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Systemic lupus erythematosus (SLE) is a chronic inflammatory and autoimmune

disease with multiple tissue damage. However, the pathology remains elusive,

and effective treatments are lacking. Multiple types of programmed cell death

(PCD) implicated in SLE progression have recently been identified. Although

ferroptosis, an iron-dependent form of cell death, has numerous

pathophysiological features similar to those of SLE, such as intracellular iron

accumulation, mitochondrial dysfunction, lipid metabolism disorders and

concentration of damage associated-molecular patterns (DAMPs), only a few

reports have demonstrated that ferroptosis is involved in SLE progression and

that the role of ferroptosis in SLE pathogenesis continues to be neglected.

Therefore, this review elucidates the potential intricate relationship between

SLE and ferroptosis to provide a reliable theoretical basis for further research on

ferroptosis in the pathogenesis of SLE.
KEYWORDS

systemic lupus erythematosus (SLE), ferroptosis, interferons (IFNs), mitochondrial,
damage-associated molecular patterns (DAMPs)
1 Introduction

Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease

characterized by inflammation and immune-mediated injury to various organs and systems.

Approximately 3.4 million people are affected by SLE, with approximately 400,000 people

diagnosed with SLE each year worldwide (1, 2). Despite the diversity of clinical manifestations
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and the extremely complex pathogenesis in SLE, high levels of

interferons (IFNs) and autoantibodies are common features (3),

which also are primarily the result of cell death. In SLE, excessive

cell death and impaired clearance machinery contribute to the

continuous release of intracellular nucleic acids and their complexes

into the extracellular space, thereby promoting responses by

autoreactive B cells and IFN-responsive mechanisms (4).

Interestingly, some prevalent features of SLE, including iron

overload, mitochondrial dysfunction, lipid metabolism disorders and

damage associated molecular pattern (DAMP) concentrations, are

complexly associated with cell death, especially ferroptosis (5, 6).

Ferroptosis is an iron-dependent immunogenic form of cell

death that is distinct from cell death mediated by perforin rupture

(7). The occurrence of ferroptosis is attributed mainly to an

imbalance in intracellular oxidation and antioxidant mechanisms,

which triggers a cascade of hydrogen peroxide-lipid reactions and

mediates the rupture of the cell membrane. Its mechanism mainly

includes lipid peroxidation (mainly involving iron homeostasis and

mitochondrial dysfunction) and antioxidant system disorders

[mainly involving the cystine/glutamate transport system (xCT),

glutathione (GSH)-glutathione peroxidase 4 (GPX4)] (5).

Ferroptosis is induced by many factors, such as excessive DAMPs

[IFN-a, IFN-g, high-mobility group box 1 (HMGB1)] (8), ionizing

radiation (9), the accumulation of iron, and increases in free radicals

and oxidized lipids (10). Although the physiological role of

ferroptosis is still unclear, its pathological role in a variety of

acute and chronic diseases has been widely reported (11, 12), and

it is potentially closely related to the pathogenesis of SLE (13, 14).

To date, the pathogenesis of SLE has not been classified. PCD

has been shown outstanding role in SLE pathogenesis. Ferroptosis is

a novel form of PCD, which exhibits several pathophysiological

features reminiscent of those seen in SLE, including intracellular

iron accumulation, mitochondrial dysfunction, lipid metabolism

disorders, and regulation by DAMPs (Table 1). These similarities

warrant further exploration of the potential interplay between

ferroptosis and SLE pathogenesis. Although ferroptosis has been

reported to play a role in SLE, the relationship between ferroptosis

and SLE remains unclear. Therefore, this review discusses those

parallel features between ferroptosis and SLE promote further

research on ferroptosis in the pathogenesis of SLE.
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2 Primary regulation in ferroptosis

Current evidence demonstrated intracellular oxidation primary

related to some intracellular alterations, encompassing iron

accumulation, mitochondrial dysfunction and lipid metabolism

disorder (5). And antioxidant systems related to defend ferroptosis

mainly including the xCT-GPX4, ferroptosis suppressor protein 1

(FSP1)-coenzyme Q10 (CoQ10), Guanosine triphosphate

cyclohydrolase 1 (GCH1)-tetrahydrobiopterin (BH4) and

dihydroorotate dehydrogenase (DHODH)-dihydroubiquione

(CoQH2) systems (5, 25). Conceivably, biological processes related

to the homeostasis of oxidation-reduction are peculiarly prone to

regulate ferroptosis, such as lipogenesis (26, 27), autophagy (mainly

including ferritinophagy, lipophagy and mitophagy) (28, 29), and the

tricarboxylic acid (TCA) cycle (17). Moreover, plenty of and

metabolic molecules are crucial for primary ferroptostic

suppressors, such as: isopentenylation is required for the synthesis

of selenoenzymes including GPX4 and ubiquinone (also known as

coenzymeQ) is a major substrate of FSP1, both them is metabolites of

mevalonate pathway (30). Additionally, multiple DAMPs can

regulate ferroptosis, such as: IFNs can regulate solute carrier family

7a member 11 (SLC7A11, subunit of xCT) and GPX4 expression by

activating JAK-STAT1 signaling (8); HMGB1 can induce ferroptosis

by promoting autophagy and iron accumulation (31, 32);

Mitochondrial DNA (mtDNA) performs ability to trigger

ferroptosis by activating the cyclic GMP-AMP receptor stimulator

of interferon genes (STING) (33).
3 Similar features in SLE
and ferroptosis

3.1 Iron accumulation

Iron is one of the essential trace elements in the human body

and is crucial for maintaining various biological functions, such as

transporting oxygen, participating in the production of energy in

the respiratory chain, and being involved in key biological reactions

as a key component of various enzymes (34). However, iron

accumulation can also mediate a series of pathophysiological
TABLE 1 Parallel features in SLE and ferroptosis.

Parallel features Key points

SLE Ferroptosis

Iron accumulation Iron accumulation is pervasive in SLE kidney and pathogenic
immune cells (15)

Iron overload is a vital trigger for ferroptosis (12)

Mitochondrial dysfunction impaired mitochondria are central mediators of injury in different
tissues and organs in SLE (16)

Mitochondria serves as key organelles for triggering
ferroptosis (17)

Lipid metabolism disorders Dyslipidemia and amplification of lipid peroxides are common
features in SLE (18)

Lipid peroxides is executor of ferroptosis and some enzymes and
intermediates of cholesterol metabolism are regulators for
ferroptosis (19)

HMGB1 concentration HMGB1 serve as a biomarker for SLE and potential aggravates
the disease progression (20)

HMGB1 serves as the main DAMP of ferroptosis and can trigger
ferroptosis in neighboring cells (21–23)

Regulation by IFNs SLE is regarded as “IFNs signature” disease (3, 24) IFN-I/II are key regulators of ferroptosis (8)
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processes, such as reactive oxygen species (ROS) production, lipid

peroxide production and mitochondrial dysfunction, thereby

promoting disease progression, such as SLE (35). Iron

accumulation has been detected in the kidneys of both SLE

patients and lupus mice (36, 37), and multiple molecules related

to iron metabolism [such as ferritin, transferrin, ceruloplasmin, and

neutrophil gelatinase-associated lipid carrier protein (NGAL)] have

been identified as biomarkers of SLE and/or LN, which are

associated with disease activity and/or renal involvement (38–43).

Additionally, the excessive intake of iron exacerbates SLE

progression (44–46), whereas iron chelation can alleviate the

disease (37, 47).

Kidney is major damaged organ in SLE and main organ attacked

by iron overload because it is site of iron filtration and reabsorption.

Over transferrin bound (TBI) and non-transferrin bound iron (NTBI)

can overwhelm the heavy chain ferritin (FtH) capacity, which lead to

release of labile iron and render proximal tubular epithelial cells

(PTEC) susceptible to iron oxidant damage, especial in distal

tubular epithelial cells (DTEC) with lack iron storage (light and

heavy chain ferritin) and export protein (ferroportin) (15).

Moreover, this damage can be worse under some pathological

condition like LN with glomerular injury resulting in an increased

leakage of TBI and NTBI (48). Additionally, SLE is a typical

autoimmune disease, and the overactivation of CD4+ T lymphocytes

is a feature of SLE (28). In SLE, CD4+ T cells are over differentiated

into pathogenic Th1 and Th17 cells, whereas Treg cells are suppressed

(49, 50). Interestingly, iron is crucial for regulating the activation,

proliferation and differentiation of CD4+ T lymphocytes (51). Some

reports have demonstrated that the iron concentration in CD4+ T cells

is significantly greater in SLE patients than in healthy controls (52, 53).

CD71 (also referred to as ferritin receptor TfR1, which mediates iron

endocytosis) on the surface of CD4+ T cells is essential for their

activation and proliferation and promotes their differentiation into

Th17 cells (54–56). Moreover, Th17 cells in SLE patients express high

levels of CD71, which is positively correlated with disease activity (56).

Similarly, follicular helper T (Tfh) cells, as a specific subset of CD4+ T

cells, contribute to the pathogenesis of SLE by promoting the

maturation of germinal center B cells and the production of

antibodies (57, 58). However, the accumulation of iron in CD4+ T

cells in SLE can promote their differentiation into Tfh cells and

aggravate the progression of SLE (53). Moreover, Treg cells can

restrict CD4+ T cell overactivation and its dysfunction is involved in

SLE pathogenesis (59–61). Gao XF et al. demonstrated iron deficiency

could alleviate pristane-induced lupus progression by promoting Treg

cell expansion (62). And Feng P et al. verified iron overload leaded to

systemic autoimmune disorders by aggravating Treg cell death (63).

These findings verify that iron overload is involved in the pathogenesis

of SLE, but whether it occurs through ferroptosis is not clear.

Iron overload is also conducive to ferroptosis. Too much iron

intake, too little iron excretion, or impaired iron metabolism can

contribute to iron overload. Physiologically, there are several ways

to reduce the level of intracellular iron when the level of intracellular

iron is excessive: i. iron-responsive proteins/iron-responsive

elements (IRPs/IREs) hamper the transfer of iron by disrupting

the stability of transferrin receptor mRNA while promoting the

transcription and synthesis of ferritin to enhance the binding of free
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iron (64–66); ii. increased expression of hepcidin promotes the

expression of iron transfer protein (ferroportin), which promotes

iron outward transport (67–69); and iii. ferritin is targeted to

lysosomes by nuclear receptor coactivator 4 (NCOA4)-mediated

autophagosomes for degradation (often referred to as

ferritinophagy) (70, 71). Iron overload is a vital trigger for

ferroptosis. i.Iron-mediated Fenton reactions are necessary for

ferroptosis and can facilitate the production of phospholipid

hydroperoxides (PLOOH, a biomarker of ferroptosis). ii.Key

enzymes that trigger lipid peroxidation [lipoxygenases (LOXs)

and cytochrome P450 oxidoreductases (PORs)] require iron

catalysis. iii.Iron is required for numerous redox-based metabolic

processes and is a major source of intracellular ROS (11, 34). iv.Iron

chelating agents not only prevent ferroptosis but also reduce the

production of lipid peroxides (72–75). Feng P et al. reported that

iron overload in Treg cells can promote iron-dependent cell death

(63). Liu Y et al. shown iron overload in the joint cavity of

rheumatoid arthritis patients and in vitro can promote ferroptosis

in macrophages (76). Additionally, Alli, A. A. et al. demonstrated

iron sequestration within the proximal tubules promoted LN

progression by exacerbating ferroptosis (77). This evidence

demonstrated that iron accumulation can trigger ferroptosis not

only in the extracellular space but also in the intracellular space.

Thus, iron overload is a shared feature of SLE and ferroptosis

and multiple evidences showed iron overload was involved in

disease progression by triggering ferroptosis (Figure 1). Although,

numerous reports demonstrated iron overload can aggravate the

progression of SLE, whether the effect is ascribed to promoting

ferroptosis. Anyhow, preventing iron accumulation in tissues and

cells by mediating the key molecules of iron metabolism (transferrin

receptor, ferroportin, hepcidin, etc.) may be a novel direction for the

treatment of SLE.
3.2 Mitochondrial dysfunction

Mitochondria are essential organelles for maintaining the normal

physiological function of the cell and play a crucial role in

physiological processes such as energy production, calcium

homeostasis, and iron metabolism. It is also a key site for ROS

elevation, self-nucleic acid antigen production, and the promotion of

various forms of cell death (such as ferroptosis), which are closely

related to a variety of diseases, such as SLE (26, 78, 79).

Overactivation and immune intolerance of immune cells is the

most pivotal link in the pathogenesis of SLE (28). The rapid

proliferation and differentiation of immune cells require

mitochondria to supply a large amount of energy. Oxidative

phosphorylation (OXPHOS) of the electron transport chain (ETC)

on the inner mitochondrial membrane is the process of ATP

production, which is also accompanied by ROS production (80).

Dysfunction of mitochondria limits ATP production but aggravates

the release of ROS, which are closely related to immune disorders,

autoantibody production, excessive cell death and ineffective

clearance mechanisms (81). Previous studies have shown that

mitochondria in CD4+ T cells from SLE patients exhibit numerous

abnormalities, such as large size (mitochondrial fusion), membrane
frontiersin.org
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hyperpolarization (elevated mitochondrial transmembrane

potential), ATP depletion, fragility, increased mitochondrial ROS

(mtROS) and decreased antioxidant (GSH) levels (82–84). Moreover,

massive ROS production in SLE patients is the main contributor to

mitochondrial dysfunction (85). Second, mitochondrial DNA

(mtDNA) oxidized by ROS (ox-mtDNA) has been identified as an

important DAMP. Under normal physiological conditions, it can be

dissociated from mitochondrial transcription factor A (TFAM) and

degraded in lysosomes. However, in SLE, the restriction of TFAM

function promotes the continuous accumulation of Ox-mtDNA. In

addition, mtDNA that is released into the cytoplasm can not only

activate cyclic GMP-AMP synthase (cGAS) or Toll-like receptors 9

(TLR9) to promote the production of IFNs (86, 87) but also serve as

an antigen to directly activate the immune system to exacerbate

autoantibody production (81). Since the kidney is one of the most

involved organs in lupus and iron consumption is prevalent in it,

mitochondrial are particularly susceptible to oxidative attack in

glomerular and tubular cells. Tian Y at al. Demonstrated the

molecular mechanism of iron-induced injury in these cells was

contributed to mtROS overproduction (88). Remarkably, recent

evidence demonstrated impairment of mitochondrial degradation

in glomerular and tubular cells was implicated in proteinuria and

renal failure in LN (16, 89, 90). Moreover, both mtROS and impair

mitochondrial degradation promote Ox-mtDNA accumulation (91).

On the other side, Ox-mtDNA can exacerbate mtROS production in

a vicious cycle, which further aggravate the disease progression.
Frontiers in Immunology 04
Moreover, mitochondria serve as central hubs for multiple

forms of cell death, such as apoptosis, necroptosis, and

pyroptosis, and are also key organelles that trigger ferroptosis

(5, 78, 92). It is still debated whether mitochondria are necessary

for ferroptosis. For example, some cells become insensitive to

ferroptosis-inducing agents after the removal of mitochondria,

whereas others do not (93, 94). Moreover, it has also been shown

that mitochondria are required for erastin-induced ferroptosis but

not for RSL3-induced ferroptosis (17). However, deficiency of optic

atrophy protein 1 (OPA1), which maintains mitochondrial

homeostasis and function, leads to resistance to both erastin- and

RSL3-induced ferroptosis (95). In ferroptosis, significant changes in

mitochondrial function and morphology are observed, including a

decrease in volume, increase in membrane density, and decrease in

ridge and ATP production (7). The role of mitochondria in

triggering ferroptosis is explained as follows: First, mitochondria

are one of the main sources of ROS and the key site of energy

production and iron metabolism (65, 96). Mitochondrial

dysfunction not only reduces ATP production but also

contributes ETC to leaking large amounts of ROS (such as O2·-

and H2O2) and disturb iron homeostasis. H2O2 combines with the

Fe2+-mediated Fenton cascade and further exacerbates the massive

release of ROS, which promotes lipid peroxidation (97). Depletion

of mtROS can alleviate mitochondrial ferroptosis (98). Second, the

tricarboxylic acid cycle (TCA) cycle is located in the mitochondria.

The mitochondrial TCA cycle can increase ferroptosis sensitivity
FIGURE 1

Iron overload in ferroptosis and SLE. (A) Three mechanism including IRPs/IRE system, ferritinophagy and hepcidin-ferroportin roadways against iron
overload. The cell undergoes ferroptosis when those mechanism are impaired. (B) Iron overload promote CD4+T abnormal proliferation and
differentiation, which can promote SLE progress. (C) Numerous serum protein closed to iron regulation were identified as SLE biomarkers.
TF, transferrin; TfR, transferrin receptor; IRPs, iron-responsive proteins; IREs, iron-responsive elements; STEAP3, six-transmembrane epithelial
antigen of the prostate 3; DMT1, Divalent metal transporter 1; NOCA4, nuclear receptor coactivator 4.
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(17). Glutamate metabolism is an important complementary part of

the TCA cycle. In mitochondria, glutamine can be converted to

glutamate and TCA intermediate metabolites (a-ketoglutarate,
aKG), both of which can promote ferroptosis (99–101).

Moreover, the inactive aKG dehydrogenase complex can prevent

ferroptosis induced by cystine depletion (102). Additionally,

ferroptosis has been identified as a form of autophagy-dependent

cell death (103). And interesting, some reports demonstrated

mtDNA could trigger autophagy-dependent ferroptosis by

activating STING (33) and peroxisome proliferator activated

receptor alpha (PPARa) (104). Moreover, mtDNA is prone to

transform B- to Z-DNA structures under mtROS stress (105),

which could promote ferroptosis by activating Z-DNA binding

protein 1 (ZBP1) (106). These results suggest that mitochondrial

dysfunction can promote ferroptosis.

In summary, in SLE patients, mtROS accumulation and

mtDNA release may promote ferroptosis and subsequent release

of intracellular antigens and DAMPs, thereby mediating the

progression of SLE (Figure 2). Therefore, limiting mtROS

production and mtDNA release to maintain mitochondrial

function may be a promising treatment strategy for SLE.
3.3 Lipid metabolism disorder

Lipid metabolism is a major physiological process that includes

catabolism [fatty acid oxidation (FAO)], anabolism (de novo

lipogenesis) and storage [lipid droplets (LDs)], and lipid

metabolism disorders are closely related to multiple pathological

processes and diseases, including immune dysfunction and SLE
Frontiers in Immunology 05
(107). Dyslipidemia, a major type of lipid metabolic disruption, is

most common in SLE patients (68%-100%) and is characterized

primarily by increased plasma levels of very low-density lipoprotein

(VLDL), triglyceride (TG) and total cholesterol (TC) but decreased

high-density lipoprotein (HDL) levels (108). This disorder not only

is closely related to SLE activity and organ involvement (including

the cardiovascular system and kidney) but is also related to high

mortality (109, 110). Among them, low HDL-cholesterol (HDL-c)

levels are the most common sign of dyslipidemia in SLE patients

(18, 111, 112). Under normal conditions, HDL performs anti-

inflammatory and antioxidative functions despite its cholesterol

efflux capacity. However, in SLE, it functions in an opposite manner

with an uncertain mechanism (113, 114). Interestingly, a previous

study demonstrated that limiting cholesterol flux could aggravate

the IFN and ISG response in a STING-dependent manner in

macrophages (115), and its precursor concentration, 7-

dehydrocholesterol (7-DHC), could also significantly increase I-

IFN production via the phosphatidylinositol 3-kinase (PI3K)-

protein kinase B 3 (AKT3)-interferon regulatory factor 3 (IRF3)

pathway (116). However, 7-DHC, as a precursor to form Vitamin

D3 in the skin by solar ultraviolet B radiation, is the main source of

Vitamin D. The deficiency Vitamin D is prevailed in SLE

population and its supplementation seems to ameliorated the

diseases (117), which may attribute that adequate level of Vitamin

D prevents the synthesis of 7-DHC. Additionally, the metabolite of

cholesterol, 7a, 25-dihydroxycholesterol (7a, 25-OHC), is

dramatically elevated in the plasma of SLE patients and binds to

the G protein-coupled receptor (GPCR) Epstein–Barr virus-

induced gene 2 (EBI2) in macrophages to alleviate the IFN and

ISG response for protecting against SLE progress (118).
FIGURE 2

Mitochondrial dysfunction in SLE and ferroptosis. The dysfunction promotes mtROS accumulation and mtDNA release, which triggers cell ferroptosis
and enhances the production of autoantibodies and IFNs. PUFA, polyunsaturated fatty acids; TCA, the tricarboxylic acid cycle; a-KG, a-ketoglutarate;
mtROS, mitochondrial reactive oxygen species; mtDNA, mitochondrial DNA; ZBP1, Z-DNA binding protein 1; PPARa, peroxisome proliferator activated
receptor alpha.
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Consequently, homeostasis lipidemia, especially cholesterol

metabolism, is crucial for SLE pathogenesis.

Additionally, lipids are highly vulnerable to oxidation, and

many lipid peroxides, including oxidized HDL (ox-HDL), ox-

LDL, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE),

have been identified as potential biomarkers for SLE and are related

to disease activity (111, 118–121). Because oxidative stress is

involved in the pathogenesis of SLE, aberrant oxylipins have been

revealed in SLE patients by lipidomic analysis (122, 123). Oxylipin

is a series of oxidative metabolites produced by polyunsaturated

fatty acids (PUFAs), such as arachidonic acid (AA), linoleic acid

(LA), and alpha-linolenic acid (ALA), that undergo non-enzymatic

or specific enzymatic [lipoxygenase (LOX) and cytochrome P450

(CYP450)] oxidations. Multiple oxylipins, such as 12-hydroxy-

heptecotrienoic acid (12-HHTrE) and prostaglandin E1 (PGE1),

are critical for SLE pathogenesis and have been identified as

biomarkers for SLE pathogenesis (124, 125). Interestingly, the

concentration of serum PUFAs is significantly decreased in SLE

patients, which demonstrates that the antioxidant system is

impaired and that lipid peroxidation is prevalent (107, 124).

Moreover, lysophospholipids containing PUFA chains and lipid

peroxidation substances (i.e., 4-hydroxyalkenals) strongly

accumulate in the peripheral blood mononuclear cells of SLE

patients (126). In summary, lipid metabolic disorder is one of the

outstanding features in SLE, especially pertaining to oxidized-

lipid metabolism.

Moreover, lipid metabolic disorder is essential for ferroptosis,

because the executor of this cell death is lipid peroxidation, which

triggers ion flux disturbances and ultimately plasma membrane

permeabilization and fragmentation (127–129). Lipid metabolism is

crucial for the initiation, propagation and termination of lipid

peroxidation (130). PUFAs [especially AA (C20:4) and LA (C18:2)]

are regarded as primary inducers of ferroptosis because whose bis-

allylic hydrogens have relatively low bond dissociation energies and

are more sensitive to lipid peroxidation (19, 131). In brief, the

contributions of PUFAs to ferroptosis can be divided into two

main categories: extension into the membrane and peroxidation.

First, PUFAs are taken into the cell or converted by other lipids inside

the cell. Then, extension can occur into membrane phospholipids

(PUFA-PLs) via acyl-CoA synthetase long-chain family member 4

(ACSL4) and lysophosphatidylcholine acyltransferase 3 (LPCAT3),

which are very vulnerable to peroxidation. Second, PUFA-PLs are

oxidated by lipoxygenases or via nonenzymatic autoxidation

reactions [such as the Fenton reaction). The lipid peroxidation

chain reaction is subsequently maintained by lipid radicals (such as

the phospholipid peroxyl radical (PLOO·)] derived from lipid

peroxidation. When antioxidative agents, including GPX4 and

coenzyme Q10 (CoQ10), are depleted, the cell ultimately undergoes

ferroptosis (132).

Although the direct relationship between SLE and ferroptosis

related to lipid metabolism has not been reported, there are

numerous potential connections as follows: i.The dyslipidemia

feature of SLE further promotes cholesterol metabolic

dysfunction, which can affect ferroptosis. The intermediate,

isopentenyl pyrophosphate (IPP), is required for the synthesis of
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GPX4 (133, 134) and CoQ10 (135–137), which are known to

prevent ferroptosis. Similarly, squalene (138, 139) and 7-DHC

(140, 141) effectively prevent lipids from autoxidation and

subsequent fragmentation (142). Furthermore, some enzymes

related to cholesterol metabolism serve as potential suppressors of

ferroptosis, such as 3-hydroxy-3-methylglutaryl-coenzyme A

reductase (HMGCR) in mitochondria (143) and sterol C5-

desaturase (SCD5), whereas 7-dehydrocholesterol reductase

(DHCR7) (140) and squalene monooxygenase (SQLE) (138)

function as pro-ferroptostic molecules (3). Elevation of the

cellular cholesterol content specifically restrains elevated lipid

peroxidation and reduces susceptibility to ferroptosis by

decreasing membrane fluidity (138). ii.PUFA, an inducer of

ferroptosis, is significantly decreased in the extracellular space but

increased in the intracellular space in SLE patients (Figure 3).

Moreover, the levels of lipid peroxidation substances, especially

MDA and 4-HNE (ferroptostic biomarkers), are markedly

increased in SLE patients. Moreover, elevated MDA was related

with multiple lupus manifestations (such as vasculitis,

musculoskeletal, cutaneous and nephritis) (144–146). And also,

the serum levels of anti-MDA IgG antibody positively were

related with disease activity, active nephritis, inflammatory

indictors and the consumption of complement factors (147). This

phenomenon may be explained by the fact that PUFAs are taken

into cells to be involved in ferroptosis in SLE patients.
3.4 Function of DAMPs

3.4.1 HMGB1
DAMPs are endogenous molecules that are released into the

extracellular space under some pathologic conditions, mainly during

cell death. Although numerous DAMPs released from cell death or

necrosis, including TNF-a (148, 149), IL-1b, IL-18 (150, 151) and

IL-33 (152), have been identified as biomarkers for SLE, their

potential role in SLE has not been well defined.

However, extracellular HMGB1, a ubiquitous DAMP, belongs

to the HMG family and performs well in SLE pathogenesis. HMGB1

was originally thought to be located only in the nucleus as a DNA

chaperone and participated in regulating chromatin structure and

function; however, recently, it was found that it can also be located

in the cytoplasm and cell membrane. In addition, HMGB1 can be

secreted actively or passively into the extracellular space to perform

various biological functions (153, 154). In recent years, much more

attention has been given to its extracellular function. A growing

number of reports have suggested that extracellular (both urine and

plasma) HMGB1 can serve as a biomarker for SLE, which could

predict disease activity and renal involvement (152–157). Moreover,

anti-HMGB1 antibodies in plasma have also been identified as

biomarkers of SLE (158, 159). Extracellular HMGB1 can bind to

numerous receptors, such as toll-like receptors (TLRs), and

advanced glycosylation end-product-specific receptor (AGER),

triggering receptor expression on myeloid cells-1 (TREM1), which

promotes the release of pro-inflammatory factors. In addition,

when released outside the cell, HMGB1 usually binds to
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intranuclear material (e.g., RNA, DNA), which can activate multiple

intracellular nucleic acid sensors, including TLR7, TLR9 and cGAS

(160, 161). These sensors are tightly correlated with increased IFN

production and SLE pathogenesis (162, 163). In addition, both I-

IFN and II-IFN can promote HMGB1 release, resulting in a vicious

cycle (24, 164), which may aggravate the progression of SLE.

Overall, numerous results suggest that extracellular HMGB1 is

involved in the pathogenesis of SLE. Similarly, treatment with an

HMGB1 monoclonal neutralizing antibody can alleviate the

phenotype of MRL/lpr and BXSB Lupus mice, but it has also been

shown to be ineffective in MRL/lpr mice (20).

Extracellular HMGB1 is derived mainly from cell death,

including apoptosis, necroptosis and ferroptosis (165). Various

ferroptostic agonists (including erastin and RSL3) can increase

HMGB1 release, and this process is blocked by ferroptostic

antagonists (such as ferrostatin-1 and liproxstatin-1) or pro-

ferroptostic genetic deficiency (e.g., Acsl4 shRNA) in cancer and

noncancer cells (21). Wiernicki B et al. recently demonstrated that

ferroptosis can be clearly distinguished into three stages: (1) At the

beginning, there is intracellular lipid peroxide accumulation; (2) In

the intermediate stage, cell membrane permeability increases,

resulting in ATP release; and (3) In the final stage, there is
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complete disintegration of the cell membrane, and HMGB1, LDH

and inflammatory factors are released (166). HMGB1 serves as the

main DAMP of ferroptosis and mediates the pathological effects of

ferroptosis. It is released during ferroptosis of M2 macrophages and

can promote the inflammatory response of M1 cells through the

TLR4/STAT3 pathway. Moreover, the inhibition of ferroptosis

rescues this effect (167). Wang CB et al. revealed that the

hepatotoxic effect of methotrexate (MTX) was mainly mediated

by HMGB1 released from ferroptostic cells (31). In addition, Zhang

DF et al. reported that renal dysfunction related to imidacloprid was

primarily attributed to HMGB1 release from ferroptosis, which

promoted the activation of the nucleotide-binding domain (NBD),

leucine-rich repeat (LRR), and pyrin domain (PYD)-containing

protein 3 (NLRP3) inflammasome in neighboring cells through the

RAGE/TLR4-NF-kB signaling pathway, further aggravating

pyroptosis (22). Interestingly, numerous recent reports have

shown that HMGB1 released from ferroptosis can also trigger

ferroptosis in neighboring cells, thus forming a vicious cycle and

aggravating the progression of the disease. Wei Q et al. revealed that

ultraviolet B radiation induces autophagy-dependent ferroptosis

and that subsequently released HMGB1 can promote ferroptosis

in neighboring cells through TfR1 (32). Davaanyam D et al.
FIGURE 3

Lipid metabolism disorder in SLE and ferroptosis. SLE dyslipidemia can disturb cholesterol metabolism, which intermediates or enzymes not only
affect IFNs response but mediate ferroptosis. Sec-tRNA, selenocysteine tRNA required for GPX4 synthesis; TC, total cholesterol; TG, triglyceride;
HDL-C, high density lipoprotein-cholesterol; VLDL-C, very low density lipoprotein-cholesterol; HMGCR, 3-hydroxy-3-methylglutaryl-coenzyme A
reductase; IPP, isopentenyl pyrophosphate; SQLE, squalene monooxygenase; CoQ10, coenzyme Q10; 7-DHC, 7-dehydrocholesterol; DHCR7, 7-
dehydrocholesterol reductase; SCD5, sterol C5-desaturase; 7a,25-OHC, 7a, 25-dihydroxycholesterol; FSP1, ferroptosis suppressor protein 1; ISGs,
interferon-stimulated genes; LOXs, lipoxygenases; POR, cytochrome P450 reductase; PLs, phospholipids; ACSL4, acyl-CoA synthetase long-chain
family member 4; LPCAT3, lysophosphatidylcholine acyltransferase 3.
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demonstrated that ferroptosis occurs in neurons at the early stage of

cerebral ischemia and that HMGB1 can upregulate the expression

of hepcidin through TLR4/C-X-C chemokine receptor type 4

(CXCR4) to promote ferroptosis and aggravate cerebral ischemia.

Moreover, inhibition of HMGB1 can intercept ferroptosis and

alleviate cerebral ischemia (23). In addition, Deng YL et al.

reported that the overexpression of casepase-6 in THP-1 cells

promoted ferroptosis in HTR8/SVneo cells. However, HMGB1-

neutralizing antibodies can prevent this process (168). Taken

together, these findings indicate that HMGB1 is an important

effector of ferroptosis that can mediate the involvement of

ferroptos is in var ious pathological mechanisms and

disease progression.

In summary, ferroptosis can increase the release of HMGB1,

which can intensify the release of inflammatory factors through its

sensors. Additionally, binding to nuclear substances can activate

related nucleic acid receptors (TLR7/9, cGAS, etc.) to mediate the

mass production of IFNs, and subsequently, IFNs can promote

ferroptosis and accelerate the release of HMGB1. Moreover,

HMGB1 can further promote ferroptosis in neighboring cells.
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Overall, these events form a vicious cycle, which may exacerbate

the progression of SLE (Figure 4).

3.4.2 IFNs
SLE is known as an “interferon signature” disease and the

overactivation of the interferon system is closely related to SLE

pathogenesis, especially I-IFN, which is elevated before the onset of

SLE and closely associated with disease activity and organ

involvement (169–171). Nucleic acid substances bind to the

endosomal or intracellular nucleic acid receptors (TLRs, cGAS,

Nucleotide-binding and leucine-rich repeat receptors (NLRs), etc.)

and promote the massive production of interferon-stimulated genes

(ISGs) and Type I IFNs (I-IFNs), subsequently contributing to SLE

progression. In the past, type I IFNs (II-IFNs) were considered to

play the most crucial role in the pathogenesis of SLE (169).

Recently, other types of IFNs, especially II IFNs, have also been

confirmed to play an important role in the pathogenesis of SLE

(170, 171). Moreover, in recent years, IFNs have been shown to be

crucial for the regulation of ferroptosis (8). Li PC et al. reported that,

in SLE, IFN-a or IgG can restrain GPX4 transcription through
FIGURE 4

HMGB1 in SLE and ferroptosis. HMGB1 as a major DAMPs released from ferroptosis can intensify the production of IFNs and other cytokines, which
subsequently contribute ferroptosis and SLE progress. HMGB1, high-mobility group box 1; TLR, toll-like receptors; AGER, advanced glycosylation
end-product-specific receptor; TREM1, triggering receptor expressed on myeloid cells-1; cGAS, cyclic GMP-AMP synthase; STING, stimulator of
interferon genes; cGAMP, cyclic GMP-AMP; ISGs, interferon-stimulated genes.
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CaMKIV/CREMa, which promotes an increase in the level of

intracellular lipid ROS and ultimately facilitates neutrophil

ferroptosis. Moreover, they confirmed that neutrophil ferroptosis

is a key form of cell death involved in the pathogenesis of SLE (172).

In addition, evidence that IFN-a can induce ferroptosis was

confirmed by Zhang SL et al. (173). They reported that

manganese could disturb the expression of DHODH by activating

cGAS-STING pathway, promoting an increase in mitochondrial

lipid peroxides and ROS, ultimately leading to ferroptosis of tumor

cells. Zhang SL et al. also found that blocking IFNAR could rescue

this effect of manganese. As the downstream pathway of IFNs, the

JAK-STAT pathway is considered one of the most important

pathways involved in the pathogenesis of SLE (mainly JAK-

STAT1) (174, 175). In addition, many JAK inhibitors (such as

tofacitinib, baricitinib, upadacitinib and filgotinib) are being

investigated in clinical trials (176). Recent studies have confirmed

that spermine can effectively alleviate the progression of SLE by

inhibiting JAK1 (177).

Moreover, a close correlation between the IFNs-JAK-STAT

pathway and ferroptosis has been demonstrated in recent years. In

another autoimmune disease, Sjogren’s syndrome, high expression of

IFN-g could decrease the expression of solute carrier family 3

member 2 (SLC3A2, a subunit of xCT), glutathione, and GPX4 in

salivary gland epithelial cells and then trigger ferroptosis through

activation of the JAK/STAT1 pathway, which can be inhibited by
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JAK1/2 or STAT1 antagonists (178). In addition, in retinal pigment

epithelial cells, IFN-g can downregulate the expression of solute

carrier family 40 member 1 (SLC40A1, iron export protein) and

SLC7A11 through the JAK1-2/STAT1 pathway, which promotes the

accumulation of intracellular Fe2+ and the exhaustion of glutathione

and ultimately induces ferroptosis (179). In tumor cells, IFN-g can

also prevent the transcription of both SLC3A2 and SLC7A11 and

then accelerate ferroptosis via JAK1/2-STAT1-IRF1 (180).

Furthermore, a chromatin immunoprecipitation assay confirmed

that IFN-g promoted the binding of STAT1 to the SLC7A11

promoter to intercept its transcription (181). However, it has also

been reported that inhibition of STAT1 can downregulate GPX4 and

SLC7A11 expression to promote ferroptosis (182). Fan Li also

confirmed that STAT1 can bind to the promoter region of

SLC7A11 and promote its transcription using a dual luciferase

reporter assay (183). These results suggest that STAT1 can regulate

ferroptosis, but the regulatory mechanism is contradictory and may

be related to differences in cells and their environment.

In conclusion, JAK-STAT1 not only play important roles in the

pathogenesis of SLE but also regulate ferroptosis. Since the

regulation of IFNs-JAK-STAT signaling is inconsistent in

ferroptosis, whether this signaling is implicated in SLE

pathogenesis by regulating ferroptosis needs more evidences

(Figure 5). Although many inhibitors targeting the JAK-STAT

pathway have been investigated in clinical trials, their
FIGURE 5

JAK-STAT1 pathway in ferroptosis. Both xCT-GPX4 and FTH1-Ferritinophagy are important roadways to against ferroptosis. And the accumulation of
some cytokines (especial I/II-IFN) could significantly affect pivotal molecules of the two roadways although JAK-STAT1 pathway. xCT, cystine/
glutamate transport system; SLC7A11, solute carrier family 7a member 11, SLC3A2, solute carrier family 3 member 2; SLC40A1, solute carrier family
40 member 1; GPX4, glutathione peroxidase 4; GSH, glutathione; GSSG, glutathione disulfide; FTH1, ferritin heavy chain 1; NCOA4, nuclear receptor
coactivator 4.
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actual effects are not satisfactory (176). Notably, whether the

inhibition of the JAK-STAT pathway potentially aggravates

ferroptosis and promotes the progression of SLE deserves

further explore.
4 Promising therapeutical reagents for
SLE by inhibiting ferroptosis

Given that several pathophysiological features of ferroptosis,

including iron accumulation, mitochondrial dysfunction,

overproduction of lipid peroxidation and suppression xCT-GPX4

pathway are potentially implicated in SLE progression, reversing

those features may be beneficial to SLE disease. Below, we

summarize some the bioactive pharmacological agents that can

against those ferroptostic process (Table 2).
4.1 Inhibiting iron accumulation

Intracellular iron accumulation is the chief culprit of ferroptosis

and can promote SLE progression, the therapeutical reagents to

reduce iron concentration may be beneficial to treat SLE. Iron

chelators, including deferiprone (DFP), dexrazoxane (DXZ) and

deferoxamine (DFO), are commonly used in clinical. Although only

few reports demonstrated DFO could alleviated SLE progression,

multiple evidences confirmed those chelators performed an

effectivity on some chronical diseases by preventing ferroptosis,

such as osteoarthritis (184), I/R-induced injury (185), non-alcoholic

steatohepatitis (204), neurodegeneration (205) and so on.

Additionally, hepcidin, the iron-regulatory hormone, has been
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verified it could reduce progression and severity of LN by

decreasing renal iron accumulation (47).
4.2 Recovering mitochondrial dysfunction

Mitochondrial dysfunction not only drivers ferroptostic process

but promotes SLE progression. Recovering mitochondrial

dysfunction to prevent ferroptosis may improve prognosis of SLE

disease. Recent evidences demonstrated mTOR inhibition suppress

ferroptosis by mediating mitochondrial dysfunction (186).

Sirolimus is an mTOR inhibitor that server as an antifungal or

immunosuppressive agent in clinical, which also effectively

alleviates lupus mice manifestation (187, 188). Moreover, Lai ZW

et al. demonstrated sirolimus improve SLE patient activity by

recovering mitochondrial dysfunction (189). Metformin,

commonly used in clinical to treat type II diabetes, can reduces

oxidants by normalizing mitochondrial dysfunction (190, 191).

Remarkably, it has been verified to improve SLE patients by

recovering mitochondrial dysfunction (206–208). Additionally,

MitoQ, as an analogue of CoQ10, special for preventing mtROS

production, was shown to alleviate lupus mice (86, 192).
4.3 Reducing lipid peroxidation

Lipid peroxidation is essential to ferroptosis and prevent the

process was shown to improve numerous ferroptosis-related

diseases. Thiazolidinediones (TZDs), including rosiglitazone,

pioglitazone and troglitazone, are applied to treat type II diabetes.

Remarkably, TZDs performed an ability to suppress ferroptosis
TABLE 2 The promising therapeutical reagents for SLE by inhibiting ferroptosis.

Targeted pathway Reagent Proposed mechanism Reference

Iron homeostasis Deferiprone (DFP) Iron chelator (47, 121)

Dexrazoxane (DXZ) Iron chelator (123)

Deferoxamine (DFO) Iron chelator (184, 185)

Hepcidin Reducing iron accumulation (47)

Mitochondria dysfunction Sirolimus an mTOR inhibitor and recovering mitochondrial dysfunction (186–189)

Metformin normalizing mitochondrial dysfunction (190, 191)

MitoQ Analogue of CoQ10, special for preventing mtROS (86, 192)

Lipid peroxidation Thiazolidinediones (TZDs) Selectively inhibiting ACSL4 (193, 194)

Liproxstatin-1 (Lip-1) Special ferroptostic inhibitor (172)

CoQ10 A potent radical-trapping antioxidant and inhibiting lipid peroxidation (195)

Idebenone Analogue of CoQ10 (196)

Vitamin K A potent radical-trapping antioxidant and inhibiting lipid peroxidation (197–199)

xCT-GPX4 pathway N-acetylcysteine (NAC) Increasing cysteine levels and facilitating GSH synthesis (200–202)

Selenium (Se) Essential for maintaining GPX4 activity (79)

Glycyrrhizin Increasing GSH and GPX4, decreasing MDA, Fe2+, ROS (203)
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though selectively inhibiting ACSL4 and reduce mortality in

kidney-specific Gpx4 knockout mice (193, 194). Liproxstain-1

(Lip-1), a spiroquinoxalinamine derivative, was identified as a

special ferroptostic inhibitor by high-throughput screening.

Recent evidence shown it could alleviate MRL/lpr lupus mice

symptom (172). Additionally, some lipid antioxidants also display

potential therapeutical prospect as follow: i. CoQ10 is a major

substrate of FSP1 that known as ferroptostic suppressor. The dietary

supplement of it as a potential candidate for the treatment of

various noncommunicable diseases (195). Moreover, its

analogues, idebenone with better bioavailability and efficacy, was

shown to attenuate murine lupus (196). ii. Vitamin K, resembled

CoQ10 structure, was used to overcome warfarin poisoning in

clinical practice and its supplementation could positively affect

multiple chronical diseases (197). Interesting, it also was

identified as a lipid radical-trapping antioxidant to prevent

ferroptosis via FSP1-mediated pathway (198, 199).
4.4 Activating xCT-GPX4 pathway

As described above, the xCT and GSH-GPX4 pathway are

identified as primary defense mechanism to ferroptosis. N-

acetylcysteine (NAC), a precursor to cysteine, has been shown to

prevent ferroptosis by increasing cysteine levels and facilitating the

synthesis of g-glutamyl-cysteine and GSH (200). And its

supplement is potentially beneficial for comorbid disorders

associated with heavy alcohol consumption (201) and Parkinson’s

disease symptoms (202). Micronutrient selenium (Se) is essential

for maintaining GPX4 activity. Optimal Se supplement could

improve hemorrhagic and ischemic stroke prognosis via

inhibiting ferroptosis in mice (79). Additionally, glycyrrhizin,

extracted from the glycyrrhiza and commonly used in clinical,

could alleviate acute liver failure by increasing GSH and GPX4,

decreasing MDA, Fe2+, ROS to inhibit ferroptosis (203).
5 Conclusion

In summary, SLE is a complex chronic disease for which its

pathophysiology and effective treatments remain speculative.

Ferroptosis is a prevalent type of pathogenic cell death in chronic

disease. Although the studies on ferroptosis in SLE pathogenesis are

still in early stages, there are intricate and close connections among

them, which provides opportunities for understanding SLE

pathophysiology and development of novel therapeutics.
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