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Introduction: BNT162b2 immunogenicity wanes with time and we investigated

association between gut microbiota and longer-term immunogenicity.

Methods: This cohort study prospectively recruited adult BNT162b2 two-dose

recipients from three vaccination centers in Hong Kong. Blood samples were

collected at baseline and day 180 after first dose, and tested for neutralizing

antibodies (NAb) against receptor-binding domain (RBD) of wild type SARS-CoV-

2 virus using chemiluminescence immunoassay. Shotgun DNA metagenomic

sequencing was performed to characterize baseline stool microbiome. Baseline

metabolites were measured by gas and liquid chromatography-tandem mass

spectrometry (GC-MS/MS and LC-MS/MS). Primary outcome was persistent high

NAb response (defined as top 25% of NAb level) at day 180. Putative bacterial

species and metabolic pathways were identified using linear discriminant analysis

[LDA] effect size analysis. Multivariable logistic regression adjusting for clinical

factors was used to derive adjusted odds ratio (aOR) of outcome with bacterial

species and metabolites.

Results:Of 242 subjects (median age: 50.2 years [IQR:42.5-55.6]; male:85 [35.1%]),

61 (25.2%) were high-responders while 33 (13.6%) were extreme-high responders

(defined as NAb≥200AU/mL). None had COVID-19 at end of study. Ruminococcus

bicirculans (log10LDA score=3.65), Parasutterella excrementihominis (score=2.82)

and Streptococcus salivarius (score=2.31) were enriched in high-responders, while

Bacteroides thetaiotaomicron was enriched in low-responders (score=-3.70). On

multivariable analysis, bacterial species (R. bicirculans–aOR: 1.87, 95% CI: 1.02-

3.51; P. excrementihominis–aOR: 2.2, 95% CI: 1.18-4.18; S. salivarius–aOR: 2.09,

95% CI: 1.13-3.94) but not clinical factors associated with high response. R.

bicirculans positively correlated with most metabolic pathways enriched in high-

responders, including superpathway of L-cysteine biosynthesis (score=2.25) and

L-isoleucine biosynthesis I pathway (score=2.16) known to benefit immune
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system. Baseline serum butyrate (aOR:10.00, 95% CI:1.81-107.2) and isoleucine

(aOR:1.17, 95% CI:1.04-1.35) significantly associated with extreme-high

vaccine response.

Conclusion: Certain gut bacterial species, metabolic pathways and metabolites

associate with longer-term COVID-19 vaccine immunogenicity.
KEYWORDS

gut microbiota, vaccine, COVID-19 vaccine, vaccine immunogenicity, BNT162b2
(Pfizer-BioNTech)
Introduction

Studies showed that there was a steady decline of antibody levels

among COVID-19 vaccine recipients (1, 2), and vaccine effectiveness

against infection decreased significantly from 92% at 15-30 days to

47% at 121-180 days (3). The durability of vaccine immunogenicity is

in large contributed by the persistence of antibody levels, which in

turn is affected by the amount of long-lived plasma cells that secrete

the antibodies, and also by memory B cells which are responsible for

secondary immune response during re-exposure to the pathogen (4,

5). Nevertheless, factors influencing the durability of vaccine

immunogenicity are currently underinvestigated. While certain

factors, such as age, comorbidities (such as obesity and diabetes

mellitus) and prior infection were more established in affecting

vaccine durability (6), the role of the gut microbiome in vaccine

durability is relatively less understood and explored.

Gut microbiota modulates immune response toward various

vaccines including influenza and oral rotavirus (7), possibly by

secreting immunostimulatory short chain fatty acids (SCFAs) (8),

secondary bile acids (9), lipopolysaccharides (LPS) (10), flagellin (11),

and peptidoglycans (12). Notably, a randomized controlled trial (RCT)

showed that antibiotic-induced gut microbiota dysbiosis attenuated the

level of influenza vaccine-induced antibodies, increased inflammatory

signaling and disturbed plasma metabolome (9). Moreover, it has been

suggested that gut microbiota was linked to memory B cells

differentiation, possibly through influencing the formation of

germinal centers in the gut which was important for B cell

differentiation into memory B cells (13).

Emerging evidence has reported the potential role of gut microbiota

in COVID-19 vaccine immunogenicity (Supplementary Table 1) (14).

For instance, two studies of mostly non-immunocompromised subjects

reported that enrichment of certain bacterial species associated with

higher antibody level, such as Eubacterium rectale and Roseburia faecis in

one (15), and Collinsella aerofaciens, Fusicatenibacter saccharivorans in

another (16). In another study conducted in infliximab-treated

inflammatory bowel disease (IBD) patients, Bilophila was associated

with above average immune response after second dose of vaccination
02
with BNT162b2 or ChAdOx1 (17). However, these studies measured

antibody response within a relatively short time frame from vaccination

(15–18).Moreover, some had small sample sizes (17–19) andmight even

be focused on immunocompromised patient groups that did not reflect

the healthy general population (17, 18). Some employed 16S rRNA

sequencing which had lower resolution than shotgun metagenomic

sequencing (17–19). Factors that might affect the microbiota, such as

diet, were also often not adjusted (15–20). Therefore, the potential role of

gut microbiota in persistence of longer-term immunogenicity toward

COVID-19 vaccine in healthy adult subjects deserves

further investigation.

We conducted this prospective cohort study to investigate

association between gut microbiota composition and BNT162b2

immunogenicity in immunocompetent adults at 6 months

after vaccination.
Methods

Study design and participants

This was a prospective cohort study recruiting adult subjects

receiving two doses of BNT162b2 vaccines containing mRNA

encoding viral spike (S) protein of SARS-CoV-2 from three

vaccination centers in Hong Kong (Sun Yat Sen Memorial Park

Sports Centre, Ap Lei Chau HKU Vaccination Centre and Queen

Mary Hospital) between May and August 2021. Exclusion criteria

included age <18 years, IBD, immunocompromised status including

post-transplantation and immunosuppressives/chemotherapy, other

medical diseases (cancer, hematological, rheumatological and

autoimmune diseases) and those with prior COVID-19 identified

from history or the presence of antibodies to SARS-CoV-2

nucleocapsid (N) protein. This study was approved by the

Institutional Review Board (IRB) of the University of Hong Kong

and Hospital Authority Hong Kong West Cluster (UW 21-216). All

participants provided written informed consent for participation in

this study.
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Collection of demographics, blood and
stool samples

Basic demographics including age, sex, lifestyle factors (level of

exercises, diet and smoking), overweight or obese (OWOB) (21–

23), diabetes mellitus (DM) (21), hepatic steatosis (24, 25) as well as

any use of antibiotics (26) and proton pump inhibitors (PPIs)

within six months before vaccination were collected. Adequate level

of exercises is defined as meeting WHO recommendation of at least

150 to 300 minutes of moderate-intensity aerobic physical activity

per week, or at least 75 to 150 minutes of vigorous-intensity physical

activity per week (27). Diet quality is assessed using the rapid Prime

Diet Quality Score (rPDQS), which is a validated diet quality

screener with a score ranging from 0 to 52, and a higher score

reflecting better diet quality (28). We created tertile groups, and

compared the highest tertile with the lowest/middle tertile similar to

other studies (29).

Subjects received two doses of intramuscular BNT162b2

(0.3mL) 3 weeks apart as recommended by local health authority.

Blood samples were collected (i) before vaccination (baseline) and

(ii) at 180days after first dose. Baseline stool samples were collected

in OMNIgene tube before vaccine administration and stored at -80°

C until total genomic DNA was extracted from them using Qiagen

QIAamp DNA stool Mini Kit (Qiagen, Hilden, Germany) according

to the manufacturer’s instructions. Genomic DNA was then

subjected to library preparation for shotgun metagenomic

sequencing using Nextera DNA Library Prep Kit (Illumina,

California, USA). In brief, genomic DNA was first fragmented

and tagged with adapter sequences by engineered transposome.

Index adapter sequences were then added to these tagged DNA

using limited cycle PCR. After amplification, PCR amplicons were

purified using AMPure XP beads (Beckman-Coulter). Quality of the

DNA library was first assessed by a Qubit fluorometer (Thermo

Fisher Scientific), then by a Bioanalyzer (Agilent Technologies).

After library preparation, next-generation shotgun metagenomic

sequencing was performed by the Illumina NovaSeq 6000 platform

(Illumina, San Diego, US) running at paired-end 150 bp, resulting

in 10 Gb raw data per sample.

We employed a cost-effective extreme case-control design in

selecting the extreme high responders (defined as NAb > 200 AU/

mL) and extreme low responders (defined as NAb < 50 AU/mL)

(30), and performed targeted metabolomics on selected metabolites,

which were SCFAs (acetate, propionate and butyrate) due to more

evidence in association with vaccine immunogenicity from

literature, as well as L-isoleucine which was implicated in our

metabolic pathway analysis. Extreme case-control design utilizes

an extreme-value sampling design approach to select individuals

with extremely large or small values of the primary outcome for

exposure data collection (30). It has been shown that such an

approach with appropriate statistical analysis could control type I

error well and achieve cost-effectiveness (30, 31). Furthermore, the

main purpose of this design was to exclude participants with highly

similar NAb levels in the intermediate range which would introduce

noise into our analysis. Therefore, we selected an arbitrary cut-off of

NAb ≥200 AU/mL and NAb<50AU/mL to only include

participants who were in the extreme-high range and extreme-
Frontiers in Immunology 03
low range into analysis to further enhance the associations detected

(32). Baseline serum SCFAs (acetate, propionate and butyrate) as

well as L-isoleucine were measured using gas chromatography-

tandem mass spectrometry (GC-MS/MS) and l iquid

chromatography-tandem mass spectrometry (LC-MS/MS),

respectively. Detailed steps of GC-MS/MS and LC-MS/MS can be

found in Supplementary File.

Vaccine immunogenicity was determined in terms of

neutralizing antibody (NAbs) against SARS-CoV-2 receptor-

binding domain (RBD). NAb level is a surrogate marker of

vaccine effectiveness (33) that predicts protection from

symptomatic COVID-19 (34, 35). Although the gold standard to

measure NAb level is live virus microneutralization assay (vMN),

this test must be conducted under biosafety level-3 containment

and therefore is not widely applicable to daily clinical practice, in

particular during period of infection outbreak. Our previous study

showed that a surrogate NAb assay, performed using the new

version of the iFlash-2019-nCoV NAb kit (chemiluminescent

microparticle immunoassay; Shenzhen YHLO Biotech Co, Ltd.,

Shenzhen, China), had good diagnostic performance (sensitivity:

98%, specificity: 95%, positive predictive value: 98% and negative

predictive value: 94%) and agreement of 94% relative to vMN

assay (36).

In the current study, testing for NAb was performed using

iFlash-2019-nCoV NAb kit. Briefly, serum samples and a reagent

pack with 2019-nCoV RBD antigen (30KD)-coated paramagnetic

microparticles and acridinium ester-labeled ACE2 conjugate were

placed in sample loading area and reagent loading area respectively

(36). The iFlash system then automatically performed all functions

and measured signals elicited from chemiluminescent reactions.

NAb seropositivity was defined as ≥15 AU/mL.
Primary outcome of interest

Primary outcome of interest was persistent high NAb response

at day 180. We defined top 25% of NAb (i.e. above 75 percentile) as

high NAb response similar to the study by Tang et al. (16) NAb

seropositivity was not chosen as primary outcome because 95.9% of

the cohort remained seropositive at day 180.
Bioinformatics analysis

Raw NGS reads were processed by fastp v0.20.1 (37) to quality

and adapter trimming to remove sequencing adapters and bases

with poor quality. Trimmed reads were subjected to host sequence

removal by Bowtie2 (38) to map reads against human reference

genome GRCh38.p13. Composition of microbial communities at

species level and functional profile in each sample were inferred

from the cleaned reads using MetaPhlAn (v3.0) (39) and HUMAnN

(v3.0) (40) respectively. Estimation of species coverage and relative

abundance was determined. Low-abundance taxa were not

excluded from analysis as it has been shown that low-abundance

bacteria could contribute substantially to host phenotypes (41) and

there is no consensus in the analytical approach as to which levels
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filtering methods should be applied to remove low-abundance taxa,

which would influence the results of downstream analyses (42).

Instead, we incorporated negative control sample into sequencing

to make sure the inferred microbiome taxa were not derived from

contaminants introduced during sampling, lab work, or sequencing.
Statistical analysis

All statistical analyses were conducted with R version 4.2.2 (R

Foundation for Statistical Computing, Vienna, Austria) statistical

software. Data was displayed as median (interquartile range [IQR])

for continuous variables, and as number of patients (percentage) for

categorical variables. The Mann-Whitney U test and the Chi-square

test or Fisher exact test was used for two continuous variables and

categorical variables respectively.

Alpha-diversity in terms of observed species, Shannon and

Simpson index was computed using vegan package in R Studio,

and compared using Wilcoxon signed-rank test. Beta-diversity

including Bray-Curtis compositional dissimilarity was compared

using non-metric mult idimensional scal ing (NMDS).

Permutational multivariate analysis of variance (PERMANOVA)

was used to compare microbial communities of different samples.

Putative gut bacterial species and metabolic pathways with an

absolute value of linear discriminant analysis (LDA) score ≥ 2

were identified using LEfSe (linear discriminant analysis effect size).

The median was used to define a high relative abundance of a

particular bacterial species.

A univariate logistic and linear regression model was used to

estimate odds ratio (OR) and beta coefficients, respectively, of high-

response with the various aforementioned clinical factors and with a

high relative abundance of putative gut bacterial species. A

multivariable logistic regression model was used to estimate

adjusted OR (aOR) of high response with clinical factors and

putative bacterial species of p<0.15 on univariate logistic regression

analysis as in previous study (43). The performance of the variables

with p<0.15 in either univariate logistic regression or univariate linear

regression in predicting vaccine response was assessed by random

forest machine learning model to derive the area under receiver

operating characteristic curve (AUC). Details of the machine learning

model can be found in Supplementary Methods.

To explore the relationship between DM and P. excrementihominis

and vaccine immunogenicity, we stratified the subjects based on the

baseline relative abundance of P. excrementihominis and DM status,

and assigned four groups (High abundance-Non-DM, High

abundance-DM, Low abundance-Non-DM, Low abundance-DM) to

perform trend test (ptrend). Similarly, to explore the relationship

between OWOB and P. excrementihominis and vaccine

immunogenicity, we stratified the subjects based on the baseline

relative abundance of P. excrementihominis and OWOB status, and

assigned four groups (High abundance-Normal weight, High

abundance-OWOB, Low abundance-Normal weight, Low

abundance-OWOB) to perform trend test (ptrend).

Spearman’s correlation tests were used to analyze correlation

among continuous variables. False discovery rate (FDR) was used to
Frontiers in Immunology 04
correct for multiple comparisons in multiple hypothesis testing,

including during LefSe analysis (44).

For the analysis of metabolites, multivariable logistic regression

was used to evaluate the association of metabolites with extreme

high response. To achieve an alpha value of 0.05 and a power of at

least 80% to detect an association if the metabolite has an odds ratio

of at least 1.5, the sample size will be 70 for the extreme case-

control design.

A two-sided p-value ≤0.05 was considered as statistically

significant, while a p-value ≤ 0.1 was considered borderline significant.
Results

Baseline characteristics

We recruited 242 eligible adults who had received two doses of

BNT162b2. The median age was 50.2 years (IQR:42.5-55.6; range 18-

75), and 85 (35.1%) were male. 232 (95.9%) remained seropositive

(≥15 AU/mL) at day 180 (median NAb level:55.2 AU/mL; IQR:30.8-

123.6). 61 (25.2%) were classified as persistent high-responders

(median NAb level:205.4 AU/mL; IQR:164.6-291.3) while 181

(74.8%) were low-responders (median NAb level:40.9 AU/mL;

IQR:25.8-66.4). There were 119 (51.1%) subjects who had adequate

level of exercises as per WHO recommendations, and 97 (41.6%) had

rPDQS at top tertile. Additionally, there were 134 (55.4%) subjects

who were OWOB, and 16 (6.6%) had DM. Baseline characteristics

were comparable between the high- and low-responders (all p>0.05)

(Table 1). At day 180, none had SARS-CoV-2 after they received two

doses of BNT162b2.
Clinical factors associated with persistent
high response

On univariate logistic regression, age ≥ 55 years old and DM

were negatively associated with persistent high vaccine response

with borderline statistical significance (Table 2). On univariate

linear regression, OWOB and DM were negatively associated with

persistent high vaccine response with borderline statistical

significance (Supplementary Table 2). Other factors including

lipid profile, lifestyle factors (level of exercises, diet and smoking),

and antibiotic use were not significantly associated with persistent

high vaccine response on both univariate logistic and univariate

linear regression (Table 2, Supplementary Table 2).
Baseline gut microbiota composition was
associated with persistent high response to
BNT162b2 at day 180

There was no significant difference in alpha diversity (richness,

Shannon and Simpson all p>0.05; Supplementary Figure 1) and beta

diversity (PERMANOVA analysis, p=0.270; Supplementary

Figure 2) between high- and low-responders.
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Using LEfSe analysis, we found that five bacterial species (namely

Ruminococcus bicirculans, Bacteroides intestinalis, Parasutterella

excrementihominis, Streptococcus salivarius, and Prevotella sp CAG

891) and four (namely Prevotella sp CAG 279, Parabacteroides sp

CAG 409, Bacteroides fragilis, and Bacteroides thetaiotaomicron) were

enriched in high- and low-responders in baseline gut microbiome

respectively (Figure 1). Among them, R. bicirculans, P.

excrementihominis, S. salivarius and B. thetaiotaomicron were not

zero-inflated (i.e. their median relative abundance was not equal to

zero). Specifically, R. bicirculans (log10LDA score=3.65; 0.9% vs 0.1%;

p=0.031), P. excrementihominis (log10LDA score=2.82; 0.08% vs

0.02%; p=0.040) and S. salivarius (log10LDA score=2.31; 0.06% vs

0.04%; p=0.031) were enriched in persistent high-responders, while

B. thetaiotaomicron was enriched in low-responders (log10LDA

score=-3.70; 2.1% vs 1.1%; p=0.040) (Figures 1A, B).

On univariate logistic regression, a higher abundance of R.

bicirculans (OR:1.95; 95% CI:1.08-3.57), P. excrementihominis

(OR:2.14; 95% CI:1.19-3.94) and S. salivarius (OR:1.78; 95% CI:0.99-

3.25) was associated with high-response (all p<0.10) (Table 2).

We then incorporated clinical (age ≥ 55 years and DM) and the

three bacterial species factors with p<0.15 on univariate logistic

regression into multivariate logistic regression. Only bacterial

species (R. bicirculans–aOR:1.87, 95% CI:1.02-3.51; P.

excrementihominis–aOR:2.2, 95% CI:1.18-4.18; S. salivarius–

aOR:2.09, 95% CI:1.13-3.94) but not clinical factors (age ≥55

years–aOR:0.63, 95% CI:0.29-1.30; DM–0.20, 95% CI:0.01-1.08)

were associated with persistent high-response (Table 2).

Sensitivity analysis incorporating OWOB also yielded similar

results (Supplementary Table 3). The clinical factors (age ≥ 55
Frontiers in Immunology 05
years, DM and OWOB) and the and the three bacterial species

factors with p<0.15 on either univariate logistic regression or

univariate linear regression collectively predict vaccine response

with AUC of 0.712 by random forest machine learning model

(Supplementary Figure 3).

As DM and OWOB were potential factors affecting vaccine

immunogenicity on univariate analysis, we further investigated the

relative abundances of bacterial markers in patient cohorts, as well

as the role of these metabolic factors as an effect modifier of

bacteria-immune response relationship. Supplementary Figure 4

shows that there was no significant difference in relative abundances

of bacterial markers between non-DM and DM subjects as well as

non-OWOB subjects and OWOB subjects, except for R. bicirculans

which was significantly more abundant in non-DM subjects than

DM subjects (0.27% vs 0%;p=0.044). Non-DM subjects with a high

relative abundance of P. excrementihominis had significantly higher

median NAb level than non-DM subjects with low abundance of P.

excrementihominis (81.7 [IQR:37.8-165.0] vs 45.1 AU/mL

[IQR:27.6-91.6];p=0.003) (Supplementary Figure 5A). When

stratified by baseline relative abundance of P. excrementihominis

and DM status, and taking high abundance-non DM as reference,

there was a decreasing trend of NAb level at day 180 (p-

trend=0.022, Supplementary Table 4). Similarly, non-OWOB

subjects with high relative abundance of this species compared

with non-OWOB subjects with low abundance of this species (101.0

[IQR:46.5-165.0] vs 42.7 AU/mL [IQR:26.8-91.6];p=0.009)

(Supplementary Figure 6A). When stratified by baseline relative

abundance of P. excrementihominis and OWOB status, and taking

high abundance-normal weight as reference, there was a significant
TABLE 1 Baseline characteristics between persistent high- and low-responders of BNT162b2.

Characteristics
Whole cohort

(N = 242)
Low-responder

(N = 181)
High-responder

(N = 61)
p-value

Age ≥ 55 years (n, %) 67 (27.7%) 55 (30.4%) 12 (19.7%) 0.106

Male sex (n, %) 85 (35.1%) 63 (34.8%) 22 (36.1%) 0.859

Adequate level of exercises (n, %)†, # 119 (51.1%) 85 (49.1%) 34 (56.7%) 0.314

Diet (rPDQS score ≥ 3rd tertile) (n, %)# 97 (41.6%) 74 (42.8%) 23 (38.3%) 0.548

Smoking (n, %) 12 (5.0%) 11 (6.1%) 1 (1.6%) 0.304

Overweight or obese (n, %) 134 (55.4%) 101 (55.8%) 33 (54.1%) 0.817

Diabetes mellitus (n, %) 16 (6.6%) 15 (8.3%) 1 (1.6%) 0.079

Triglycerides (mmol/L) 0.9 (0.7, 1.3) 0.9 (0.7, 1.2) 0.9 (0.7, 1.4) 0.814

Total cholesterol (mmol/L) 4.8 (4.2, 5.5) 4.8 (4.3, 5.4) 4.8 (4.0, 5.7) 0.804

LDL (mmol/L) 2.8 (2.3, 3.2) 2.8 (2.3, 3.2) 2.7 (2.3, 3.4) 0.850

Non-alcoholic fatty liver disease (n, %) 91 (37.6%) 67 (37.0%) 24 (39.3%) 0.745

Proton pump inhibitors use* (n, %) 26 (10.7%) 21 (11.6%) 5 (8.2%) 0.458

Antibiotic use* (n, %) 21 (8.7%) 18 (9.9%) 3 (4.9%) 0.228
High neutralizing antibody response was defined as the top 25% (i.e. above 75 percentile).
*usage for any duration within six months before vaccination.
†adequate level of exercises is defined as meeting WHO recommendation (at least 150-300 minutes of moderate-intensity, or 75-150 minutes of vigorous-intensity aerobic exercise per week).
#Total 9 missing data: 8 in low-responder group, 1 in high-responder group.
LDL, low-density lipoprotein; WHO, World Health Organization; rPDQS, rapid prime diet quality score.
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decreasing trend of NAb level at day 180 (p-trend=0.009,

Supplementary Table 5).

We then considered having high relative abundance of P.

excrementihominis, non-OWOB and non-DM as favorable

factors, and found that subjects who had all three favorable

factors had a significantly higher median NAb level (106.0 AU/

mL [IQR:48.3-167.0]) than those with just two (55.1 [IQR:28.9-

122.0];p=0.015), one (46.0 AU/mL [IQR:28.6-81.9];p=0.007) or no

protective factors (20.6 AU/mL [IQR:19.7-35.0];p=0.014)

(Supplementary Figure 7).

On the other hand, there were no similar observations among

other three putative bacterial markers with either DM or OWOB on

NAb level (Supplementary Figures 5B–D and Supplementary

Figures 6B–D). While non-DM subjects with high relative

abundance of S. salivarius had significantly higher median NAb

level than DM subjects with low relative abundance of this species

(60.0 [IQR:30.8-160.0] vs 25.9 AU/mL [IQR:19.7-35.2];p=0.026),

there was no similar observations in non-OWOB subjects with high

relative abundance of this species compared with OWOB subjects

with low relative abundance of this species.

Additionally, we conducted subgroup analysis based on sex, and

found that in male subjects, high abundance of P. excrementihominis

were associated with high vaccine response at day 180 (aOR=4.59, 95%
Frontiers in Immunology 06
CI: 1.51-15.70, p=0.010) (Supplementary Table 6). On the other hand,

in female subjects, high abundance of R. bicirculans (aOR=2.36, 95%

CI: 1.09-5.35, p=0.034) and S. salivarius (aOR=2.29, 95% CI: 1.07-5.03,

p=0.035) were associated with high vaccine response at day 180

(Supplementary Table 6).
Association between metabolic pathways
and persistent vaccine immunogenicity at
day 180

We then investigated the metabolic pathways in baseline gut

microbiome and found that six and five pathways were enriched in

high- and low-responders respectively (Supplementary Figure 8).

They were classified into “Biosynthesis” and “Degradation/

Utilization/Assimilation” categories according to MetaCyc

database (Supplementary Table 7). In persistent high-responders,

enriched pathways included those related to energy production as

well as amino acid biosynthesis, such as superpathway of L-cysteine

biosynthesis (mammalian) (log10LDA score=2.25;p=0.005) and

superpathway of L-isoleucine biosynthesis I (log10LDA

score=2.16;p=0.020).
TABLE 2 Univariate and multivariate logistic regression between high-vaccine response and a combination of clinical factors and bacterial species.

Univariate logistic regression Multivariate logistic regression

OR 95% CI p-value aOR 95% CI p-value

Clinical factors

Age ≥ 55 years 0.56 0.27, 1.11 0.109 0.63 0.29, 1.30 0.224

Male sex 1.06 0.57, 1.92 0.859

Adequate level of exercises* 1.35 0.75, 2.46 0.315

Diet (rPDQS score at 3rd tertile) 0.83 0.45, 1.51 0.548

Smoking 0.26 0.01, 1.37 0.198

Overweight or obese 0.93 0.52, 1.68 0.817

Diabetes mellitus 0.18 0.01, 0.94 0.105 0.20 0.01, 1.08 0.132

Triglycerides 1.32 0.81, 2.13 0.250

Total cholesterol 1.05 0.77, 1.42 0.778

Low-density lipoprotein 1.13 0.78, 1.62 0.506

Hepatic steatosis 1.10 0.60, 1.99 0.746

Proton pump inhibitor use 0.68 0.22, 1.76 0.460

Antibiotic use 0.47 0.11, 1.45 0.238

High relative abundance of gut bacterial species†

Ruminococcus bicirculans 1.95 1.08, 3.57 0.028 1.87 1.02, 3.51 0.046

Parasutterella excrementihominis 2.14 1.19, 3.94 0.013 2.20 1.18, 4.18 0.014

Streptococcus salivarius 1.78 0.99, 3.25 0.056 2.09 1.13, 3.94 0.020

Bacteroides thetaiotaomicron 0.67 0.37, 1.2 0.184
*Adequate level of exercises is defined as meeting WHO recommendation (at least 150-300 minutes of moderate-intensity, or 75-150 minutes of vigorous-intensity aerobic exercise per week).
†High relative abundance is defined as relative abundance higher than median of the cohort.
95% CI, 95% confidence interval; OWOB, overweight or obese; WHO, World Health Organization; rPDQS, rapid prime diet quality score; NAb, neutralizing antibodie.
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Correlation between gut microbiota and
metabolic pathways on
vaccine immunogenicity

We performed Spearman’s correlation analysis between

baseline gut bacterial species and metabolic pathways (Figure 2).

Most of the metabolic pathways enriched in high-responders were

positively associated with R. bicirculans. Notably, superpathway of

L-cysteine biosynthesis (mammalian) and superpathway of L-

isoleucine biosynthesis I showed positive correlation with R.

bicirculans (Spearman’s r=0.45;p<0.001 and r=0.41;p<0.001

respectively) and S. salivarius (r=0.15;p=0.069 and r=0.21;

p=0.007 respectively).
Association between baseline serum
metabolites and response to BNT162b2 at
day 180

Thirty-three and 37 subjects were classified as extreme-high

responders and extreme-low responders, respectively. Among

them, 29 (41.4%) were male, and the median age was 50.2 years

old (IQR:40.1-53.8). For SCFAs, butyrate was significantly
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associated with extreme high vaccine response (aOR:10.00, 95%

CI:1.81-107.2; p=0.025), while propionate was of borderline

significance (aOR:1.33, 95% CI: 0.97-1.92; p=0.091) and acetate

did not show significant association (aOR:1.01, 95% CI:0.99-1.02;

p=0.368). Baseline serum isoleucine was also significantly associated

with extreme high vaccine response (aOR:1.17, 95% CI:1.04-

1.35; p=0.016).
Discussion

To our knowledge, our study was the first to show the

association of baseline gut microbiota composition with

persistently high immunogenicity toward BNT162b2 at 180 days

post-vaccination. We identified four potential baseline microbial

markers, namely R. bicirculans, P. excrementihominis, S. salivarius

and B. thetaiotaomicron, as well as metabolic pathway markers that

might predict longer-term vaccine immunogenicity. In particular,

R. bicirculans positively correlated with most of the metabolic

pathways enriched in persistent high-responders, highlighting it

as a potential key bacterial species that might be beneficial to the

immune system.
FIGURE 1

(A) Baseline gut bacterial species enriched in high- vs low-vaccine responders detected by LEfSe (B) Comparison of relative abundances of putative
baseline gut bacterial species identified on LEfSe analysis between high- and low-vaccine responders. LEfSe, linear discriminant analysis effect size.
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Gut microbiota is involved in modulating immune response

toward vaccination via production of immunomodulatory

metabolites. Some of these metabolites served as vaccine

adjuvants through activating PRRs such as toll-like receptors

(TLRs) or NOD-like receptors. TLR5-mediated sensing of

flagellin enhances the presence of short-lived plasma cells and

immune response to influenza vaccine (11). TLR-4 mediated

sensing of bacterial LPS promotes type 1 T helper cells (Th1) and

antibody production (10), while NOD2-mediated recognition of

bacterial peptidoglycan contributes to the mucosal adjuvant activity

of cholera toxin (12). Other key metabolites include short-chain

fatty acids (SCFAs) and secondary bile acids. The former increases

antibody production through promoting energy production in B

cells (8), while the latter was negatively correlated with

inflammatory signatures following influenza vaccination (9).

Additionally, the gut microbiota was implicated in promoting

memory B cell formation, which is important for antibody durability.

In mouse models, correction of gut microbiota dysbiosis were able to

promote germinal center formation, which was required for memory

B cell differentiation (45). Moreover, bacterial LPS could activate

TLR4, which has been shown to enhance the persistence of germinal

centers and early differentiation into long-lived memory cells in

rhesus macaques (46). In humans, it has been shown that early

colonization of microbiota such as Bifidobacteria in infants was

associated with future increased frequency of CD27+ memory B

cells (47, 48). Conversely, babies born to mothers with IBD were

found to be depleted in Bifidobacteria, which was associated with

fewer class-switched memory B cells in later timepoints (49). These

suggest that the gut microbiota may have a role to play in promoting

durable vaccine immunogenicity, which was largely contributed by

memory B cell function.
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On multivariable analysis, high abundance of R. bicirculans, P.

excrementihominis and S. salivarius remained predictive of

persistently high vaccine immunogenicity, while the clinical

factors (age ≥ 55 years old and DM) were not. This suggests that

high abundance of R. bicirculans, P. excrementihominis and S.

salivarius in stool samples is a more important factor than

routine clinical parameters in predicting vaccine immunogenicity.

Consistently, the significant bacterial species identified from LEfSe

analysis in our current study are capable of producing these

immunomodulatory metabolites (Figure 3). Our metabolomics

analysis also showed that baseline butyrate and propionate levels

were associated with extreme high vaccine response at day 180 with

statistical significance and borderline significance, respectively.

Ruminococcacecae produces SCFA including butyrate,

propionate and acetate (50, 51). SCFAs can boost antibody

production by stimulating expression of genes necessary for

plasma cell differentiation, and increasing energy production

through glycolysis, oxidative phosphorylation and fatty acid

synthesis (8, 52). In particular, butyrate can also boost antibody

production through upregulating follicular helper T cells which

promote the activation and differentiation of plasma cells (52).

Apart from producing acetate (53, 54), R. bicirculans is positively

associated with the levels of fecal lithocholic acid (LCA) (55), which

was positively associated with flagellin and LPS content in stool

after influenza vaccination (9). P. excrementihominis was associated

with a reduction in taurodeoxycholic acid (TDCA) in a mice study

(56), which in turn was associated with poorer response to COVID-

19 vaccination (including BNT162b2 vaccine) in infliximab-treated

IBD patients (17). S. salivarius was shown to be able to inhibit

peroxisome proliferator-activated receptor gamma (PPARg)
activation (57), which negatively regulates monocytes and
FIGURE 2

Spearman correlation between baseline metabolic pathways and gut bacterial species.
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macrophages and inhibits the production of pro-inflammatory

cytokines (58).

On the other hand, B. thetaiotaomicron, which was enriched in

low responders, may promote the preferential differentiation of

anti-inflammatory Treg/Th2 cells while suppressing the relative

differentiation of pro-inflammatory Th1/Th17 cells (59). Moreover,

the polysaccharide A (PSA) of B. thetaiotaomicron promotes the

function of Treg cells through interaction with toll-like receptor 2

(TLR2) (60). Th1 profile was favored following BNT162b2

vaccination and was important for protection against SARS-CoV-

2 infection (61). Therefore, suppression of Th1 cells differentiation

might attenuate the antibody response to BNT162b2. On the other

hand, Treg cells suppresses B cell functions, including NAb
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production and immune memory (62). Conversely it has been

shown in mouse models that depletion of Treg cells using anti-

CD25 monoclonal antibody could induce more durable

immunogenicity to BCG and hepatitis B vaccinations (63).

Therefore, the preferential differentiation of Treg cells due to B.

thetaiotaomicron might also have dampened the antibody response

to BNT162b2.

Additionally, we found that superpathway of L-cysteine

biosynthesis (mammalian) and superpathway of L-isoleucine

biosynthesis I pathway were enriched in persistent high

responders, and were positively correlated with R. bicirculans and

S. salivarius (Figure 3). The metabolic activities of Ruminococcus

bicirculans can produce H2S and acetyl-CoA (64), which provide
FIGURE 3

Graphical illustration of potential mechanistic links between microbial and metabolic markers with COVID-19 vaccine immunogenicity.
Ruminococcaceae, including Ruminococcus bicirculans, can produce SCFAs such as butyrate, propionate and acetate, which in turn can enhance in
vivo polyclonal antibody production. It is also positively associated with fecal lithocholic acid (LCA), which was shown to have positive association
with flagellin and lipopolysaccharide (LPS) content in the stool after influenza vaccination. Parasutterella excrementihominis was negatively
associated with obesity, diabetes mellitus and taurodeoxycholic acid (TDCA), all of which were associated with poorer response to vaccines.
Streptococcus salivarius can inhibit monocytes, macrophages and production of pro-inflammatory cytokines through inhibiting PPARg. Bacteroides
thetaiotaomicron inhibits differentiation into Th1 cells which was important for protection against SARS-CoV-2, thereby attenuating antibody
response to COVID-19 vaccine. Additionally, superpathway of L-cysteine biosynthesis (mammalian) and superpathway of L-isoleucine biosynthesis I
were positively correlated with R. bicirculans and S. salivarius. Cysteine and isoleucine boost the immune system by promoting T cell proliferation,
activation and survival, as well as enhancing the production of pro-inflammatory cytokines as well as antibody production. SCFA, short-chain fatty
acid; LCA, lithocholic acid; LPS, lipopolysaccharide; TDCA, taurodeoxycholic acid; DM, diabetes mellitus; PPARg, peroxisome proliferator-activated
receptor gamma; TLR, toll-like receptor; Th1/2/17, T helper 1/2/17 cells; Treg, regulatory T cells.
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materials and an energy source for L-cysteine biosynthesis through

the superpathway of L-cysteine biosynthesis (fungi). Acetyl-CoA

also contributes to the synthesis of L-isoleucine as a material, along

with oxaloacetate, through the superpathway of L-isoleucine

biosynthesis I. Extracellular cysteine was important for T cell

proliferation, activation and survival (65). Cysteine transporters

were strongly upregulated during T cell activation, and DNA

synthesis in T cells was dependent on cysteine (66, 67).

Extracellular cysteine could also affect the level of intracellular

glutathione, as well as the activity of NFkB pathway which was

involved in the secretion of inflammatory cytokines (68). Deficiency

of extracellular cysteine was associated with immunodeficiency-

related conditions, including acquired immune deficiency

syndrome (AIDS) and a variety of cancers (65, 69). Isoleucine is a

branched chain amino acid (BCAA) which was important for

immune cell proliferation and function as well as production of

pro-inflammatory cytokines (70, 71), and was greatly incorporated

into lymphocytes (72). Isoleucine could induce the expression of b-
defensins (70, 73), which was involved in activating IFN-g (74).

IFN-g was in turn positively correlated with SARS-CoV-2

neutralizing antibody titers (75). In another study, isoleucine

supplementation resulted in increased production of

immunoglobulins, RV-specific antibodies and cytokines in the

intestines and serum of RV-infected piglets (76), supporting its

potential beneficial role in boosting immunity against viral

infections. Our current study also showed that the baseline

isoleucine was significantly associated with extreme high vaccine

response at day 180.

We also investigated the interaction between significant

bacterial species and metabolic factors with NAb level at six

months. Interestingly, we found that different combinations of

DM status, OWOB status and baseline abundance of P.

excrementihominis were associated with different levels of vaccine

response (Figure 3). Those subjects who were non-DM and non-

OWOB with a higher relative abundance of P. excrementihominis

had significantly higher NAb level than those with only one or even

without these protective factors. Obesity (21–23) and DM (21) are

associated with lower vaccine immunogenicity to COVID-19

vaccines (21). Parasutterella was shown to be negatively

associated with obesity in both mice models (77) and in Chinese

adults (78). Parasutterella was also found to be enriched in healthy

pregnant women compared to those with gestational DM (79), and

several RCTs found that these interventions were able to reverse gut

dysbiosis in DM patients by increasing abundance of Parasutterella

(80–83). This might explain the interactions among these three

protective factors, and the synergistic effect they exert on

vaccine response.

It should be noted that other studies have identified different

bacterial markers that might also predict COVID-vaccine

immunogenicity. The discrepancy in results might be explained

by inherent variations in gut microbiota composition across

different populations due to factors including diet, lifestyle and

socioeconomic status (7), and also by heterogenous study designs in

terms of sample size and population, vaccine type, sequencing

method, as well as the timepoint of measuring vaccine
Frontiers in Immunology 10
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of gut microbiota with COVID-19 vaccination are summarized in

Supplementary Table 1. Of note, most of them measured antibody

response within a relatively short time frame from vaccination,

ranging from one to three months (15–18). Several studies also only

had small sample size (17–19), while some focused in special patient

populations, such as one conducted in infliximab-treated IBD

patients (17), and another in people living with HIV (18). In

addition, factors that might affect the microbiota, such as diet,

were often not statistically accounted for as in our study (15–20).

Moreover, some studies employed 16S rRNA gene sequencing

instead of shotgun metagenomic sequencing, which had lower

resolution and could not profile gut microbiota down to species

and strain level (17–19). As a result, these studies found various

different bacterial markers that were associated with high vaccine

response. Among immunocompetent individuals, these included

Eubacterium rectale and Roseburia faecis in BNT162b2 vaccinees

(15), Bifidobacterium adolescentis in CoronaVac (inactivated virus

vaccine) vaccinees (15), as well as Collinsella aerofaciens and

Fusicatenibacter saccharivorans in BBIBP-CorV (inactivated virus

vaccine) vaccinees (16). Different bacterial markers were observed

in immunosuppressed individuals. In one study on IBD patients

receiving infliximab for >12 weeks, Bilophila was found to be

enriched in high-responders while Streptococcus was enriched in

low responders after two doses of BNT162b2 or ChAdOx1

vaccination (17). Another study on people living with HIV found

that Flavonifractor, Lachnospira and Oscillibacter were enriched in

high-responders after two doses of BNT162b2, while Butyricimonas

and Paraprevotella were enriched in low-responders (18).

Several limitations of our study should be noted. First, our study

findings, including the metabolic pathways, were correlative, and

further studies on animal models, such as in germ-free mice or in

microbiome-modulated animal models (such as through

supplementation with a bacteria strain), were required to prove

causality behind the association between the gut microbiota,

metabolites and vaccine immunogenicity observed in our study.

Second, our study findings may not be generalizable to other

populations as variation of gut microbiota composition exist

across different populations and geographical regions due to

various factors, including diet, lifestyle and socioeconomic status

(7). Furthermore, the use of extreme case-control design may also

have limited the generalizability of our metabolomic findings to

other populations. Third, longer follow-up on the durability of

immunogenicity after two vaccine doses was not possible as the

majority of participants received booster dose after six months.

Nevertheless, we are planning to further investigate whether gut

microbiota can predict vaccine immunogenicity and durability after

booster doses. The markers identified in this study might potentially

apply to immunogenicity after booster doses as well and explain

difference in the speed of waning of antibody levels. Moreover, the

findings of our study might be translated to clinical applications by

developing probiotics and amino acid supplements, which would be

validated in animal models and in clinical RCTs on human subjects,

to boost vaccine immunogenicity in the general population. In fact,

similar studies were done in the past. For instance, one RCT
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investigated the effect of probiotic supplementation with

Limosilactobacillus reuteri DSM 17938 for 6 months on serum

antibody levels after COVID-19 vaccination, and found that

probiotic supplementation exhibited significantly higher serum

antibody levels than placebo arm at >28 days after vaccination

(84). Thus, we were hopeful that our study could help to lay the

foundation for further animal studies or even RCTs to validate and

investigate the potential gut bacterial species that were implicated in

enhancing durable vaccine immunogenicity for potential

therapeutic use in the future.
Conclusion

Certain gut bacterial species could be associated with

persistently high vaccine immunogenicity at six months after two

doses of BNT162b2. These results may potentially facilitate the

development of gut microbiota interventions to improve long-term

durability of vaccine immune response.
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