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Rheumatoid arthritis associated
cytokines and therapeutics
modulate immune checkpoint
receptor expression on T cells
Dana Emerson, Eve Merriman and Pia P. Yachi*

Immunology Discovery Research, Lilly Research Laboratories, Lilly Biotechnology Center, San Diego,
CA, United States
Introduction: We investigated the impact of rheumatoid arthritis (RA) associated

cytokines and standard of care (SOC) RA therapeutics on immune checkpoint

receptor (IR) expression on T cells to gain insights to disease pathology and

therapeutic avenues.

Methods: We assessed IR expression by flow cytometry on T cell receptor

activated T cells cultured in the presence of exogenously added single

cytokines or RA patient synovial fluid. We also assessed RA synovial fluid

stimulated samples in the presence of various single cytokine neutralizing

antibodies or SOC therapeutics, including glucocorticoids, TNF, IL-6 receptor

and JAK inhibitors. In addition to IR expression, we measured the impact on

cytokine secretion profiles.

Results: RA-associated cytokines modulated IR expression, suggesting a role for

these cytokines in regulation of disease pathology. By dissecting the influence of

various inflammatory drivers within the RA inflammatory milieu, we discovered

distinct regulation of IR expression by various cytokines including IL-10, IFNa/b,
and TNF. Specifically, increased expression of TIM-3, PD-1, LAG-3 and CD28 in

response to RA synovial fluid was driven by key cytokines including IL-6, IL-10, IL-

12, IFNs, and TNF. In addition, SOC RA therapeutics such as glucocorticoids and

TNF inhibitors modulated IR and cytokine expression in the presence of RA

synovial fluid.

Conclusions: This study points to an important and intricate relationship

between cytokines and IRs in shaping immune responses in autoimmune

pathology. The modulation of IR expression by RA-associated cytokines and

SOC therapeutics provides new insights for the use of targeted treatments in

managing RA pathology.
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Introduction

The immune system communicates with neighboring immune

and stromal cells through cell surface receptors and soluble factors,

such as immune checkpoint receptors (IR) and cytokines. These

signals bridge context-dependent cues and specialized immune

responses to balance immune cell activation, differentiation,

survival, proliferation, and effector functions. T cells are key

drivers of autoimmune (AI) diseases, such as rheumatoid arthritis

(RA) (1–3). Cytokines guide T cell polarization into specialized

effector cell subsets equipped to address different threats, such as

intracellular bacteria, viruses, or extracellular dangers with distinct

immune response patterns (4). This specialization is important for

effective elimination of threats with minimal bystander damage to

self. T cells express multiple IRs with unique signaling properties,

expression patterns, and functional profiles, to enable immune

response fine-tuning and homeostasis (5, 6). IRs like Programmed

Death-1 (PD-1) and Cytotoxic T-lymphocyte associated protein 4

(CTLA-4) have been utilized for cancer treatment using inhibitory

monoclonal antibodies (mAbs) (7). IRs also hold promise for the

treatment of AI diseases through reducing inflammation and

immune activity (8, 9).

The expression of many IRs, such as PD-1, T-cell immunoglobulin

and mucin-domain containing 3 (TIM-3), Lymphocyte-activation

gene 3 (LAG-3), and T cell immunoreceptor with Ig and ITIM

domains (TIGIT), are associated with cell activation. Signaling

through these receptors results in cellular inhibition via intracellular

inhibitory motifs such as immunoreceptor tyrosine-based inhibitory

motifs (ITIMs). Activating co-stimulatory IRs like CD28 and CD226

contribute to immune activation by promoting survival, proliferation,

and effector functions through activating motifs (10, 11). IR expression

is regulated by various signaling pathways, including cytokine receptor

signaling. For instance, T cell receptor (TCR) activation drives the

expression of PD-1, LAG-3, and TIM-3, while common g-chain
cytokines such as IL-2, IL-7, IL-15, and IL-21 further increase the

expression of PD-1 and TIM-3 in T cells (12–14). IFNa has been

shown to promote and sustain PD-1 transcription, while IFNb
promotes TIM-3, PD-1, and LAG-3 but inhibits the expression of

other IRs like TIGIT, CD160, and B and T lymphocyte attenuator

(BTLA) (14). Gaining further insights into cytokine-mediated IR

expression is important for understanding disease pathology in

various AI and inflammatory conditions and for optimizing

therapeutic efficacy for the treatment of AI diseases.

Various signaling pathways, transcription factors, microRNAs,

and post-translational modifications regulate IR expression (15).

These regulatory mechanisms differ in different immune cell types

and cell activation states, resulting in phenotype-selective IR regulation.

Cellular phenotypic and environmental factors also play a role in

regulating IR expression, allowing the immune system to balance its

activation through IRs both in cell intrinsic and extrinsic manner.

Multiple IRs with distinct expression patterns and downstream

signaling regulation enable the immune system to orchestrate

responses selectively in different cellular and tissue environments

(16, 17). Therefore, it is important to study IR expression both in

inflammatory environments and in a cell-specific manner.
Frontiers in Immunology 02
RA is a chronic AI disorder characterized by dysregulated

immune function and overexpression of cytokines such as IL-6,

IL-10, IL-12, and Tumor Necrosis Factor (TNF). The interaction

between immune cells and stromal cells results in characteristic

symptoms of RA, including pain, swelling and progressive damage

to joints. T cells play a central role in RA pathology by for instance

producing inflammatory cytokines and promoting recruitment and

activation of both immune and stromal cells (18). We assessed the

impact of individual inflammatory cytokines and the AI disease-

associated inflammatory milieu of RA synovial fluid on TCR-

induced IR expression. Additionally, we evaluated the effects of

various single cytokine blocking Abs and standard of care (SOC) AI

therapeutics, including adalimumab (TNF Ab), prednisolone

(glucocorticoid), tocilizumab (aIL-6R), and tofacitinib (JAK

inhibitor), on IR expression.

This study demonstrates the dynamic nature of IR expression,

influenced by the inflammatory environment, including cytokines

such as IL-10, IL-12, TNF, and type I interferons, as well as RA SOC

treatments. Interactions between cytokines and IRs enable unique

immune responses based on the inflammatory context, suggesting

that the immune system uses IRs to regulate responses in a cytokine

context-dependent manner. Our findings highlight the intricate

behavior of cytokines and IRs in modulating immune responses;

and shed light to RA disease pathology, mechanism of action for RA

SOC treatments and the potential for targeted treatments in

managing RA pathology.
Materials and methods

Healthy donor PBMC isolation
and stimulation

Leukocyte Reduction System (LRS) tubes from healthy donors

(n=10) were acquired from Excellos in San Diego. PBMCs were

isolated from LRS tubes using Ficoll density gradient centrifugation

and stored in CryoStor CS10 freezing medium (Stemcell Technologies)

in liquid nitrogen. Naïve CD4 T cells were isolated from healthy donor

PBMCs using EasySep Human Naïve CD4+ T Cell Isolation Kit II

(Stemcell Technologies), following the manufacturer’s guidelines.

Isolated naïve CD4 T Cells were plated into 96 well U bottom

Nuclon Delta Surface tissue culture plates (Thermo Scientific) at

50,000 cells/well. Cells were cultured in CTS OpTmizer T Cell

Expansion SFM culture media (Thermo Scientific), supplemented

with OpTmizer CTS T cell expansion supplement (Thermo

Scientific), CTS Immune Cell SR (Gibco), GlutaMAX supplement

(Gibco), and 100X antibiotic-antimycotic (Gibco). Cells were

stimulated by aCD3/aCD28 magnetic Dynabeads (Gibco) at a ratio

of 1:1 bead to CD4 T Cell. Additionally, cells were stimulated by

indicated human recombinant cytokines (IL-1b, IL-2, IL-4, IL-6, IL-10,
IL-12, IL-17, IL-23, TGFb, IFNa, IFNb, IFNg) acquired from R&D

Systems, each at a final concentration of 100 ng/mL. Cytokine

concentration dose determined by titration to induce optimal T cell

response and IR expression. Cells and supernatant were collected on

day 5 for flow cytometry and MSD analysis. Cells were re-plated at
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50,000 cells per well in 2 ng/ml human recombinant IL-2 until day 10.

On day 10, cells were washed with media and re-stimulated with

dynabeads and indicated cytokines. On day 12, cells and supernatant

were collected for flow cytometry and MSD analysis. RA patient

synovial fluid (n=5; mean duration of disease 11.4 years) was

acquired through BioIVT. Naïve CD4 T cells were treated with 1%

final concentration synovial fluid in the experiments described.

Synovial fluid concentration was determined through titration to

induce optimal response based on cell viability, IR expression, and

cytokine expression.
Cytokine blocking and tissue
culture treatments

The cytokine blocking panel was composed of the following

cytokine blocking Abs: anti-IL-1b (H1b-27, BioLegend), anti-IL-2

(MQ1-17H12, eBioscience), anti-IL-4 (8D4-8, eBioscience), anti-

IL-6R (Tocilizumab similar, BioXCell), anti-IL-10 (JES3-9D7,

eBioscience), anti-IL-12 (20C2, Invitrogen), anti-IL-13 (JES10-

5A2, BioLegend), anti-IL-15 (34559, R&D Systems), anti-IL-17

(eBio64DEC17, eBioscience), anti-IL-18 (925008, R&D Systems),

anti-IL-23 (HNU2319, eBioscience), anti-TNF (Adalimumab), anti-

IFNabR (AB10739, Abcam), anti-IFNb (Polyclonal, Invitrogen),

and anti-IFNg (NIB42, Invitrogen). SOC treatments were used at

the following final culture concentrations. Adalimumab 10 mg/mL,

prednisolone (Sigma-Aldrich) 1 mM, Tofacitinib (Selleckchem) 20

nM, and Tocilizumab (BioXCell) 50 mg/mL. Concentrations were

determined through literature review and titration to determine

optimal dose.
MSD assays

On day 12 post stimulation supernatants were collected and

analyzed for cytokine expression by MSD (Meso Scale Discovery)

V-plex 10 cytokine human pro-inflammatory panel for IL-1b, IL-2,
IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, IFNg, and TNF expression.

Samples were processed and run according to manufacturer

protocol on a MESO SECTOR S 600MM instrument. Cat

N05049A-1.
Flow cytometry

On day 12 post stimulation, cells were collected for analysis.

Cells were analyzed by flow cytometry for surface protein

expression of IRs, along with phenotypic and proliferation

markers using Abs for PD-1, LAG-3, TIM-3, TIGIT, CD226,

CTLA-4, BTLA, and CD28. The following Abs were used: Near-

IR fluorescent reactive dye (Invitrogen), anti-human CD4 (RPA-T4,

BD), anti-human CD8 (RPA-T8, Biolegend), anti-human PD-1

(EH12.2H7, Biolegend), anti-human TIM-3 (7D3, BD), anti-

human TIGIT (A15153G, Biolegend), anti-human CD226 (11A8,

Biolegend), anti-human LAG-3 (11C3C65, biolegend), anti-human

CD28 (CD28.2, Biolegend), and anti-human Ki67 (Ki67,
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Biolegend). Cells were washed and surface stained for 30 minutes

at 4°C followed by fixation and washing. Intracellular staining was

carried out according to eBioscience™ Foxp3/Transcription Factor

Staining Buffer Set protocol. Data was acquired with a BD LSR 2

Fortessa instrument. Acquired FCS files were analyzed using FlowJo

version 10.8.0.
65-plex immune monitoring panel

Human plasma from healthy donor and RA patients was

analyzed for cytokine expression using Invitrogen ProcartaPlex™

Human Immune Monitoring Panel, 65-plex. Samples were

processed and run according to a miniaturized Curiox system

protocol. Plasma samples were acquired commercially through

AllCells, LLC. Healthy patient samples (n=5), RA patient

samples (n=8).
Statistical analysis

Statistical analysis methods are provided in each figure legend.

Briefly, data was analyzed with GraphPad Prism 10.0.2 software and

were shown as mean ± standard deviation. Student t-tests for

normally distributed data to determine significance between 2

groups as indicated. One-way ANOVA with Tukey’s multiple

comparisons test was used for normally distributed data to

determine significance between multiple groups as indicated.

Statistical significance is indicated in the figure legend as follows

*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
Results

T cell IR expression is regulated by soluble
cytokines during TCR stimulation

We investigated the influence of various inflammatory

cytokines on T cell IR expression by first isolating naïve CD4 T

cells from healthy human peripheral blood mononuclear cells

(PBMCs). The T cells were then TCR stimulated with aCD3/
aCD28 dynabeads in the presence of various individual cytokines.

On day 12 we analyzed the cells for surface IR expression by flow

cytometry following the stimulation schematic (Figure 1A). The day

12 timepoint was chosen to mimic the chronic stimulation

conditions associated with AI disease (19). Several cytokines

impacted IR expression under these conditions. IL-12, IL-17, IL-

23, type I interferons (IFN) significantly upregulated PD-1, LAG-3

and TIM-3 expression (Figures 1B–D). Type I interferons highly

upregulated PD-1, and LAG-3, along with a less profound

upregulation of TIM-3 and CD28. In contrast to the effects

induced with type I interferons, transforming growth factor beta

(TGFb) significantly upregulated PD-1, but had no impact on TIM-

3 and LAG-3 expression. Notably, TGFb downregulated CD28

expression. CD28 expression was upregulated by IL-10 and type I

IFN stimulation. IL-17, IL-23, IFNg and TNF also upregulated
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1534462
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Emerson et al. 10.3389/fimmu.2025.1534462
TIGIT and CD226 expression. In addition, IL-4, IL-6 and IL-12

upregulated CD226, whereas IFNa negatively affected CD226

expression (Figures 1B–D; Supplementary Figure 1A, B).

Cytokine stimulation also impacted cytokine secretion from CD4

T cells (Supplementary Figure 1C), fitting with the ability of various

cytokines to polarize T cells. For example, IL-1b, IL-2, and IL-12

enhanced the secretion of IL-6, a prominent cytokine associated with

RA disease (20). These findings illustrate that key cytokines

associated with AI disease uniquely and specifically impact CD4 T

cell IR expression profiles and modulate T cell cytokine secretion.
RA patients express high levels of
circulating cytokines compared to
healthy controls

Inflammatory diseases such as RA associate with multiple

inflammatory mediators (21). RA is an AI disease driven by

dysregulated T and B cells and characterized by inflammation in

joint synovium (22). RA patients distinguish from healthy

individuals by expression of multiple inflammatory cytokines in

the affected joint synovium and in systemic circulation. To

characterize the systemic RA inflammatory milieu, we compared

RA patient and healthy donor plasma using a 65-plex cytokine MSD
Frontiers in Immunology 04
panel. RA patient samples demonstrated significantly elevated levels

of IFNa, TNF, IL-4, IL-6, IL-8, and IL-10 cytokines compared to the

healthy controls (Figure 2, Table 1).
RA synovial fluid and TCR stimulated CD4
T cells upregulate PD-1, LAG-3, and TIM-3

We used RA synovial fluid to capture a disease-proximal

complex inflammatory milieu. RA synovial fluid contains many

of the same cytokines that are upregulated in RA patient plasma

(23). We ex vivo stimulated T cells in the presence of RA synovial

fluid to assess the impact of the RA soluble inflammatory milieu on

CD4 T cell IR expression.

In the absence of TCR stimulation, RA synovial fluid had little

effect on IR expression, except for upregulating CD28 expression

(Figure 3). In the presence of TCR stimulation, RA synovial fluid

enhanced TCR-induced PD-1, TIM-3, and LAG-3 expression

compared to TCR stimulation alone. In addition, RA synovial

fluid also enhanced the expression of the costimulatory molecules

CD28 and CD226 (Figure 3). RA synovial fluid reduced TCR

stimulation induced TIGIT expression.

These findings suggest that RA synovial fluid differentially

regulates various IRs. Besides modulating IR expression, RA
FIGURE 1

T cell IR expression is regulated by soluble cytokines during TCR stimulation. Naïve human CD4 T cells were stimulated with aCD3/aCD28
Dynabeads in the presence of indicated cytokines (100 ng/mL) for 12 days and analyzed for IR expression by flow cytometry. (A) treatment
schematic of CD4 T cells stimulated by aCD3/aCD28 Dynabeads. (B) Heatmap and (C) bar graphs representing percent change in IR expression
compared to TCR stimulation condition alone for each cytokine stimulation condition. Data is presented as mean percent change compared to TCR
stimulated T cells, from 4 donors, n=2-3 per donor. (D) Histograms show representative PD-1, TIM-3, LAG-3, and CD28 expression in response to
indicated cytokine stimulation. Statistical significance was assessed by one-way ANOVA with Tukey’s multiple comparisons test for normally
distributed data. *P<0.05, **P<0.01, ***P<0.001.
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TABLE 1 Healthy and RA patient plasma cytokine analysis.

Cytokine Healthy RA Significance

Mean (pg/ml) SD Mean (pg/ml) SD p-value

LIF 4.69 3.84 16.19 5.55 0.001 **

IFN-alpha 0.71 0 6.12 3.53 0.003 **

IL-13 1.13 1.19 7.91 4.45 0.003 **

IL-18 27.71 11.37 62.65 22.06 0.003 **

IFN-gamma 4.71 4.41 21.58 11.53 0.004 **

IL-12p70 3.36 3.73 14.11 6.75 0.004 **

SDF-1alpha 51.61 56.02 254.2 134.48 0.004 **

TSLP 3.7 4.3 13.6 5.02 0.004 **

TNF-alpha 3.15 3.59 13.58 6.92 0.005 **

IL-4 18.07 14.99 91.83 53.69 0.006 **

HGF 8.69 5.12 27 13.98 0.008 **

TNF-RII 100.54 17.72 291.35 147.44 0.008 **

IL-27 12.29 19.17 75.7 51.83 0.011 *

bNGF 4.44 6.19 22.64 14.77 0.012 *

Eotaxin-3 2.23 1.51 13.07 9.08 0.012 *

IL-10 1.62 0.82 5.4 3.16 0.012 *

IL-6 7.21 9.02 23.53 10.42 0.014 *

(Continued)
F
rontiers in Immunology
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FIGURE 2

RA patients express elevated levels of circulating cytokines compared to healthy Individuals. Healthy and RA patient plasma was analyzed using a
65-plex cytokine panel. Bar graphs of selected cytokine expression is shown. Healthy control (n=5), RA patients (n=8). Statistical significance was
assessed by students t-test for normally distributed data *P<0.05.
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TABLE 1 Continued

Cytokine Healthy RA Significance

Mean (pg/ml) SD Mean (pg/ml) SD p-value

IL-7 0.45 0.49 1.3 0.48 0.014 *

BAFF 4.26 5.75 17.75 11.12 0.015 *

IL-2 7.8 5.43 16.42 4.79 0.02 *

MIG 8.45 8.5 37.86 27.83 0.021 *

FGF-2 6.25 11.41 24.67 14.16 0.027 *

IL-5 1.32 0.72 7.77 6.55 0.027 *

SCF 6.08 3.9 11.9 3.6 0.027 *

GRO-alpha 3.81 5.19 11.65 5.3 0.028 *

Tweak 1712.31 1852.04 8317.95 6712.06 0.029 *

MCP-3 8.45 6.77 22.32 13.23 0.03 *

MIP-1 alpha 2.77 2.87 23.08 21.75 0.034 *

CD30 46.05 25.51 92.18 43.73 0.035 *

IL-2R 49.02 57.84 280.68 251.54 0.036 *

MCP-2/CCL8 2.36 1.94 4.97 1.6 0.038 *

BLC/CXCL13 34.79 33.47 80.78 32.54 0.039 *

IL-23 35.83 34.1 89.45 48.9 0.041 *

IL-20 7.42 8.21 64.23 64.69 0.042 *

MIP-1 beta 1.5 1.93 13.6 13.7 0.042 *

VEGF-A 6.48 4.17 74.38 78.2 0.044 *

IL-17A 14.24 13.08 30.52 11.92 0.054

IL-15 3.23 3.74 29.27 33.03 0.062

IL-31 17.53 18.93 38.63 11.92 0.067

MIF 19.57 7.4 177.51 205.77 0.067

sCD40L 6.36 8.3 123.63 154.5 0.069

GM-CSF 20.99 23.66 48.98 24.02 0.07

I-TAC 11.42 14.24 116.41 142.98 0.077

MCP-1 9.87 9.1 35.94 35.46 0.082

TRAIL 6.66 8.78 49.81 59.92 0.083

MIP-3alpha 50.33 70.45 130.82 86.32 0.096

G-CSF 15.55 17.13 33.08 16.1 0.103

IL-22 15.89 23.58 127.43 169.4 0.107

M-CSF 28.36 42.45 75.87 54.12 0.108

APRIL 211.15 181.39 1210.78 1696.77 0.141

Fractalkine 1.29 1.85 6.94 9.6 0.145

IL-3 36.17 65.53 181.86 243.01 0.145

IL-1 alpha 1.34 2.14 4.83 6.26 0.181

IL-8 3.88 6.28 8.67 4.9 0.19

IL-21 4.77 3.99 44.62 78.06 0.192

(Continued)
F
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TABLE 1 Continued

Cytokine Healthy RA Significance

Mean (pg/ml) SD Mean (pg/ml) SD p-value

Eotaxin 1.53 2.64 18 35.17 0.228

IP-10 15.31 7.67 53.98 89.15 0.261

ENA78 50.21 80.94 2614.77 6524.8 0.303

MMP-1 11 14.08 1192.4 3103.75 0.317

IL-1 beta 11.38 16.31 19.91 11.99 0.347

TNF-beta 127.67 245.83 11.35 4.81 0.35

Eotaxin-2 12.31 23.12 21.71 18.9 0.469

IL-16 79.33 118.4 53.43 14.9 0.651

IL-9 15.12 16.54 17.04 7.2 0.817

MDC/CCL22 73.3 64.49 78.71 43.44 0.874
F
rontiers in Immunology
 07
Healthy and RA patient plasma was analyzed using a 65-plex cytokine analysis panel. Table shows mean pg/mL, standard deviation, and p-value in protein expression between healthy individuals
(n=5) and RA patient plasma samples (n=8). Statistical significance was assessed by students t-test for normally distributed data *P<0.05, **P<0.01.
FIGURE 3

RA synovial fluid modulates CD4 T cell IR expression following TCR stimulation. Naïve human CD4 T cells were stimulated with aCD3/aCD28
Dynabeads in the presence or absence of RA synovial fluid. CD4 T cells were analyzed by flow cytometry for IR expression on day 12. Bars graphs
representing percent change in IR expression compared to TCR stimulation alone based on MFI expression or cell counts. Data from 3 donors, n=5
per donor. Statistical significance was assessed by one-way ANOVA with Tukey’s multiple comparisons test for normally distributed data. *P<0.05,
**P<0.01, ***P<0.001, ****P<0.0001. ns, not significant.
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synovial fluid also affected cellular proliferation, as indicated by

increased cell numbers and higher expression of the proliferation

marker Ki67 compared to TCR stimulation alone (Figure 3).

Furthermore, RA synovial fluid influenced the expression of

cytokines in the supernatant of CD4 T cells. Specifically, RA

synovial fluid increased the expression of IL-2, IL-4, IL-12, and TNF

but not IL-6 compared to TCR stimulation alone. These findings

further suggest that RA synovial fluid significantly modulates T cell

behavior and cytokine expression (Supplementary Figure 2).
Cytokine neutralization returns IR
expression back to baseline in RA synovial
fluid stimulated T cells

We hypothesized that cytokines drive IR expression in the

presence of RA synovial fluid based on the presence of IR

modulating cytokines such as IL-10, IFNs, and TNF in RA

synovial fluid. To assess the contribution of cytokines in RA

synovial fluid, we neutralized several cytokines with a cocktail of

blocking Abs against IL-1b, IL-2, IL-4, IL-6, IL-10, IL-12, IL-13, IL-
15, IL-17, IL-18, IL-23, TNF, IFNa, IFNb, and IFNg. The cytokine
blocking cocktail reduced PD-1, TIM-3, and LAG-3 to similar levels

with TCR stimulation expression without RA synovial fluid. This
Frontiers in Immunology 08
suggests that cytokines in RA synovial fluid partially or fully

enhance PD-1, TIM-3, and LAG-3 expression (Figure 4). We

further observed that the cytokine blocking Ab cocktail reduced

CD28 expression, suggesting that RA synovial fluid cytokines may

increase CD28 expression (Figure 4).

Next, we individually blocked several cytokines to investigate

their specific role in RA synovial fluid. We found that several

individual cytokine blocking Abs, including Abs against IL-6, IL-12,

IL-23, IFNs, and TNF reduced IR expression in the presence of RA

synovial fluid and TCR stimulation (Figure 4). These findings

suggest that several cytokines play a critical role in upregulating

IR expression in RA synovial fluid. Several individual cytokine

blocking Abs, including IL-6, IL-12, IL-23, IFNabR, IFNb, IFNg,
and TNF, inhibited PD-1, TIM-3, and LAG-3 expression. IL-10

neutralization inhibited TIM-3 and LAG-3 expression but

enhanced PD-1 expression. Notably, blocking TNF significantly

reduced PD-1, TIM-3, and LAG-3 expression but increased CD28

expression. While the blocking Ab cocktail had a negligible effect on

TIGIT and CD226 expression, many individual cytokine blocking

Abs enhanced TIGIT and CD226 expression (Supplementary

Figure 3). Blocking IL-10 strongly upregulated both TIGIT and

CD226. These findings suggest that multiple cytokines play

important roles in driving distinct IR expression in RA

synovial fluid.
FIGURE 4

RA synovial fluid effect is neutralized with a cytokine blocking Abs. Naïve human CD4 T cells isolated from PBMCs were stimulated with aCD3/
aCD28 Dynabeads in the presence or absence of RA synovial fluid or in of the combination of RA synovial fluid and a cocktail of cytokine blocking
Abs, aIL-1b, aIL-2, aIL-4, aIL-6, aIL-8, aIL-10, aIL-12, aIL-13, aIL-15, aIL-17, aIL-18, aIL-23, aTNF, aIFNa, aIFNb, and aIFNg. CD4 T cells were
analyzed by flow cytometry for IR expression on day 12. Bars graphs represent percent change in IR expression compared to TCR and RA synovial
fluid stimulation based on MFI expression. Data from 3 PBMC donors and 2 synovial fluid donors (n=6). Statistical significance was assessed by one-
way ANOVA with Tukey’s multiple comparisons test for normally distributed data. *P<0.05, **P<0.01, ***P<0.001.
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SOC RA treatments modulate IR pathways
and cytokine expression

Recognizing the significant role of various RA synovial fluid

cytokines in IR expression, we aimed to assess the role of RA

therapeutics on IR and cytokine expression. Current RA

therapeutics such as Glucocorticoids (GC), JAK, TNF, and IL-6

inhibitors, modulate cytokine signaling among other functions.

However, their ability to modulate IR expression is less understood.

Therefore, we investigated prednisolone (GC), tofacitinib (JAK 1/3

inhibitor), tocilizumab (IL-6 receptor blocking Ab), and adalimumab

(TNF Ab) in the presence of TCR and RA synovial fluid stimulation.

Prednisolone significantly upregulated PD-1, TIM-3 and CD28

expression in the presence of TCR and RA synovial fluid

stimulation (Figure 5A, B, Supplementary Figure 4A). In contrast,

prednisolone significantly downregulated LAG-3, CD226 and TIGIT

expression. Prednisolone also significantly reduced expression of IL-

1b, IL-2, IL-6, IL-8, IL-12, and TNF, while elevating IL-10 expression
(Supplementary Figure 4B).
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Adalimumab reduced the expression of PD-1, TIM-3, and

LAG-3, but strongly upregulated CD28 expression (Figure 5B,

Supplementary Figure 4A). Additionally, adalimumab reduced the

expression of IL-1b, IL-2, IL-4 and IL-12, while elevating IL-10

expression (Supplementary Figure 4B). Tocilizumab and tofacitinib

similarly reduced PD-1, TIM-3, and LAG-3 expression, with the

most significant effects on LAG-3 (Figure 5A). Additionally,

tofacitinib uniquely upregulated TIGIT expression in a

proportion of donors. Tocilizumab had little effect on cytokine

expression other than a slight increase in IL-10 expression.

Tofacitinib reduced the expression of various cytokines, including

IL-4, IL-6, IL-8, IL-10, IL-12, and TNF (Supplementary Figure 4B).
Discussion

Various pathologies, including infections, cancer, and AI

diseases, associate with dysregulated cytokine expression (24). IRs

such as PD-1, TIM-3, LAG-3, TIGIT, CD226, and CD28 regulate
FIGURE 5

RA SOC therapeutics modulate IR expression. Naïve human CD4 T cells were stimulated with aCD3/aCD28 Dynabeads in the presence of RA
synovial fluid in the presence of prednisolone 1 mM, Adalimumab 10 mg/mL, Tocilizumab 50 mg/mL or Tofacitinib 20 nM. (A) Bar graphs represent
percent change in IR expression compared to TCR and RA synovial fluid stimulation based on MFI expression. Statistical significance was assessed by
one-way ANOVA with Tukey’s multiple comparisons test for normally distributed data. (B) Matched individual donor IR MFI comparing TCR and RA
synovial fluid stimulation with and without prednisolone treatment. Data from 3 donors, n=5 per donor. Statistical significance was assessed by
students t-test for normally distributed data **P<0.01, ***P<0.001, ****P<0.0001. ns, not significant.
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and balance T cell function and immune homeostasis (25–27). We

assessed the interplay between cytokine stimulation and IR

expression on CD4 T cells to gain insights into T cell immune

regulation. Our findings demonstrate that cytokines uniquely and

specifically modulate IR expression signatures on activated CD4 T

cells, suggesting that the immune system balances its activity

through IRs in an inflammatory environment-specific manner.

We also evaluated the impact of current RA SOC therapeutics on

the interplay between cytokines and IR expression. Our findings

show that SOC therapeutics elicit both pro- and anti-inflammatory

consequences through IR and cytokine expression modulation.

These mechanistic insights have therapeutic implications for both

cytokine and emerging IR-targeting therapeutics.

PD-1 is one of the most well-characterized IRs and plays a

crucial role in maintaining immune homeostasis (28). Various

signaling pathways dependent on TCR, cytokine, and non-

cytokine receptor signaling drive PD-1 expression (29, 30).

Previous studies in mice have shown that cytokines such as IL-6,

IL-12, TGFb, and IFNa enhance PD-1 expression on activated CD8

T cells through STAT and other DNA binding elements interacting

with PD-1 enhancer regions (31). However, given the lack of

homology between the PDCD1 regulatory regions in mice and

humans, it is important to assess cytokine effects on human PD-1

expression for accurate human translation (32). Our CD4 T cell

findings demonstrated that exogenously added IL-12, IL-17, IL-23,

TGFb, IFNa/b, and TNF, but not IL-6, upregulate PD-1 expression

on human T cells upon TCR activation.

Exogenous TGFb primarily upregulated PD-1 expression with

little to no effect on other IRs, including TIM-3 and LAG-3. We also

identified a previously uncharacterized role for TGFb in

downregulating CD28 expression under these conditions. In

contrast, IL-12 stimulation upregulated expression of multiple

IRs, including PD-1, TIM-3, and LAG-3. Type I interferons

upregulated PD-1, LAG-3, and CD28, with a lesser impact on

TIM-3 expression. Taken together, these findings demonstrate that

individual cytokines uniquely modulate IR expression profiles in

CD4 T cells, suggesting that CD4 T cell activity is modulated in an

inflammatory environment-specific manner.

Given the highly specialized roles of individual cytokines in

triggering selective IR expression profiles, we assessed their role

within the complex, disease-specific inflammatory milieu of RA

synovial fluid. Like many AI diseases, RA patients exhibit

upregulated cytokine expression both systemically and locally in

the joint synovium compared to healthy individuals. IL-6, IL-8, IL-

10, and TNF are among the most well-characterized cytokines in

RA patients (29, 30). We demonstrated increased levels of IL-2, IL-

4, IL-6, IL-8, IL-10, IL-12, IL-13, IFNg, and TNF, among others, in

RA patients compared to healthy individuals. These cytokines are

also elevated in the RA joint synovium (23).

RA synovial fluid, in cooperation with TCR signaling, enhanced

the expression of several IRs including PD-1, LAG-3, TIM-3, and

CD28. Increased PD-1, LAG-3 and TIM-3 expression fitting with

their inhibitory function have been associated with T cell

exhaustion (33, 34). This suggests that inflammatory cytokines

can serve a dual function to not only drive inflammation but to

also balance immune cell activation through IR expression.
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Increased PD-1 and TIM-3 expression in RA synovium-derived T

cells suggests that the IR modulation observed in vitro may also

occur at the site of RA inflammation where upregulated PD-1 and

TIM-3 is also observed (35). Upregulated TIM-3 expression on RA

synovium-derived T cells and PBMCs has been shown to negatively

correlate with disease severity (36). RA synovial fluid reduced

TIGIT levels in the presence of TCR stimulation. Additionally,

the paired costimulatory receptor, CD226, was upregulated. This

suggests that the TIGIT/CD226 pathway may be a key dysregulated

mechanism in RA, driving T cell activation. The ability of RA

synovial fluid to modulate different IRs distinctly suggests that

inflammatory environment can be used to specifically modulate

immune responses in an environment specific manner.

We demonstrated that neutralizing multiple cytokines,

including IL-6, IL-10, IL-12, IL-23, IFNabR, IFNb, IFNg, and
TNF in RA synovial fluid and TCR-stimulated T cells, returns the

expression of IRs, such as PD-1, TIM-3, LAG-3, and CD28, to TCR-

only stimulation levels. IL-6, IL-10, and TNF are commonly

described cytokines in the pathogenesis of RA disease (22).

Surprisingly, blocking several cytokines individually also

significantly modulated IR expression. Blocking IL-10 enhanced

PD-1 expression, whereas blocking TNF reduced PD-1, TIM-3, and

LAG-3, and enhanced CD28 expression. The profound ability of

single cytokines to modulate IR expression suggests that T cells can

integrate diverse cytokine signals, requiring contributions from

each of them. This suggests that T cells can integrate and

proofread cytokine signals from multiple cell types and use IR

expression to achieve the most appropriate self-preserving response.

This also suggests that blocking individual cytokines for therapeutic

purposes can alter immune cell activation balance through

IR modulation.

To directly assess the effect of current RA therapeutics on IR

expression, we examined the impact of TNF Ab, GC, JAKi, and IL-

6R Ab using adalimumab, prednisolone, tofacitinib, and

tocilizumab, respectively. Our results demonstrated that GC

reduces the expression of LAG-3, TIGIT, and CD226, while

increasing the expression of PD-1, TIM-3, and CD28.

The ability of GC to enhance PD-1 and TIM-3 expression was

unique among the therapeutics tested. Dexamethasone has been

shown to increase both mRNA and protein expression of PD-1,

while LAG-3 was not upregulated (37). Additionally, our studies

demonstrated that prednisolone increases IL-10 and reduces TNF

expression by CD4 T cells. GC treatment has also been shown to

increase IL-10 in human monocytes and in clinical settings (38).

Our results extend the IL-10 effect to activated human CD4 T cells.

Prednisolone treatment strongly inhibited IL-2 expression. Other

GCs such as dexamethasone have also been shown to inhibit IL-2

from T cells, which is a contributing factor to GC’s anti-

inflammatory activity (39). The unique property of GC to

upregulate PD-1 among the SOC treatments may have both

beneficial and detrimental effects due to the dual nature of PD-1

in inhibiting T cell activation and inducing T cell exhaustion.

We demonstrated that exogenous TNF stimulation combined with

TCR stimulation upregulates the expression of PD-1, TIM-3, and

LAG-3, whereas adalimumab in combination with TCR inhibits them.

While exogenous TNF did not modulate CD28 expression upon TCR
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stimulation, adalimumab treatment enhanced CD28 expression in the

presence of RA synovial fluid and TCR stimulation. These IR effects

suggest that adalimumab may have some pro-inflammatory properties

on top of its anti-inflammatory effects. Consistent with the anti-

inflammatory role of adalimumab, our data showed modulation of

various cytokines and significantly increased IL-10 expression. TNF

inhibitors have also been shown to increase IL-10 expression fromCD4

T cells in RA patients (40).

IL-6 is a prominent cytokine in RA pathogenesis, expressed at high

concentrations in the RA joint synovium. IL-6 induces acute phase

proteins and promotes B cell maturation, contributing to synovial

inflammation (41). IL-6R primarily signals through STAT3, which is a

known inducer of PD-1 expression through binding to the PD-1

promoter (40). IL-6-driven STAT3 signaling may also promote

LAG-3 expression, as shown in cancer patient-derived naïve CD8 T

cells (42). However, the effect of IL-6 stimulation on TIM-3 is poorly

understood. Therefore, the limited effect of exogenously added IL-6 on

TCR stimulation-induced PD-1, TIM-3, and LAG-3 expression was

surprising. In the context of synovial fluid and TCR stimulation,

blocking IL-6 or IL-6R with tocilizumab reduced the expression of

PD-1, LAG-3, and TIM-3. This suggests that T cell activation-induced

endogenous IL-6 is important and sufficient for the expression of

various IRs, including PD-1, TIM-3, and LAG-3. IL-6 may also act to

counterbalance tissue pathology by inducing the expression of

inhibitory IRs.

Tofacitinib selectively targets JAK1 and JAK3 signaling, which

is induced by many cytokines, including IL-2, IL-4, IL-6, IL-10, IL-

12, IL-17, and IFNa/b. We demonstrated that many JAK1/3

signaling-inducing cytokines increase the expression of IRs such

as PD-1, TIM-3, and LAG-3. Importantly, we showed that

Tofacitinib reduces the expression of PD-1, TIM-3, LAG-3, and

CD28 induced by RA synovial fluid and TCR stimulation to levels

similar to TCR-only stimulation. Tofacitinib significantly reduced

the expression of various cytokines, including IL-4, IL-6, IL-8, IL-

10, IL-12, and TNF from activated T cells. Tofacitinib has been

observed to reduce IL-10 expression in human macrophages (32).

Our findings extend the effect of IL-10 reduction by Tofacitinib to

human activated T cells. Tofacitinib’s ability to reduce IL-10 is

unique from other therapies tested here, which all significantly

increased IL-10 expression.

This study has several limitations. Plasma cytokines were

analyzed from a limited number of individuals, which restricts

the ability to normalize healthy vs RA samples for other variables

such as age, sex and ethnicity. The use of exogenously added

cytokines and RA patient synovial fluid in vitro may not fully

replicate the complex in vivo environment of RA patients. The

sample size of RA patient synovial fluid (n=5) was limited, which

may limit the generalizability of the findings. The study also focused

on a select number of cytokines, IRs and SOC therapeutics,

potentially overlooking other relevant inflammatory mediators

and treatments. Future studies should address these limitations by

incorporating larger sample sizes, additional cytokines and IRs.

Our results shed light on the regulation of IR expression on

CD4 T cells through various inflammatory cytokines and the role of

individual cytokines in RA synovial fluid. Key cytokines, including

IL-10, IL-12, IFNs, TGFb, and TNF, profoundly impact the
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expression of PD-1, TIM-3, LAG-3, and/or CD28 on CD4 T cells.

Many of these cytokines individually contribute to RA synovial

fluid-induced IR expression as well. Additionally, our findings

highlight the impact of current RA therapeutics on IR expression.

We demonstrated that prednisolone treatment significantly

increased expression of PD-1 and TIM-3, highlighting a potential

for combination therapy with PD-1 and TIM-3 targeting

therapeutics now advancing in the clinic. In contrast, adalimumab

treatment reduced expression of PD-1, TIM-3, and LAG-3, while

increasing the expression of CD28 and IL-10. These findings

underscore the complex relationship between cytokines and IRs

in regulating immune responses and offer insights for therapeutic

interventions in AI diseases such as RA. Further study in mice and

human clinical trials is warranted to investigate IR expression in

response to RA therapies.

The field is still in its early stages of understanding how these

sophisticated receptor systems balance immune homeostasis in

both health and disease. Identifying the molecular and cellular

factors associated with the disease microenvironment can drive the

development of novel immunotherapies. To fully harness the

potential of IR therapeutics, it is crucial to understand the

cytokine expression context and the balance of these pathways in

different diseases and patient subsets.
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SUPPLEMENTARY FIGURE 1

T cell IR expression and cytokine secretion is regulated by soluble cytokines

during TCR stimulation. Naïve human CD4 T cells were stimulated with
aCD3/aCD28 Dynabeads in the presence of indicated cytokines (100 ng/

mL) for 12 days and analyzed for IR expression by flow cytometry and
cytokine expression by MSD cytokine assay. (A) Bar graphs representing

percent change in IR expression compared to TCR stimulation condition
Frontiers in Immunology 12
alone for each cytokine stimulation condition. (B) Histograms show
representative TIGIT, and CD226 expression in response to indicated

cytokine stimulation. (C) Heatmap representing percent change in cytokine

expression compared to TCR stimulation condition alone for each stimulation
condition. Cytokine expression measured by human 10-plex pro-

inflammatory MSD assay. Data is presented as mean percent change
compared to TCR stimulated T cells, from 4 donors, n=2-3 per donor.

Statistical significance was assessed by one-way ANOVA with Tukey’s
multiple comparisons test for normally distributed data. *P<0.05,

**P<0.01, ***P<0.001.

SUPPLEMENTARY FIGURE 2

RA synovial fluid modulates CD4 T cell cytokine expression following TCR
stimulation. Naïve human CD4 T cells were stimulated with aCD3/aCD28
Dynabeads in the presence or absence of RA synovial fluid. CD4 T cells were
analyzed by MSD 10-plex human proinflammatory cytokine panel for

cytokines expression. Bars graphs representing percent change in cytokine

expression compared to TCR stimulation alone based on pg/mL cytokine
expression. Data from 3 donors, n=5 per donor. Statistical significance was

assessed by one-way ANOVA with Tukey’s multiple comparisons test for
normally distributed data. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.

SUPPLEMENTARY FIGURE 3

RA synovial fluid effect is modified by cytokine blocking Abs. Naïve human

CD4 T cells isolated from PBMCs were stimulated with aCD3/aCD28
Dynabeads in the presence or absence of RA synovial fluid or in

combination of RA synovial fluid and a cocktail of cytokine blocking Abs,
aIL-1b, aIL-2, aIL-4, aIL-6, aIL-8, aIL-10, aIL-12, aIL-13, aIL-15, aIL-17, aIL-
18, aIL-23, aTNF, aIFNa, aIFNb, and aIFNg. CD4 T cells were analyzed by flow
cytometry for IR expression on day 12. Bar graphs represent percent change

in IR expression compared to TCR and RA synovial fluid stimulation based on

MFI expression. Data from 3 PBMC donors and 2 synovial fluid donors (n=6)
Statistical significance was assessed by one-way ANOVA with Tukey’s

multiple comparisons test for normally distributed data. *P<0.05, **P<0.01,
***P<0.001, ****P<0.0001.

SUPPLEMENTARY FIGURE 4

RA SOC therapeutics modulate IR and cytokine expression. Naïve human

CD4 T cells were stimulated with aCD3/aCD28 Dynabeads in the presence of
RA synovial fluid and treated with indicated therapeutics (prednisolone 1 mM,

Adalimumab 10 mg/ml, Tocilizumab 50 mg/mL Tofacitinib 20 nM). (A)
Histograms show representative PD-1, TIM-3, LAG-3, and CD28 expression

in response to adalimumab and prednisolone treatment by flow cytometry.
(B) Bar graphs represent percent change in cytokine expression compared to

TCR and RA synovial fluid stimulation based on pg/mL cytokine expression

measured by MSD cytokine assay. Data from 3 donors, n=5 per donor.
Statistical significance was assessed by one-way ANOVA with Tukey’s

multiple comparisons test for normally distributed data. *P<0.05, **P<0.01,
***P<0.001, ****P<0.0001.
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