cells to obtain engineered EVs

can preserve most of the biophysical characteristics of EVs. However,

modification of parent cells may have unforeseen consequences on

the biology of EVs, ultimately interfering with EV biogenesis and

altering other biological properties. Therefore, an increasing number

of studies are focusing on the direct manipulation of EVs. Direct

modification of isolated EVs does not alter the biological origin of

EVs and allows for the direct impartation of desired biological

properties using various methods as needed.

Multiple studies have reported the beneficial effects of EVs,

especially those derived from mesenchymal stem cells, in the

treatment of sepsis. However, the therapeutic effects of EVs have

not yet been widely recognized. A meta-analysis suggests that the

treatment of MSC-EVs may be associated with lower mortality rates

in septic animal models (107). Nevertheless, there is a lack of
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standardized data on the dosage, source, and timing of EVs

administration for comparison. The therapeutic effects of EVs

derived from MSC may vary depending on their source, thus

more research is needed to further investigate the complex cargo

functionality within EVs (108). Due to the heterogeneous nature of

EVs, a more precise definition and classification of EVs subtypes

may help enhance the feasibility and therapeutic advantages of EVs

in clinical applications. Additionally, there is controversy

surrounding the outcomes of interrupting the cascade of sepsis-

induced inflammatory responses. More studies are needed to

understand the origin and characteristics of EVs, laying the

groundwork for comprehending their diversity and complexity.

Therefore, it is essential to comprehend the mechanisms of

inflammation and develop new treatment approaches to improve

the prognosis of sepsis.

In addition to EVs released by mammalian cells during sepsis,

numerous studies have highlighted the multifaceted roles of bacterial

EVs in this condition. As key mediators of intercellular

communication, bacterial EVs impact bacterial pathogenicity, disease

mechanisms, and the modulation of the host immune response (109).

During sepsis progression, bacterial EVs contribute to pro-

inflammatory responses by activating pattern recognition receptors

and regulating cytokine release pathways (110). Furthermore, EVs

derived from probiotic or commensal bacteria may promote anti-

inflammatory responses by modulating anti-inflammatory TLR
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pathways and cytokine production. For instance, EVs released from

probiotic bacteria can enhance macrophage phagocytosis in

polymicrobial sepsis through activation of the FPR1/2 pathway

(111). Additionally, outer membrane vesicles derived from

Escherichia coli Nissle 1917 have been shown to improve

immunomodulation and antimicrobial activity in RAW264.7

macrophages (112). These findings underscore the potential of

bacterial EVs in modulating host immune cell functions, thus

enriching our understanding of EVs as a critical mechanism in both

the development and therapeutic management of sepsis.

Overall, EVs-based therapies hold great promise as a potential

treatment strategy for sepsis and related complications. EVs also

have tremendous potential for early diagnosis and dynamic

monitoring of sepsis. However, there is still a long way to go

before clinical translation. Extra efforts are needed in

standardizing EVs research, understanding their pathogenic

mechanisms, and implementing long-term monitoring.
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FIGURE 5

The application of engineered EVs in the treatment of sepsis. Genetic or non-genetic modification strategies enhance the bioactivity or targeting of
EVs. These engineered EVs deliver functional cargos to target cells, eliciting biological effects, thereby alleviating sepsis and associated
tissue dysfunction.
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